1
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Synowiec E, Sliwinski T, Stela M, Bijak M. DNA Damage Induced by T-2 Mycotoxin in Human Skin Fibroblast Cell Line-Hs68. Int J Mol Sci 2023; 24:14458. [PMID: 37833905 PMCID: PMC10572149 DOI: 10.3390/ijms241914458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin's unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast-Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 μM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes-LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| |
Collapse
|
2
|
Gouveia MJ, Brindley PJ, Rinaldi G, Gärtner F, da Costa JMC, Vale N. Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts. Infect Agent Cancer 2019; 14:41. [PMID: 31798678 PMCID: PMC6884881 DOI: 10.1186/s13027-019-0257-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023] Open
Abstract
Background Infections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini. The molecular mediators underlying the infection with these parasites and cancer remain unclear. Although carcinogenesis is a multistep process, we have postulated that these parasites release metabolites including oxysterols and estrogen-like metabolites that interact with host cell DNA. How and why the parasite produce/excrete these metabolites remain unclear. A gene encoding a CYP enzyme was identified in schistosomes and opisthorchiids. Therefore, it is reasonable hypothesized that CYP 450 might play a role in generation of pro-inflammatory and potentially carcinogenic compounds produced by helminth parasites such as oxysterols and catechol estrogens. Here, we performed enzymatic assays using several isoforms of CYP 450 as CYP1A1, 2E1 and 3A4 which are involved in the metabolism of chemical carcinogens that have been associated with several cancer. The main aim was the analysis of the role of these enzymes in production of helminth-associated metabolites and DNA-adducts. Method The effect of cytochrome P450 enzymes CYP 1A1, 2E1 and 3A4 during the interaction between DNA, glycocholic acid and taurochenodeoxycholate sodium on the formation of DNA-adducts and metabolites associated with urogenital schistosomiasis (UGS) and opisthorchiasis was investigated in vitro. Liquid chromatography/mass spectrometry was used to detect and identify metabolites. Main findings Through the enzymatic assays we provide a deeper understanding of how metabolites derived from helminths are formed and the influence of CYP 450. The assays using compounds similar to those previously observed in helminths as glycocholic acid and taurochenodeoxycholate sodium, allowed the detection of metabolites in their oxidized form and their with DNA. Remarkably, these metabolites were previously associated with schistosomiaisis and opisthorchiasis. Thus, in the future, it may be possible to synthesize this type of metabolites through this methodology and use them in cell lines to clarify the carcinogenesis process associated with these diseases. Principal conclusions Metabolites similar to those detected in helminths are able to interact with DNA in vitro leading to the formation of DNA adducts. These evidences supported the previous postulate that imply helminth-like metabolites as initiators of helminthiases-associated carcinogenesis. Nonetheless, studies including these kinds of metabolites and cell lines in order to evaluate its potential carcinogenic are required.
Collapse
Affiliation(s)
- Maria João Gouveia
- 1Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.,2Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,3i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University DC, Washington DC, 20037 USA
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology and Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University DC, Washington DC, 20037 USA.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Fátima Gärtner
- 2Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,3i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,6Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Julio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - José M C da Costa
- 1Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.,7National Health Institute Dr. Ricardo Jorge (INSA), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Nuno Vale
- 2Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,3i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,6Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Julio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,8Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Ju YR, Chen CF, Chen CW, Tsai ML, Wu JC, Dong CD. An integrative assessment to determine the sediment toxicity of Kaohsiung Harbor in Taiwan: combining chemical analysis and cytotoxicity assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34321-34331. [PMID: 30919177 DOI: 10.1007/s11356-019-04840-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
To evaluate the toxicity of sediments collected from the mouths of four rivers and entrances of Kaohsiung Harbor, Taiwan, a combination of in vitro cytotoxicity assays (Clone 9 cells) and chemical analysis that quantified 16 polycyclic aromatic hydrocarbons (PAHs), 10 phthalate esters (PAEs), and 2 alkylphenols (APs) was employed. Results showed that the total concentrations of PAHs, PAEs, and APs ranged between 77.9 and 24,363 ng/g dw, between 268 and 118,010 ng/g dw, and between 32.6 and 84,438 ng/g dw in sediments, respectively. The highest concentrations of PAHs, PAEs, and APs were found in the mouths of the Salt River (SR), Love River (LR), and Jen-Gen River (JR), respectively. Mean reference sediment quotient (m-RSQ) values were calculated using the chemical concentrations measured in the sediment of entrance I (EI) as the benchmark, and the order was SR > LR > JR > CR (Canon River mouth) > EII (entrance II) > EI. Results of the cytotoxicity assay showed that the 50% inhibitory concentration (IC50) of Clone 9 cells was in the order of LR < SR < JR < CR < EII < EI. Results on DNA content, apoptotic and autophagy protein biomarkers, and acridine orange staining indicated that the cause of death of Clone 9 cells after treatment with sediment extracts of the LR site was mainly through apoptosis. There was a significant correlation between m-RSQ values and IC50 of Clone 9 cells. The correlation analysis between cytotoxicity and chemical analytical data indicated that certain unknown chemicals may exist in LR sediment. Overall, this study demonstrated that the combination of chemical and biological analyses can provide a more comprehensive and realistic assessment of sediment toxicity to aquatic organisms compared to traditional chemistry-based-only analytical approaches.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
4
|
Baderna D, Caloni F, Benfenati E. Investigating landfill leachate toxicity in vitro: A review of cell models and endpoints. ENVIRONMENT INTERNATIONAL 2019; 122:21-30. [PMID: 30448364 DOI: 10.1016/j.envint.2018.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 05/15/2023]
Abstract
Landfill leachate is a complex mixture characterized by high toxicity and able to contaminate soils and waters surrounding the dumpsite, especially in developing countries where engineered landfills are still rare. Leachate pollution can severely damage natural ecosystems and harm human health. Traditionally, the hazard assessment of leachate is based on physicochemical characterization but the toxicity is not considered. In the last few decades, different bioassays have been used to assess the toxicity of this complex matrix, including human-related in vitro models. This article reviews the cell bioassays successfully used for the risk assessment of leachate and to evaluate the efficiency of toxicity removal of several processes for detoxification of this wastewater. Articles from 2003 to 2018 are covered, focusing mainly on studies that used human cell lines, highlighting the usefulness and adequacy of in vitro models for assessing the hazard involved with exposure to leachate, particularly as an integrative supporting tool for chemical-based risk assessment. Leachate is generally toxic, mutagenic, genotoxic and estrogenic in vitro, and these effects can be measured in the cells exposed to already low concentrations, confirming the serious hazard of this wastewater for human health.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
5
|
Cuevas N, Martins M, Costa PM. Risk assessment of pesticides in estuaries: a review addressing the persistence of an old problem in complex environments. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1008-1018. [PMID: 29450674 DOI: 10.1007/s10646-018-1910-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Estuaries, coastal lagoons and other transition ecosystems tend to become the ultimate reservoirs of pollutants transported by continental runoff, among which pesticides constitute the class of most concern. High amounts of dissolved and particulated organic matter greatly contribute to the accumulation of pesticides that eventually become trapped in sediments or find their way along food chains. Perhaps not so surprisingly, it is common to find elevated levels of pesticides in estuarine sediments decades after their embargo. Still, it remains challenging to address ecotoxicity in circumstances that invariably imply mixtures of contaminants and multiple factors affecting bioavailability. Despite advances in methods for detecting pesticides in waters, sediments and organisms, chemical data alone are insufficient to predict risk. Many researchers have been opting for ex situ bioassays that mimic the concentrations of pesticides in estuarine waters and sediments using a range of ecologically relevant model organisms, with emphasis on fish, molluscs and crustaceans. These experimental procedures unravelled novel risk factors and important insights on toxicological mechanisms, albeit with some prejudice of ecological relevance. On the other hand, in situ bioassays, translocation experiments and passive biomonitoring strive to spot causality through an intricate mesh of confounding factors and cocktails of pollutants. Seemingly, the most informative works are integrative approaches that combine different assessment strategies, multiple endpoints and advanced computational and geographical models to determine risk. State-of-art System Biology approaches combining high-content screening approaches involving "omics" and bioinformatics, can assist discovering and predicting novel Adverse Outcome Pathways that better reflect the cumulative risk of persisting and emerging pesticides among the wide range of stressors that affect estuaries.
Collapse
Affiliation(s)
- Nagore Cuevas
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Marta Martins
- MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Pedro M Costa
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
6
|
Machado A, Fernandes AP, Paixão E, Caeiro S, Matias-Dias C. An epidemiological approach to characterise the human exposure pathways in a contaminated estuarine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1753-1761. [PMID: 28618664 DOI: 10.1016/j.scitotenv.2017.05.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
This study's aim was to develop and implement an integrative epidemiologic cross-sectional study that allows identifying and characterising exposure pathways of populations living and working on the shores of a contaminated estuarine environment. Population residing in Carrasqueira, located on the Sado estuary with known contaminated areas was compared to another population on a noncontaminated estuary (Vila Nova de Mil Fontes - VNMF), considered a nonexposed population. Simple random samples of individuals were selected in each study population from the National Health Service Lists: 140 individuals were selected in Carrasqueira and 219 in VNMF. Participation rates were higher in the exposed group (62.5%, n=102 in Carrasqueira and 48.3%, n=100 individuals in VNMF). The same structured questionnaire was used in both populations, including questions on occupational activities, leisure activities, consumption of food (including fish and mollusks from the estuary) and use of water for human intake and agriculture. Results showed that a significantly higher proportion of Carrasqueira participants reported doing tasks in their job that promote direct (48.8% vs 1.2% in VNMF, p-value<0.001) or indirect (30% vs 11.9% in VNMF, p-value=0.004) contact with water from the estuary. Regarding seafood consumption, the exposed population of Carrasqueira had a higher frequency of consumption of cuttlefish (23.5% vs 9% in VNMF, p-value=0.007), sole (22.5% vs 4% in VNMF, p-value<0.001) and clams (18.6% vs 5.0 in VNMF, p-value=0.004). The comparative study design, with exposed and nonexposed populations living on the shores of two different estuaries allowed us to confirm the hypothesis of a higher risk of contamination from the contaminated estuarine environment. The study design and the selection of both populations were adequate for this type of epidemiologic study of potential routes of human contamination in a mixture of contaminated estuarine environment and can be used in other estuarine areas with similar environmental risk.
Collapse
Affiliation(s)
- Ausenda Machado
- Epidemiology Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Ana Paula Fernandes
- Departament of Sciences and Technology, Universidade Aberta, Rua da Escola Politécnica, 141, 1269-001 Lisboa, Portugal; CAPP, Centre for Public Administration & Public Policies, Institute of Social Sciences and Politics, Lisbon University, Rua Almerindo Lessa, 1300-663 Lisboa, Portugal
| | - Eleonora Paixão
- Technical Support Center in Areas of Investment, Planning and Statistics, Alentejo Regional Administration of Health, Largo do Jardim do Paraíso, n° 1, 7000-864 Évora, Portugal
| | - Sandra Caeiro
- Departament of Sciences and Technology, Universidade Aberta, Rua da Escola Politécnica, 141, 1269-001 Lisboa, Portugal; CAPP, Centre for Public Administration & Public Policies, Institute of Social Sciences and Politics, Lisbon University, Rua Almerindo Lessa, 1300-663 Lisboa, Portugal
| | - Carlos Matias-Dias
- Epidemiology Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; Centro de investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
7
|
Mincarelli L, Vischetti C, Craft J, Tiano L. DNA damage in different Eisenia andrei coelomocytes sub-populations after in vitro exposure to hydrogen peroxide. SPRINGERPLUS 2016; 5:302. [PMID: 27064673 PMCID: PMC4783309 DOI: 10.1186/s40064-016-1950-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
Earthworms play an essential role in providing soil fertility and may represent an important soil contamination bio-indicator. They are able to ingest soil particles, adsorb substances throughout the intestinal epithelium into the coelomic cavity, where chemicals can come in direct contact with coelomic fluid. Earthworm coelomic fluid shelters leucocytes (coelomocytes) that differ significantly both structurally and functionally. Cellular variability could lead to different susceptibility towards contaminants possibly present in soil ecosystem. In order to define population specific dose response to chemicals and to identify a homogeneous cell population to be used as a relevant biomarker, we investigated different coelomocytes subpopulation, obtained by Percoll density gradient centrifugation (5–35 %), exposed ex vivo to H2O2 in the range of concentration 15–120 µM. DNA damage levels were assessed by the comet assay on unseparated coelomocytes and on three enriched cellular fractions (light, medium and heavy density subpopulations). All tested samples showed a dose–response genotoxic effect following H2O2 exposure. Moreover, light density sub-population appeared more susceptible to oxidative insult highlighted by a significant increase in DNA damage indexes at lower concentrations of H2O2. Present data suggested that in these experimental condition coelomocytes light fraction may represent a more sensitive biomarker of genotoxic insult.
Collapse
Affiliation(s)
- Laura Mincarelli
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Costantino Vischetti
- Environmental, Food and Agricultural Sciences Department, Polytechnic University of Marche, Ancona, Italy
| | - John Craft
- Biological and Biomedical Science Department, School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
8
|
Caballero-Gallardo K, Guerrero-Castilla A, Johnson-Restrepo B, de la Rosa J, Olivero-Verbel J. Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals. CHEMOSPHERE 2015; 138:837-46. [PMID: 26298075 DOI: 10.1016/j.chemosphere.2015.07.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 05/18/2023]
Abstract
Extraction, transport and utilization of coal spread out coal dust. Nowadays, Colombia is an important producer of this mineral in South America, being the Santa Marta area one of the largest coal exporting ports in the country. The aim of this work was to assess the pollutants levels and toxicity of shoreline sediments from this place. 16 PAHs and 46 elements were measured in nine locations during dry and rainy seasons. HepG2 cells were exposed to 1% sediment extracts and mRNA expression evaluated for selected genes. PAHs levels were greater during the rainy season. The highest ∑PAHs (89.9 ng g(-1)) appeared at a site located around 300 m far from the coast line at close proximity to the area where coal is loaded into cargo vessels for international shipments, being naphthalene the most abundant PAH. At Santa Marta Bay port, ∑PAHs were 62.8 ng g(-1) and 72.8 ng g(-1) for dry and rainy seasons, respectively, with greatest levels for fluoranthene. Based on sediment standards, most stations have poor condition regarding Cr, but moderate contamination on Cu, Pb and Zn. Sediments from the port and coal transport sites, the most polluted by PAHs and metals, induced CYP1A1 and NQO1 during the dry season. Data showed the sediments from this shoreline have bioactive chemicals that determine their toxicological profile.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Angelica Guerrero-Castilla
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Sciences, San Pablo Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Jesus de la Rosa
- Associate Unit CSIC - University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, E21071 Huelva, Spain
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
9
|
Langie SAS, Azqueta A, Collins AR. The comet assay: past, present, and future. Front Genet 2015; 6:266. [PMID: 26322077 PMCID: PMC4534839 DOI: 10.3389/fgene.2015.00266] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/31/2015] [Indexed: 01/29/2023] Open
Affiliation(s)
- Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute of Technological Research (VITO) Mol, Belgium
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | | |
Collapse
|
10
|
Pinto MF, Louro H, Costa PM, Caeiro S, Silva MJ. Exploring the potential interference of estuarine sediment contaminants with the DNA repair capacity of human hepatoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:559-570. [PMID: 25965191 DOI: 10.1080/15287394.2015.1006712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Estuaries may be reservoirs of a wide variety of pollutants, including mutagenic and carcinogenic substances that may impact on the ecosystem and human health. A previous study showed that exposure of human hepatoma (HepG2) cells to extracts from sediment samples collected in two areas (urban/industrial and riverine/agricultural) of an impacted estuary (Sado, Portugal), produced differential cytotoxic and genotoxic effects. Those effects were found to be consistent with levels and nature of sediment contamination. The present study aimed at evaluating whether the mixtures of contaminants contained in those extracts were able to modulate DNA repair capacity of HepG2 cells. The residual level of DNA damage was measured by the comet assay in cells exposed for 24 or 48 h to different extracts, after a short preexposure to a challenging concentration range of ethyl methanesulfonate (EMS), as a model alkylating agent. The results suggested that the mixture of contaminants present in the tested samples, besides a potential direct effect on the DNA molecule, may also interfere with DNA repair mechanisms in HepG2 cells, thus impairing their ability to deal with genotoxic stress and, possibly, facilitating accumulation of mutations. Humans are environmentally/occupationally exposed to mixtures rather than to single chemicals. Thus, the observation that estuarine contaminants induce direct and indirect DNA strand breakage in human cells, the latter through the impairment of DNA repair, raises additional concerns regarding potential hazards from exposure and the need to further explore these endpoints in the context of environmental risk assessment.
Collapse
Affiliation(s)
- Miguel Ferreira Pinto
- a National Institute of Health Dr. Ricardo Jorge, I.P. , Department of Human Genetics , Lisbon , Portugal
| | | | | | | | | |
Collapse
|