1
|
Potter SN, Harvey D, Sterling A, Abbeduto L. Parental Responsivity and Child Communication During Mother-Child and Father-Child Interactions in Fragile X Syndrome. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:939-959. [PMID: 38407074 PMCID: PMC11001423 DOI: 10.1044/2023_jslhr-23-00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
PURPOSE Past research shows that parentally responsive behavior toward the child positively influences language development in both neurotypical children and children with intellectual and developmental disabilities, including those with fragile X syndrome (FXS); however, most studies have focused exclusively on the mother-child relationship. The current study examined relationships between parent behavior (i.e., responsivity and behavior management) and child language performance in both mother-child and father-child interactions, as well as relationships between child characteristics and both parent behavior and child language. METHOD Participants were 23 families of young boys with FXS between 3 and 7 years of age. Mothers and fathers independently completed questionnaires assessing child characteristics and separately engaged in 12-min play-based interactions with their child via telehealth. One parent also completed a comprehensive interview assessing child adaptive behavior. Video recordings of the parent-child interactions were transcribed and coded for parent and child behavior, and measures of parent and child language were obtained from the transcripts. RESULTS Mothers and fathers used similar rates of responsive behaviors during parent-child interactions, and parental responsivity was positively associated with some aspects of child language performance (i.e., talkativeness and lexical diversity). Parental behavior, however, was not associated with syntactic complexity. Older children and children with higher levels of adaptive behavior had parents who used higher rates of responsive behaviors. Fathers used higher rates of behavior management strategies compared to mothers, and this type of parent behavior was not associated with child language. CONCLUSION Overall, this study provides evidence that interventions focused on increasing parental responsiveness would be beneficial for families of children with FXS and that these interventions should be delivered early given the association between responsivity and child age. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25229939.
Collapse
Affiliation(s)
- Sarah Nelson Potter
- MIND Institute, UC Davis Health, Sacramento, CA
- Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA
| | - Danielle Harvey
- Department of Public Health Sciences, UC Davis Health, Sacramento, CA
| | - Audra Sterling
- Waisman Center, University of Wisconsin–Madison
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| | - Leonard Abbeduto
- MIND Institute, UC Davis Health, Sacramento, CA
- Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA
| |
Collapse
|
2
|
Ziemka-Nalecz M, Pawelec P, Ziabska K, Zalewska T. Sex Differences in Brain Disorders. Int J Mol Sci 2023; 24:14571. [PMID: 37834018 PMCID: PMC10572175 DOI: 10.3390/ijms241914571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
A remarkable feature of the brain is its sexual dimorphism. Sexual dimorphism in brain structure and function is associated with clinical implications documented previously in healthy individuals but also in those who suffer from various brain disorders. Sex-based differences concerning some features such as the risk, prevalence, age of onset, and symptomatology have been confirmed in a range of neurological and neuropsychiatric diseases. The mechanisms responsible for the establishment of sex-based differences between men and women are not fully understood. The present paper provides up-to-date data on sex-related dissimilarities observed in brain disorders and highlights the most relevant features that differ between males and females. The topic is very important as the recognition of disparities between the sexes might allow for the identification of therapeutic targets and pharmacological approaches for intractable neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106 Warsaw, Poland; (M.Z.-N.); (P.P.); (K.Z.)
| |
Collapse
|
3
|
Bullard L, Harvey D, Abbeduto L. Exploring the feasibility of collecting multimodal multiperson assessment data via distance in families affected by fragile X syndrome. J Telemed Telecare 2023; 29:591-599. [PMID: 33840279 PMCID: PMC8505575 DOI: 10.1177/1357633x211003810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Telehealth is an important tool in helping to provide services for hard-to-reach populations. One population that might benefit from telehealth are individuals with fragile X syndrome (FXS). Although FXS is the leading inherited cause of intellectual disability, it is nonetheless a low incidence disorder. Individuals with FXS and their families are involved in research studies, clinical trials and receive interventions - many of which are only offered in a few locations in the United States and thus, not easily accessible to many families. The current project explored the feasibility of using telehealth procedures to collect multimodal behavioural and psychological assessment data from these families. METHODS Participation in the current study involved online surveys, measures of physiological indices of stress, live interviews and observations of mother-child interactions conducted via distance videoconferencing using the family's own technology when possible. Across all modes of data collection, we obtained information regarding the feasibility of participating entirely via distance by documenting missing data as well as each mother's overall impression of participating via distance. RESULTS Our telehealth procedures were successfully implemented across a wide range of technology platforms with limited difficulty, and we documented little missing data due to technology-related challenges. Perhaps most importantly, however, our sample of mothers reported high satisfaction with participating via distance. DISCUSSION These findings suggest that a wide range of services and types of assessments may be amenable to telehealth procedures. Further, the findings have immediate applications as the field shifts towards telehealth due to the coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Lauren Bullard
- MIND Institute, University of California, Davis, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, USA
| | - Leonard Abbeduto
- MIND Institute, University of California, Davis, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
4
|
Friedman L, Lauber M, Behroozmand R, Fogerty D, Kunecki D, Berry-Kravis E, Klusek J. Atypical vocal quality in women with the FMR1 premutation: an indicator of impaired sensorimotor control. Exp Brain Res 2023; 241:1975-1987. [PMID: 37347418 PMCID: PMC10863608 DOI: 10.1007/s00221-023-06653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Women with the FMR1 premutation are susceptible to motor involvement related to atypical cerebellar function, including risk for developing fragile X tremor ataxia syndrome. Vocal quality analyses are sensitive to subtle differences in motor skills but have not yet been applied to the FMR1 premutation. This study examined whether women with the FMR1 premutation demonstrate differences in vocal quality, and whether such differences relate to FMR1 genetic, executive, motor, or health features of the FMR1 premutation. Participants included 35 women with the FMR1 premutation and 45 age-matched women without the FMR1 premutation who served as a comparison group. Three sustained /a/ vowels were analyzed for pitch (mean F0), variability of pitch (standard deviation of F0), and overall vocal quality (jitter, shimmer, and harmonics-to-noise ratio). Executive, motor, and health indices were obtained from direct and self-report measures and genetic samples were analyzed for FMR1 CGG repeat length and activation ratio. Women with the FMR1 premutation had a lower pitch, larger pitch variability, and poorer vocal quality than the comparison group. Working memory was related to harmonics-to-noise ratio and shimmer in women with the FMR1 premutation. Vocal quality abnormalities differentiated women with the FMR1 premutation from the comparison group and were evident even in the absence of other clinically evident motor deficits. This study supports vocal quality analyses as a tool that may prove useful in the detection of early signs of motor involvement in this population.
Collapse
Affiliation(s)
- Laura Friedman
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Meagan Lauber
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Daniel Fogerty
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, USA
| | - Dariusz Kunecki
- Department of Pediatrics, Rush University Medical Center, Chicago, USA
| | | | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA.
| |
Collapse
|
5
|
Maltman N, DaWalt LS, Hong J, Baker MW, Berry-Kravis EM, Brilliant MH, Mailick M. FMR1 CGG Repeats and Stress Influence Self-Reported Cognitive Functioning in Mothers. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2023; 128:1-20. [PMID: 36548377 PMCID: PMC10445796 DOI: 10.1352/1944-7558-128.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2022] [Indexed: 06/17/2023]
Abstract
Variation in the FMR1 gene may affect aspects of cognition, such as executive function and memory. Environmental factors, such as stress, may also negatively impact cognitive functioning. Participants included 1,053 mothers of children with and without developmental disabilities. Participants completed self-report measures of executive function, memory, and stress (i.e., life events, parenting status), and provided DNA to determine CGG repeat length (ranging from 7 to 192 CGGs). Stress exposure significantly predicted greater self-reported difficulties in executive function and the likelihood of memory problems. Cubic CGG effects independently predicted executive function and memory difficulties, suggesting effects of both genetic variation and environmental stress exposure on cognitive functioning.
Collapse
Affiliation(s)
- Nell Maltman
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | - Leann Smith DaWalt
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | - Jinkuk Hong
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | | | | | | | - Marsha Mailick
- Murray H. Brilliant and Marsha Mailick, University of Wisconsin-Madison
| |
Collapse
|
6
|
Hwang YH, Hayward BE, Zafarullah M, Kumar J, Durbin Johnson B, Holmans P, Usdin K, Tassone F. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci Rep 2022; 12:10419. [PMID: 35729184 PMCID: PMC9213438 DOI: 10.1038/s41598-022-14183-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.
Collapse
Affiliation(s)
- Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Eliot Hayward
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Blythe Durbin Johnson
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA. .,MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
Maltman N, Klusek J, DaWalt L, Hong J, Sterling A, Berry-Kravis E, Mailick MR. Verbal inhibition declines among older women with high FMR1 premutation expansions: A prospective study. Brain Cogn 2022; 159:105851. [PMID: 35279590 PMCID: PMC9018592 DOI: 10.1016/j.bandc.2022.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
The FMR1 premutation has been associated with difficulties in executive functioning, including verbal inhibition. However, little is known about the longitudinal profiles of verbal inhibition among FMR1 premutation carriers, particularly in women, and how individual factors such as aging and CGG repeat length may contribute to changes in verbal inhibition over time. The present study examined verbal inhibition performance (i.e., inhibition errors) on the Hayling Sentence Completion Task in a cohort of 92 women with the FMR1 premutation across two timepoints approximately three years apart. We examined the effects of age, CGG repeat length, and their interactions on verbal inhibition over time. We also evaluated whether response latency affected verbal inhibition errors. We found no significant change in verbal inhibition in the full cohort during the three-year study period. However, a subset of FMR1 premutation carriers, namely older participants with higher CGG repeats, evidenced greater declines in verbal inhibition over time. Longer response latencies did not compensate for verbal inhibition errors. The findings suggest that a subset of women with the FMR1 premutation may be at earlier, increased risk for changes in executive functioning, which if confirmed, should be considered as part of the clinical profile associated with the premutation.
Collapse
Affiliation(s)
- Nell Maltman
- Waisman Center, University of Wisconsin-Madison 1500 Highland Ave., Madison, WI 53705, USA.
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College St., Columbia, SC 29208, USA
| | - Leann DaWalt
- Waisman Center, University of Wisconsin-Madison 1500 Highland Ave., Madison, WI 53705, USA
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison 1500 Highland Ave., Madison, WI 53705, USA
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison 1500 Highland Ave., Madison, WI 53705, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 381 Goodnight Hall, 1975 Willow Dr., Madison, WI 53706, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, 1725 West Harrison St., Suite 718, Chicago, IL 60612, USA
| | - Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison 1500 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
8
|
Grishchenko IV, Tulupov AA, Rymareva YM, Petrovskiy ED, Savelov AA, Korostyshevskaya AM, Maksimova YV, Shorina AR, Shitik EM, Yudkin DV. A transgenic cell line with inducible transcription for studying (CGG)n repeat expansion mechanisms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:117-124. [PMID: 34901709 PMCID: PMC8629361 DOI: 10.18699/vj21.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/19/2022] Open
Abstract
There are more than 30 inherited human disorders connected with repeat expansion (myotonic dystrophy type I, Huntington’s disease, Fragile X syndrome). Fragile X syndrome is the most common reason for inherited intellectual disability in the human population. The ways of the expansion development remain unclear.
An important feature of expanded repeats is the ability to form stable alternative DNA secondary structures.
There are hypotheses about the nature of repeat instability. It is proposed that these DNA secondary structures
can block various stages of DNA metabolism processes, such as replication, repair and recombination and it is
considered as the source of repeat instability. However, none of the hypotheses is fully confirmed or is the only
valid one. Here, an experimental system for studying (CGG)n repeat expansion associated with transcription and
TCR-NER is proposed. It is noteworthy that the aberrations of transcription are a poorly studied mechanism of
(CGG)n instability. However, the proposed systems take into account the contribution of other processes of DNA
metabolism and, therefore, the developed systems are universal and applicable for various studies. Transgenic
cell lines carrying a repeat of normal or premutant length under the control of an inducible promoter were established and a method for repeat instability quantification was developed. One type of the cell lines contains an
exogenous repeat integrated into the genome by the Sleeping Beauty transposon; in another cell line, the vector
is maintained as an episome due to the SV40 origin of replication. These experimental systems can serve for finding the causes of instability and the development of therapeutic agents. In addition, a criterion was developed for
the quantification of exogenous (CGG)n repeat instability in the transgenic cell lines’ genome.
Collapse
Affiliation(s)
- I V Grishchenko
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - A A Tulupov
- International Tomography Center of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - Y M Rymareva
- International Tomography Center of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E D Petrovskiy
- International Tomography Center of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Savelov
- International Tomography Center of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A M Korostyshevskaya
- International Tomography Center of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y V Maksimova
- Novosibirsk State Medical University, Novosibirsk, Russia Novosibirsk City Clinical Hospital No.1, Novosibirsk, Russia
| | - A R Shorina
- Novosibirsk City Clinical Hospital No.1, Novosibirsk, Russia
| | - E M Shitik
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - D V Yudkin
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
9
|
Maltman N, Guilfoyle J, Nayar K, Martin GE, Winston M, Lau JCY, Bush L, Patel S, Lee M, Sideris J, Hall DA, Zhou L, Sharp K, Berry-Kravis E, Losh M. The Phenotypic Profile Associated With the FMR1 Premutation in Women: An Investigation of Clinical-Behavioral, Social-Cognitive, and Executive Abilities. Front Psychiatry 2021; 12:718485. [PMID: 34421690 PMCID: PMC8377357 DOI: 10.3389/fpsyt.2021.718485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
The FMR1 gene in its premutation (PM) state has been linked to a range of clinical and subclinical phenotypes among FMR1 PM carriers, including some subclinical traits associated with autism spectrum disorder (ASD). This study attempted to further characterize the phenotypic profile associated with the FMR1 PM by studying a battery of assessments examining clinical-behavioral traits, social-cognitive, and executive abilities in women carrying the FMR1 PM, and associations with FMR1-related variability. Participants included 152 female FMR1 PM carriers and 75 female controls who were similar in age and IQ, and screened for neuromotor impairments or signs of fragile X-associated tremor/ataxia syndrome. The phenotypic battery included assessments of ASD-related personality and language (i.e., pragmatic) traits, symptoms of anxiety and depression, four different social-cognitive tasks that tapped the ability to read internal states and emotions based on different cues (e.g., facial expressions, biological motion, and complex social scenes), and a measure of executive function. Results revealed a complex phenotypic profile among the PM carrier group, where subtle differences were observed in pragmatic language, executive function, and social-cognitive tasks that involved evaluating basic emotions and trustworthiness. The PM carrier group also showed elevated rates of ASD-related personality traits. In contrast, PM carriers performed similarly to controls on social-cognitive tasks that involved reliance on faces and biological motion. The PM group did not differ from controls on self-reported depression or anxiety symptoms. Using latent profile analysis, we observed three distinct subgroups of PM carriers who varied considerably in their performance across tasks. Among PM carriers, CGG repeat length was a significant predictor of pragmatic language violations. Results suggest a nuanced phenotypic profile characterized by subtle differences in select clinical-behavioral, social-cognitive, and executive abilities associated with the FMR1 PM in women.
Collapse
Affiliation(s)
- Nell Maltman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Janna Guilfoyle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Gary E. Martin
- Department of Communication Sciences and Disorders, St. John's University, Staten Island, NY, United States
| | - Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Joseph C. Y. Lau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Lauren Bush
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Shivani Patel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Michelle Lee
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - John Sideris
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Lili Zhou
- Rush University Medical Center, Chicago, IL, United States
| | - Kevin Sharp
- Rush University Medical Center, Chicago, IL, United States
| | | | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
10
|
Allen EG, Charen K, Hipp HS, Shubeck L, Amin A, He W, Nolin SL, Glicksman A, Tortora N, McKinnon B, Shelly KE, Sherman SL. Refining the risk for fragile X-associated primary ovarian insufficiency (FXPOI) by FMR1 CGG repeat size. Genet Med 2021; 23:1648-1655. [PMID: 33927378 PMCID: PMC8460441 DOI: 10.1038/s41436-021-01177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Approximately 20–30% of women with an FMR1 premutation experience fragile X–associated primary ovarian insufficiency (FXPOI); however, current risk estimates based on repeat size only identify women with the midrange of repeats to be at the highest risk. Methods To better understand the risk by repeat size, we collected self-reported reproductive histories on 1,668 women and divided them into high-resolution repeat size bins of ~5 CGG repeats to determine a more accurate risk for FXPOI in relation to CGG repeat length. Results As previously reported, women with 70–100 CGG repeats were at the highest risk for FXPOI using various statistical models to compare average age at menopause and risk of FXPOI, with women with 85–89 repeats being at the highest risk. Importantly, women with <65 repeats or >120 repeats did not have a significantly increased risk for FXPOI compared to women with <45 repeats. Conclusion Using a large cross-section study on 1,668 women, we have provided more personalized risk assessment for FXPOI using high-resolution repeat size bins. Understanding the variability in risk has important implications for family planning and overall health among women with a premutation.
Collapse
Affiliation(s)
- Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Heather S Hipp
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashima Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah L Nolin
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Anne Glicksman
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nicole Tortora
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Bonnie McKinnon
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Katharine E Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Wong H, Hooper AWM, Niibori Y, Lee SJ, Hategan LA, Zhang L, Karumuthil-Melethil S, Till SM, Kind PC, Danos O, Bruder JT, Hampson DR. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviors in a rat model of fragile X syndrome. Neurobiol Dis 2020; 146:105118. [PMID: 33031903 DOI: 10.1016/j.nbd.2020.105118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hayes Wong
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | - Yosuke Niibori
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Shiron J Lee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Luca A Hategan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Sally M Till
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc., Rockville, MD, USA
| | - Joseph T Bruder
- Research and Early Development, REGENXBIO Inc., Rockville, MD, USA
| | - David R Hampson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Urine-Derived Epithelial Cell Lines: A New Tool to Model Fragile X Syndrome (FXS). Cells 2020; 9:cells9102240. [PMID: 33027907 PMCID: PMC7600987 DOI: 10.3390/cells9102240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental condition associated with intellectual disability and behavioral problems due to the lack of the Fragile X mental retardation protein (FMRP), which plays a crucial role in synaptic plasticity and memory. A desirable in vitro cell model to study FXS would be one that can be generated by simple isolation and culture method from a collection of a non-invasive donor specimen. Currently, the various donor-specific cells can be isolated mainly from peripheral blood and skin biopsy. However, they are somewhat invasive methods for establishing cell lines from the primary subject material. In this study, we characterized a cost-effective and straightforward method to derive epithelial cell lines from urine samples collected from participants with FXS and healthy controls (TD). The urine-derived cells expressed epithelial cell surface markers via fluorescence-activated cell sorting (FACS). We observed inter, and the intra-tissue CGG mosaicism in the PBMCs and the urine-derived cells from participants with FXS potentially related to the observed variations in the phenotypic and clinical presentation FXS. We characterized these urine-derived epithelial cells for FMR1 mRNA and FMRP expression and observed some expression in the lines derived from full mutation mosaic participants. Further, FMRP expression was localized in the cytoplasm of the urine-derived epithelial cells of healthy controls. Deficient FMRP expression was also observed in mosaic males, while, as expected, no expression was observed in cells derived from participants with a hypermethylated full mutation.
Collapse
|
13
|
Klusek J, Hong J, Sterling A, Berry-Kravis E, Mailick MR. Inhibition deficits are modulated by age and CGG repeat length in carriers of the FMR1 premutation allele who are mothers of children with fragile X syndrome. Brain Cogn 2019; 139:105511. [PMID: 31887710 DOI: 10.1016/j.bandc.2019.105511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Individuals who carry a premutation (PM) allele on the FMR1 gene may experience executive limitations associated with their genetic status, including inhibition deficits. However, poor understanding of individualized risk factors has limited clinical management of this group, particularly in mothers who carry the PM allele who have children with fragile X syndrome (FXS). The present study examined CGG repeat length and age as factors that may account for variable expressivity of inhibition deficits. Participants were 134 carriers of the PM allele who were mothers of children with FXS. Inhibition skills were measured using both self-report and direct behavioral assessments. Increased vulnerability for inhibition deficits was observed at mid-range CGG lengths of approximately 80-100 repeats, with some evidence of a second zone of vulnerability occurring at approximately 130-140 CGG repeats. Risk associated with the genotype also became more pronounced with older age. This study identifies personalized risk factors that may be used to tailor the clinical management of executive deficits in carriers of the PM allele. Inhibition deficits may contribute to poor outcomes in carriers of the PM allele and their families, particularly in midlife and early old age, and clinical monitoring may be warranted.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 381 Goodnight Hall, 1975 Willow Drive, Madison, WI 53706, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, 1725 West Harrison Street, Suite 718, Chicago, IL 60612, USA
| | - Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Liu D, Han R, Wang X, Li W, Tang S, Li W, Wang Y, Jiang R, Yan F, Wang C, Liu X, Kang X, Li Z. A novel 86-bp indel of the motilin receptor gene is significantly associated with growth and carcass traits in Gushi-Anka F 2 reciprocal cross chickens. Br Poult Sci 2019; 60:649-658. [PMID: 31469320 DOI: 10.1080/00071668.2019.1655710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. A previous whole-genome association analysis has identified the motilin receptor gene (MLNR), which regulates gastrointestinal motility and gastric emptying, as a candidate gene related to chicken growth.2. MLNR mRNA was expressed in all tissues tested, and the expression level in digestive tissues was greater than in other tissues. Expression levels in the pancreas, duodenum and glandular stomach at day old and one, two and three weeks of age indicated a possible correlation with the digestive system. This suggested that the MLNR gene plays a central role in gastrointestinal tract function and affects the growth and development of chickens. Moreover, there was a significant difference in expression in the glandular stomach tissue between Ross 308 and Gushi chickens at six weeks of age.3. Re-sequencing revealed an 86-bp insertion/deletion polymorphism in the downstream region of the MLNR gene. The mutation locus was genotyped in 2,261 individuals from nine different chicken breeds. MLNR expression levels in the glandular stomach of chickens with DD genotypes were greater than those in chickens with the ID and II genotypes. The DD genotype was the most dominant genotype in commercial broiler's (Ross 308 and Arbor Acres broilers), and the D allele frequency in these breeds exceeded 91%. The deletion mutation tended towards fixation in commercial broilers.4. Association with growth and carcass traits analysed in a Gushi-Anka F2 intercrossed population, showed that the DD genotype was significantly associated with the greatest growth and carcass trait values, whereas values associated with the II genotype were the lowest in the F2 reciprocal cross chickens.5. The results suggest that the mutation is strongly associated with growth related traits and it is likely to be useful for marker-assisted selection of chickens.
Collapse
Affiliation(s)
- D Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - S Tang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Y Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - F Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - C Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Z Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Ahmadi-Zeidabadi M, Akbarnejad Z, Esmaeeli M, Masoumi-Ardakani Y, Mohammadipoor-Ghasemabad L, Eskandary H. Impact of extremely low-frequency electromagnetic field (100 Hz, 100 G) exposure on human glioblastoma U87 cells during Temozolomide administration. Electromagn Biol Med 2019; 38:198-209. [PMID: 31179753 DOI: 10.1080/15368378.2019.1625784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with an extremely dismal prognosis, a median survival is12 months. Temozolomide (TMZ) is an alkylating agent widely used to treat cancer, resistance to this drug is often found. One unexplored possibility for overcoming this resistance is a treatment based on concomitant exposure to electromagnetic fields (EMF) and TMZ. Indeed, many evidences show that EMF affects cancer cells and drug performance. Therefore, the present study was carried out to evaluate the potential synergistic effect of 100 µM TMZ and EMF (100 Hz, 100 G) on human glioma cell line U87 U87 cells with four experimental groups (I-IV) were exposed to ELF-EMF and TMZ for 120 and 144 h, as follows: (I) control; (II) ELF-EMF; (III) TMZ; (IV) ELF-PEMFs / TMZ. mRNA expression of genes such as (Nestin,CD133, Notch4 and GFAP) were investigated by Real-time PCR and western blot. We also evaluated, SOD activity, MDA and calcium concentration by ELISA assay. Co-treatment synergistically decreased the expression of Nestin,CD133, and Notch4 and increased the GFAP genes. We also observed an increase in Superoxide dismutase (SOD) activity, Malondialdehyde (MDA) and Ca2+concentration in comparison to controls.TMZ prevents cancer progression not only through the induction of cell death, but also by inducing differentiation in cancer cells. In addition, our data demonstrate ELF-EMF (100 Hz, 100 G) can significantly enhance the effects of TMZ on human glioblastoma U87 cell. These findings may open new window for future studies.
Collapse
Affiliation(s)
- Meysam Ahmadi-Zeidabadi
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Zeinab Akbarnejad
- b ENT and Head & Neck Research center and department, Hazrat Rasoul Hospital , The five senses Institute, Iran University of medical sciences , Tehran , Iran
| | - Marzie Esmaeeli
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Yaser Masoumi-Ardakani
- c Physiology Research Center, Institute of Basic and Clinical Physiology Science , Kerman University of Medical Sciences , Kerman , Iran
| | | | - Hossein Eskandary
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran.,e Afzal Research Institute (NGO) , Kerman , Iran
| |
Collapse
|
16
|
Repeat Instability in the Fragile X-Related Disorders: Lessons from a Mouse Model. Brain Sci 2019; 9:brainsci9030052. [PMID: 30832215 PMCID: PMC6468611 DOI: 10.3390/brainsci9030052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.
Collapse
|