1
|
Mkhonto C, Mokgehle SN, Mbeng WO, Ramarumo LJ, Ndlhovu PT. Review of Mimusops zeyheri Sond. (Milkwood): Distribution, Utilisation, Ecology and Population Genetics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2943. [PMID: 39458890 PMCID: PMC11511078 DOI: 10.3390/plants13202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Mimusops zeyheri Sond. (Milkwood) is an indigenous fruit tree species with considerable ecological, cultural, and nutritional significance that remains underexploited. This review synthesizes current knowledge on its distribution, taxonomy, phytochemistry, ethnomedicinal applications, ecological functions, genetic diversity, and biotechnological potential. A systematic literature search, spanning 1949 to April 2024, yielded 87 relevant publications from an initial 155. Mimusops zeyheri plays a crucial role in supporting the cultural traditions and economic activities of Indigenous Southern African Communities. Its distribution encompasses South, East, and Southern Tropical Africa, with substantial populations across South African provinces. Ethnomedicinally, various plant parts treat conditions including wounds, gastrointestinal issues, and diabetes. The leaves (34%) and roots (32%) are used, with infusion (33%) and decoction (31%) as primary preparation methods. Oral administration (70%) is the most common, primarily addressing skin conditions (18%). Despite its nutritional richness, a standardized nutrient profile is lacking. Limited genetic diversity studies underscore the need for further research. This study highlights Mimusops zeyheri's multifaceted importance and research gaps, particularly in other Southern African countries. Future investigations should focus on comprehensive phytochemical analysis, ethnomedicinal validation, ecological conservation, genetic diversity assessment, and biotechnological applications. Multidisciplinary collaborations are recommended to promote sustainable utilization while preserving traditional practices.
Collapse
Affiliation(s)
- Christeldah Mkhonto
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Salmina Ngoakoana Mokgehle
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Wilfred Otang Mbeng
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Luambo Jeffrey Ramarumo
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Peter Tshepiso Ndlhovu
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| |
Collapse
|
2
|
Dagallier LPMJ, Condamine FL, Couvreur TLP. Sequential diversification with Miocene extinction and Pliocene speciation linked to mountain uplift explains the diversity of the African rain forest clade Monodoreae (Annonaceae). ANNALS OF BOTANY 2024; 133:677-696. [PMID: 37659091 PMCID: PMC11082524 DOI: 10.1093/aob/mcad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND AND AIMS Throughout the Cenozoic, Africa underwent several climatic and geological changes impacting the evolution of tropical rain forests (TRFs). African TRFs are thought to have extended from east to west in a 'pan-African' TRF, followed by several events of fragmentation during drier climate periods. During the Miocene, climate cooling and mountain uplift led to the aridification of tropical Africa and open habitats expanded at the expense of TRFs, which probably experienced local extinctions. However, in plants, these drivers were previously inferred using limited taxonomic and molecular data. Here, we tested the impact of climate and geological changes on diversification within the diverse clade Monodoreae (Annonaceae) composed of 90 tree species restricted to African TRFs. METHODS We reconstructed a near-complete phylogenetic tree, based on 32 nuclear genes, and dated using relaxed clocks and fossil calibrations in a Bayesian framework. We inferred the biogeographical history and the diversification dynamics of the clade using multiple birth-death models. KEY RESULTS Monodoreae originated in East African TRFs ~25 million years ago (Ma) and expanded toward Central Africa during the Miocene. We inferred range contractions during the middle Miocene and document important connections between East and West African TRFs after 15-13 Ma. Our results indicated a sudden extinction event during the late Miocene, followed by an increase in speciation rates. Birth-death models suggested that African elevation change (orogeny) is positively linked to speciation in this clade. CONCLUSION East Africa is inferred as an important source of Monodoreae species, and possibly for African plant diversity in general. Our results support a 'sequential scenario of diversification' in which increased aridification triggered extinction of TRF species in Monodoreae. This was quickly followed by fragmentation of rain forests, subsequently enhancing lagged speciation resulting from vicariance and improved climate conditions. In contrast to previous ideas, the uplift of East Africa is shown to have played a positive role in Monodoreae diversification.
Collapse
Affiliation(s)
- Léo-Paul M J Dagallier
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458, USA
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier), Place Eugène Bataillon, 34095 Montpellier, France
| | | |
Collapse
|
3
|
Sukhorukov AP, Sennikov A, Veranso-Libalah MC, Kushunina M, Nilova MV, Heath R, Heath A, Mazei Y, Zaika MA. Evolutionary relationships, biogeography and morphological characters of Glinus (Molluginaceae), with special emphasis on the genus composition in Sub-Saharan Africa. PHYTOKEYS 2021; 173:1-92. [PMID: 33679173 PMCID: PMC7921084 DOI: 10.3897/phytokeys.173.60898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Glinus is a small genus of Molluginaceae with 8-10 species mostly distributed in the tropics of the World. Its composition and evolutionary relationships were poorly studied. A new molecular phylogeny constructed here using nuclear (ITS) and chloroplast (rbcL, trnK-matK) markers confirmed the monophyly of the genus. Based on ITS analysis, the following well-supported lineages are present within Glinus: the G. bainesii lineage is recovered as sister to the remainder of the genus followed by G. oppositifolius. Three other clades are: G. hirtus with G. orygioides; G. radiatus and G. lotoides; the latter is represented by a sample from North America, and G. zambesiacus as sister to G. setiflorus + G. lotoides + G. dictamnoides. On the plastid gene tree, G. bainesii + G. oppositifolius form a sister clade to all other Glinus species. The next clade is formed by G. hirtus and G. orygioides followed by G. radiatus plus an American sample of G. lotoides. The next branch comprises G. setiflorus as sister to G. zambesiacus + G. lotoides + G. dictamnoides. Glinus seems to have originated from Africa around the Late Eocene or Early Miocene, with further radiations to Australia and the Americas during the Late Miocene or Late Pliocene. Compared with the previous limited character set used for the diagnostics, we have found ten new morphological and carpological traits distinguishing Glinus members. In both trees based on nuclear and plastid datasets, the major phylogenetic clades cannot be characterized by the peculiar morphological characters. Many shared character states leading to their contrasting pattern in the multivariate analysis model are interpreted as a high homoplasy in the phylogenetically distant species. We paid special attention to the composition of the genus in Sub-Saharan Africa, a region with the greatest species diversity. Our results provide new insight into the taxonomy of Glinus in this region. Glinus lotoides var. virens accepted in many previous works is a synonym of G. dictamnoides that is closely related to G. lotoides based on molecular analysis and morphological characters. The status of the American populations of G. lotoides needs further investigation due to different characters of the specimens from the Old and the New World. Many specimens previously identified as G. lotoides var. virens and as the intermediates G. lotoides × G. oppositifolius belong to G. zambesiacus sp. nov. and G. hirtus comb. nov. (≡ Mollugo hirta); the latter species is resurrected from synonymy after 200 years of unacceptance. In some African treatments, G. hirtus was known under the invalidly published name G. dahomensis. Glinus zambesiacus is distributed in the southern and eastern parts of tropical Africa, and G. hirtus previously assumed to be endemic to West Africa is indeed a species with a wide distribution across the tropical part of the continent. Glinus microphyllus previously accepted as endemic to West Tropical Africa together with other new synonyms (G. oppositifolius var. lanatus, G. herniarioides, Wycliffea rotundifolia) is considered here as G. oppositifolius var. keenaniicomb. nov. (≡ Mollugo hirta var. keenanii), a variety found across the entire distribution of G. oppositifolius (Australia, Asia, and Africa). The presence of the American G. radiatus in Africa is not confirmed, and all records of this species belong to G. hirtus. The lectotypes of some names (G. dictamnoides, G. herniarioides, Mollugo hirta, M. setiflora, Pharnaceum pentagynum, Wycliffea) as well as a neotype of G. trianthemoides are designated. A new key to the identification of all Glinus species in Sub-Saharan Africa is provided. A checklist is given of all accepted species in this region (G. bainesii, G. hirtus, G. lotoides, G. oppositifolius s.l., G. setiflorus, and G. zambesiacus) with their nomenclature, morphological description and geographical distribution.
Collapse
Affiliation(s)
- Alexander P. Sukhorukov
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
- Laboratory Herbarium (TK), Tomsk State University, Lenin Ave. 36, 634050, Tomsk, Russia
| | - Alexander Sennikov
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, 00014 University of Helsinki, Finland
- Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov St. 2, 197376 St. Petersburg, Russia
| | | | - Maria Kushunina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Maya V. Nilova
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Roger Heath
- University of Botswana, Plot 4775, Notwane Road, Gaborone, Botswana
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, United Kingdom
| | - Alison Heath
- University of Botswana, Plot 4775, Notwane Road, Gaborone, Botswana
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, United Kingdom
| | - Yuri Mazei
- Department of Hydrobiology, Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Maxim A. Zaika
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
4
|
New genetic markers for Sapotaceae phylogenomics: More than 600 nuclear genes applicable from family to population levels. Mol Phylogenet Evol 2021; 160:107123. [PMID: 33610647 DOI: 10.1016/j.ympev.2021.107123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/30/2022]
Abstract
Some tropical plant families, such as the Sapotaceae, have a complex taxonomy, which can be resolved using Next Generation Sequencing (NGS). For most groups however, methodological protocols are still missing. Here we identified 531 monocopy genes and 227 Short Tandem Repeats (STR) markers and tested them on Sapotaceae using target capture and NGS. The probes were designed using two genome skimming samples from Capurodendron delphinense and Bemangidia lowryi, both from the Tseboneae tribe, as well as the published Manilkara zapota transcriptome from the Sapotoideae tribe. We combined our probes with 261 additional ones previously published and designed for the entire angiosperm group. On a total of 792 low-copy genes, 638 showed no signs of paralogy and were used to build a phylogeny of the family with 231 individuals from all main lineages. A highly supported topology was obtained at high taxonomic ranks but also at the species level. This phylogeny revealed the existence of more than 20 putative new species. Single nucleotide polymorphisms (SNPs) extracted from the 638 genes were able to distinguish lineages within a species complex and to highlight geographical structuration. STR were recovered efficiently for the species used as reference (C. delphinense) but the recovery rate decreased dramatically with the phylogenetic distance to the focal species. Altogether, the new loci will help reaching a sound taxonomic understanding of the family Sapotaceae for which many circumscriptions and relationships are still debated, at the species, genus and tribe levels.
Collapse
|
5
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
6
|
Segovia RA, Pennington RT, Baker TR, Coelho de Souza F, Neves DM, Davis CC, Armesto JJ, Olivera-Filho AT, Dexter KG. Freezing and water availability structure the evolutionary diversity of trees across the Americas. SCIENCE ADVANCES 2020; 6:eaaz5373. [PMID: 32494713 PMCID: PMC7202884 DOI: 10.1126/sciadv.aaz5373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/19/2020] [Indexed: 05/16/2023]
Abstract
The historical course of evolutionary diversification shapes the current distribution of biodiversity, but the main forces constraining diversification are still a subject of debate. We unveil the evolutionary structure of tree species assemblages across the Americas to assess whether an inability to move or an inability to evolve is the predominant constraint in plant diversification and biogeography. We find a fundamental divide in tree lineage composition between tropical and extratropical environments, defined by the absence versus presence of freezing temperatures. Within the Neotropics, we uncover a further evolutionary split between moist and dry forests. Our results demonstrate that American tree lineages tend to retain their ancestral environmental relationships and that phylogenetic niche conservatism is the primary force structuring the distribution of tree biodiversity. Our study establishes the pervasive importance of niche conservatism to community assembly even at intercontinental scales.
Collapse
Affiliation(s)
- Ricardo A. Segovia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - R. Toby Pennington
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, UK
- Department of Geography, University of Exeter, Exeter, UK
| | - Tim R. Baker
- School of Geography, University of Leeds, Leeds, UK
| | - Fernanda Coelho de Souza
- School of Geography, University of Leeds, Leeds, UK
- Departamento de Engenharia Florestal, Universidade de Brasília (UNB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, Brazil
| | - Danilo M. Neves
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Juan J. Armesto
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Departamento de Ecología, Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Ary T. Olivera-Filho
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kyle G. Dexter
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Bustamante K, Santos-Ordóñez E, Miranda M, Pacheco R, Gutiérrez Y, Scull R. Morphological and molecular barcode analysis of the medicinal tree Mimusops coriacea (A.DC.) Miq. collected in Ecuador. PeerJ 2019; 7:e7789. [PMID: 31616590 PMCID: PMC6791349 DOI: 10.7717/peerj.7789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background Mimusops coriacea (A.DC.) Miq., (Sapotaceae), originated from Africa, were introduced to coastal areas in Ecuador where it is not extensively used as a traditional medicine to treat various human diseases. Different therapeutically uses of the species include: analgesic, antimicrobial, hypoglycemic, inflammation and pain relieve associated with bone and articulation-related diseases. Furthermore, Mimusops coriacea could be used as anti-oxidant agent. However, botanical, chemical or molecular barcode information related to this much used species is not available from Ecuador. In this study, morphological characterization was performed from leaves, stem and seeds. Furthermore, genetic characterization was performed using molecular barcodes for rbcL, matk, ITS1 and ITS2 using DNA extracted from leaves. Methods Macro-morphological description was performed on fresh leaves, stem and seeds. For anatomical evaluation, tissues were embedded in paraffin and transversal dissections were done following incubation with sodium hypochlorite and safranin for coloration and fixated later in glycerinated gelatin. DNA extraction was performed using a modified CTAB protocol from leaf tissues, while amplification by PCR was accomplished for the molecular barcodes rbcL, matK, ITS1 and ITS2. Sequence analysis was performed using blast in the GenBank. Phylogenetic analysis was performed with accessions queried in the GenBank belonging to the subfamily Sapotoideae. Results Leaf size was 13.56 ± 1.46 × 7.49 ± 0.65 cm; where is a macro-morphological description of the stem (see Methods). The peel of the seeds is dark brown. Sequence analysis revealed that amplicons were generated using the four barcodes selected. Phylogenetic analysis indicated that the barcodes rbcL and matK, were not discriminated between species within the same genus of the subfamily Sapotoideae. On the other hand, the ITS1 and ITS2 were discriminative at the level of genus and species of the Sapotoideae.
Collapse
Affiliation(s)
- Katherine Bustamante
- Facultad de Ciencias Químicas, Ciudadela Universitaria "Salvador Allende," Universidad de Guayaquil, Guayaquil, Ecuador
| | - Efrén Santos-Ordóñez
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador.,Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Migdalia Miranda
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Ricardo Pacheco
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Yamilet Gutiérrez
- Instituto de Farmacia y Alimentos, Universidad de La Habana, Ciudad Habana, Cuba
| | - Ramón Scull
- Instituto de Farmacia y Alimentos, Universidad de La Habana, Ciudad Habana, Cuba
| |
Collapse
|
8
|
Gamisch A, Comes HP. Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of Bulbophyllum (Orchidaceae). BMC Evol Biol 2019; 19:93. [PMID: 31014234 PMCID: PMC6480529 DOI: 10.1186/s12862-019-1416-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/31/2019] [Indexed: 01/05/2023] Open
Abstract
Background Tropical rainforests (TRFs) harbour almost half of the world’s vascular plant species diversity while covering only about 6–7% of land. However, why species richness varies amongst the Earth’s major TRF regions remains poorly understood. Here we investigate the evolutionary processes shaping continental species richness disparities of the pantropical, epiphytic and mostly TRF-dwelling orchid mega-genus Bulbophyllum (c. 1948 spp. in total) using diversification analyses based on a time-calibrated molecular phylogeny (including c. 45–50% spp. each from Madagascar, Africa, Neotropics, and 8.4% from the Asia-Pacific region), coupled with ecological niche modelling (ENM) of geographic distributions under present and past (Last Glacial Maximum; LGM) conditions. Results Our results suggest an early-to-late Miocene scenario of ‘out-of-Asia-Pacific’ origin and progressive, dispersal-mediated diversification in Madagascar, Africa and the Neotropics, respectively. Species richness disparities amongst these four TRF lineages are best explained by a time-for-speciation (i.e. clade age) effect rather than differences in net diversification or diversity-dependent diversification due to present or past spatial-bioclimatic limits. For each well-sampled lineage (Madagascar, Africa, Neotropics), we inferred high rates of speciation and extinction over time (i.e. high species turnover), yet with the origin of most extant species falling into the Quaternary. In contrast to predictions of classical ‘glacial refuge’ theories, all four lineages experienced dramatic range expansions during the LGM. Conclusions As the Madagascan, African and Neotropical lineages display constant-rate evolution since their origin (early-to-mid-Miocene), Quaternary environmental change might be a less important cause of their high species turnover than intrinsic features generally conferring rapid population turnover in tropical orchids (e.g., epiphytism, specialization on pollinators and mycorrhizal fungi, wind dispersal). Nonetheless, climate-induced range fluctuations during the Quaternary could still have played an influential role in the origination and extinction of Bulbophyllum species in those three, if not in all four TRF regions. Electronic supplementary material The online version of this article (10.1186/s12862-019-1416-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
9
|
Serrano J, Richardson JE, Pennington TD, Cortes-B R, Cardenas D, Elliott A, Jimenez I. Biotic homogeneity of putative biogeographic units in the Neotropics: A test with Sapotaceae. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Julieth Serrano
- Royal Botanic Garden Edinburgh; Edinburgh UK
- Institute of Molecular Plant Sciences; University of Edinburgh; Edinburgh UK
| | - James E. Richardson
- Royal Botanic Garden Edinburgh; Edinburgh UK
- Programa de Biología; Universidad del Rosario; Bogotá Colombia
| | | | - Rocio Cortes-B
- Herbario Forestal; Universidad Distrital; Bogotá Colombia
| | - Dairon Cardenas
- Instituto Amazónico de Investigaciones Científicas SINCHI; Bogotá Colombia
| | | | - Ivan Jimenez
- Center for Conservation and Sustainable Development; Missouri Botanical Garden; St. Louis MO USA
| |
Collapse
|
10
|
Valderrama E, Richardson JE, Kidner CA, Madriñán S, Stone GN. Transcriptome mining for phylogenetic markers in a recently radiated genus of tropical plants (Renealmia L.f., Zingiberaceae). Mol Phylogenet Evol 2018; 119:13-24. [DOI: 10.1016/j.ympev.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/17/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
|
11
|
Tosso F, Hardy OJ, Doucet JL, Daïnou K, Kaymak E, Migliore J. Evolution in the Amphi-Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology. Mol Phylogenet Evol 2017; 120:83-93. [PMID: 29222064 DOI: 10.1016/j.ympev.2017.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
Tropical rain forests support a remarkable diversity of tree species, questioning how and when this diversity arose. The genus Guibourtia (Fabaceae, Detarioideae), characterized by two South American and 13 African tree species growing in various tropical biomes, is an interesting model to address the role of biogeographic processes and adaptation to contrasted environments on species diversification. Combining whole plastid genome sequencing and morphological characters analysis, we studied the timing of speciation and diversification processes in Guibourtia through molecular dating and ancestral habitats reconstruction. All species except G. demeusei and G. copallifera appear monophyletic. Dispersal from Africa to America across the Atlantic Ocean is the most plausible hypothesis to explain the occurrence of Neotropical Guibourtia species, which diverged ca. 11.8 Ma from their closest African relatives. The diversification of the three main clades of African Guibourtia is concomitant to Miocene global climate changes, highlighting pre-Quaternary speciation events. These clades differ by their reproductive characters, which validates the three subgenera previously described: Pseudocopaiva, Guibourtia and Gorskia. Within most monophyletic species, plastid lineages start diverging from each other during the Pliocene or early Pleistocene, suggesting that these species already arose during this period. The multiple transitions between rain forests and dry forests/savannahs inferred here through the plastid phylogeny in each Guibourtia subgenus address thus new questions about the role of phylogenetic relationships in shaping ecological niche and morphological similarity among taxa.
Collapse
Affiliation(s)
- Félicien Tosso
- TERRA Research Centre, Central African Forests, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. Roosevelt, B-1050 Brussels, Belgium.
| | - Olivier J Hardy
- Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. Roosevelt, B-1050 Brussels, Belgium.
| | - Jean-Louis Doucet
- TERRA Research Centre, Central African Forests, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | - Kasso Daïnou
- Nature + asbl / TERRA Research Centre, Central African Forests, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium; BIOSE Department, Management of Forest Resources, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; Université Nationale d'Agriculture, BP 43 Kétou, Benin.
| | - Esra Kaymak
- Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. Roosevelt, B-1050 Brussels, Belgium.
| | - Jérémy Migliore
- Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. Roosevelt, B-1050 Brussels, Belgium.
| |
Collapse
|
12
|
Berger BA, Kriebel R, Spalink D, Sytsma KJ. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Mol Phylogenet Evol 2015; 95:116-36. [PMID: 26585030 DOI: 10.1016/j.ympev.2015.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 10/04/2015] [Indexed: 01/22/2023]
Abstract
We examine the eudicot order Myrtales, a clade with strong Gondwanan representation for most of its families. Although previous phylogenetic studies greatly improved our understanding of intergeneric and interspecific relationships within the order, our understanding of inter-familial relationships still remains unresolved; hence, we also lack a robust time-calibrated chronogram to address hypotheses (e.g., biogeography and diversification rates) that have implicit time assumptions. Six loci (rbcL, ndhF, matK, matR, 18S, and 26S) were amplified and sequenced for 102 taxa across Myrtales for phylogenetic reconstruction and ten fossil priors were utilized to produce a chronogram in BEAST. Combretaceae is identified as the sister clade to all remaining families with moderate support, and within the latter clade, two strongly supported groups are seen: (1) Onagraceae+Lythraceae, and (2) Melastomataceae+the Crypteroniaceae, Alzateaceae, Penaeaceae clade along with Myrtaceae+Vochysiaceae. Divergence time estimates suggest Myrtales diverged from Geraniales ∼124Mya during the Aptian of the Early Cretaceous. The crown date for Myrtales is estimated at ∼116Mya (Albian-Aptian). BioGeoBEARS showed significant improvement in the likelihood score when the "jump dispersal" parameter was added. South America and/or Africa are implicated as important ancestral areas in all deeper nodes. BAMM analyses indicate that the best configuration included three significant shifts in diversification rates within Myrtales: near the crown of Melastomataceae (∼67-64Mya), along the stem of subfamily Myrtoideae (Myrtaceae; ∼75Mya), and along the stem of tribe Combreteae (Combretaceae; ∼50-45Mya). Issues with conducting diversification analyses more generally are examined in the context of scale, taxon sampling, and larger sets of phylogenetic trees.
Collapse
Affiliation(s)
- Brent A Berger
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11432, USA; Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA.
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA
| | - Daniel Spalink
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA
| |
Collapse
|
13
|
Richardson JE, Whitlock BA, Meerow AW, Madriñán S. The age of chocolate: a diversification history of Theobroma and Malvaceae. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00120] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Emerson KJ, Conn JE, Bergo ES, Randel MA, Sallum MAM. Brazilian Anopheles darlingi Root (Diptera: Culicidae) Clusters by Major Biogeographical Region. PLoS One 2015; 10:e0130773. [PMID: 26172559 PMCID: PMC4501553 DOI: 10.1371/journal.pone.0130773] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/23/2015] [Indexed: 11/18/2022] Open
Abstract
The major drivers of the extensive biodiversity of the Neotropics are proposed to be geological and tectonic events together with Pliocene and Pleistocene environmental and climatic change. Geographical barriers represented by the rivers Amazonas/Solimões, the Andes and the coastal mountain ranges in eastern Brazil have been hypothesized to lead to diversification within the primary malaria vector, Anopheles (Nyssorhynchus) darlingi Root, which primarily inhabits rainforest. To test this biogeographical hypothesis, we analyzed 786 single nucleotide polymorphisms (SNPs) in 12 populations of An. darlingi from across the complex Brazilian landscape. Both model-based (STRUCTURE) and non-model-based (Principal Components and Discriminant Analysis) analysis of population structure detected three major genetic clusters that correspond with newly described Neotropical biogeographical regions: 1) Atlantic Forest province (= southeast population); 2) Parana Forest province (= West Atlantic forest population, with one Chacoan population - SP); and 3) Brazilian dominion population (= Amazonian population with one Chacoan population - TO). Significant levels of pairwise genetic divergences were found among the three clusters, allele sharing among clusters was negligible, and geographical distance did not contribute to differentiation. We infer that the Atlantic forest coastal mountain range limited dispersal between the Atlantic Forest province and the Parana Forest province populations, and that the large, diagonal open vegetation region of the Chacoan dominion dramatically reduced dispersal between the Parana and Brazilian dominion populations. We hypothesize that the three genetic clusters may represent three putative species.
Collapse
Affiliation(s)
- Kevin J. Emerson
- Biology Department, St. Mary’s College of Maryland, St. Mary’s City, Maryland, United States of America
| | - Jan E. Conn
- The Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences—School of Public Health, SUNY Albany, Albany, New York, United States of America
| | - Eduardo S. Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, São Paulo, Brazil
| | - Melissa A. Randel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Maria Anice M. Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
van Tuinen M, Torres CR. Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families. Front Genet 2015; 6:203. [PMID: 26106406 PMCID: PMC4459087 DOI: 10.3389/fgene.2015.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/25/2015] [Indexed: 11/13/2022] Open
Abstract
Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer from bias and low precision, even when appropriate fossil priors and best available substitution models are chosen. Much care must be taken to address the possible ramifications of substitution saturation across the entire Tree of Life.
Collapse
Affiliation(s)
- Marcel van Tuinen
- Department of Biology and Marine Biology, University of North Carolina at WilmingtonWilmington, NC, USA
- Centre of Evolutionary and Ecological Studies, Marine Evolution and Conservation Group, University of GroningenGroningen, Netherlands
| | - Christopher R. Torres
- Department of Biology and Marine Biology, University of North Carolina at WilmingtonWilmington, NC, USA
- National Evolutionary Synthesis CenterDurham, NC, USA
- Department of Integrative Biology, University of Texas at AustinAustin, TX, USA
| |
Collapse
|