1
|
Zheng X, Tong T, Duan L, Ma Y, Lan Y, Shao Y, Liu H, Chen W, Yang T, Yang L. VSIG4 induces the immunosuppressive microenvironment by promoting the infiltration of M2 macrophage and Tregs in clear cell renal cell carcinoma. Int Immunopharmacol 2024; 142:113105. [PMID: 39260310 DOI: 10.1016/j.intimp.2024.113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and has a poor prognosis. Despite the impressive advancements in treating ccRCC using immune checkpoint (IC) blockade, such as PD-1/PD-L1 inhibitors, a considerable number of ccRCC patients experience adaptive resistance. Therefore, exploring new targetable ICs will provide additional treatment options for ccRCC patients. We comprehensively analyzed multi-omics data and performed functional experiments, such as pathologic review, bulk transcriptome data, single-cell sequencing data, Western blotting, immunohistochemistry and in vitro/in vivo experiments, to explore novel immunotherapeutic targets in ccRCC. It was found that immune-related genes VSIG4, SAA1, CD7, FOXP3, IL21, TNFSF13B, BATF, CD72, MZB1, LTB, CCL25 and KLRK1 were significantly upregulated in ccRCC (Student's t test and p-value < 0.05; 36 normal and 267 ccRCC tissues in raining cohort; 36 normal and 266 ccRCC tissues in validation cohort) and correlated with the poor prognosis of ccRCC patients (Wald test and p-value < 0.05 in univariate cox analysis; log-rank test and p-value < 0.05 in Kaplan-Meier method; 267 patients in training cohort and 266 in validation cohort). In particular, we found the novel IC target VSIG4 was specifically expressed in inhibitory immune cells M2-biased tumor-associated macrophages (TAMs), conventional dendritic cell 2 (cDC2) cells, and cycling myeloid cells in ccRCC microenvironment. Moreover, VSIG4 showed a closely relation with resistance of Ipilimumab/Nivolumab immunotherapy in ccRCC. Furthermore, VSIG4 promoted the infiltration of M2 macrophages, Tregs, and cDC2 in ccRCC tissues. VSIG4+ TAMs and VSIG4+ cDC2s may be a kind of immune cell subtypes related to immunosuppression. VSIG4 may play similar roles with other IC ligands, as it is highly expressed on the surface of antigen-presenting cells and ccRCC cells to inhibit T cells activity and facilitate immune escape. Targeting IC gene VSIG4 may provide a novel immunotherapeutic strategy to ccRCC patients with resistance to existing targeted therapy options.
Collapse
Affiliation(s)
- Xiwang Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tong Tong
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Lianrui Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Yanjie Ma
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan Lan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Hangfeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Wenjing Chen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| | - Lijun Yang
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
2
|
Baqerkhani M, Soleimanzadeh A, Mohammadi R. Effects of intratesticular injection of hypertonic mannitol and saline on the quality of donkey sperm, indicators of oxidative stress and testicular tissue pathology. BMC Vet Res 2024; 20:99. [PMID: 38468237 PMCID: PMC10926677 DOI: 10.1186/s12917-024-03915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVES The aim of the present study was to examine donkey sperm quality after intratesticular injection of hypertonic mannitol (HM) and saline (HS). METHODS Randomly assigned to five treatment groups were 15 adult male donkeys: (1) Control group (no treatment), (2) Surgery group (surgical castration for testosterone control), (3) NS group (normal saline intratesticular injection), (4) HS group (hypertonic saline), and (5) HM group. We injected 20 mL per testicle. We took 5 mL blood from all donkeys before injection. Castration was performed under general anesthesia 60 days later. Samples included blood and testicular tissue. Total motility (TM), progressive motility (PM), movementy features, DNA damage, morphology, viability, and plasma membrane functionality were evaluated. Hormone analyses, histomorphometric studies and oxidative stress indices including total antioxidant capacity (TAC), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and NADP+/NADPH were evaluated. Apoptosis, pyroptosis-related Bax, Caspase-1, GSDMD, and Bcl-2 expression were also assessed. RESULTS In HS and HM groups, testosterone, epididymal sperm count, motility, viability, and plasma membrane functionality dropped while sperm DNA damage increased. HS and HM groups had significantly lower histomorphometric parameters, TAC, GPx, SOD, GSH, and Bcl-2 gene expression. MDA, NADP+/NADPH, Bax, Caspase-1, and GSDMD gene expression were substantially higher in the HS and HM groups than in the control group. CONCLUSIONS Toxic effects of hypertonic saline and mannitol on reproductive parameters were seen following, hence, they might be considered as a good chemical sterilizing treatment in donkeys.
Collapse
Affiliation(s)
- Mohammadreza Baqerkhani
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, P.O. Box: 57561-51818, Urmia, Iran
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, P.O. Box: 57561-51818, Urmia, Iran.
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Zearalenone exposure differentially affects the ovarian proteome in pre-pubertal gilts during thermal neutral and heat stress conditions. J Anim Sci 2024; 102:skae115. [PMID: 38666409 PMCID: PMC11217906 DOI: 10.1093/jas/skae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes endocrine disruption and porcine reproductive dysfunction. Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation. Independently, HS and ZEN both compromise swine reproduction; thus, the hypothesis investigated was two-pronged: that ZEN exposure would alter the ovarian proteome and that these effects would differ in thermal neutral (TN) and HS pigs. Pre-pubertal gilts (n = 38) were fed ad libitum and assigned to either (TN: 21.0 ± 0.1 °C) or HS (12 h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C). Within the TN group, a subset of pigs were pair-fed (PF) to the amount of feed that the HS gilts consumed to eliminate the confounding effects of dissimilar nutrient intake. All gilts orally received a vehicle control (CT) or ZEN (40 μg/kg/BW) resulting in six treatment groups: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (TZ; n = 6); PF vehicle control (PC; n = 6); PF ZEN (PZ; n = 6); HS vehicle control (HC; n = 7); or HS ZEN (HZ; n = 7) for 7 d. When compared to the TC pigs, TZ pigs had 45 increased and 39 decreased proteins (P ≤ 0.05). In the HZ pigs, 47 proteins were increased and 61 were decreased (P ≤ 0.05). Exposure to ZEN during TN conditions altered sec61 translocon complex (40%), rough endoplasmic reticulum membrane (8.2%), and proteasome complex (5.4%), asparagine metabolic process (0.60%), aspartate family amino acid metabolic process (0.14%), and cellular amide metabolic process (0.02%) pathways. During HS, ZEN affected cellular pathways associated with proteasome core complex alpha subunit complex (0.23%), fibrillar collagen trimer (0.14%), proteasome complex (0.05%), and spliceosomal complex (0.03%). Thus, these data identify ovarian pathways altered by ZEN exposure and suggest that the molecular targets of ZEN differ in TN and HS pigs.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Liu RP, Wang J, Wang XQ, Wang CR, He SY, Xu YN, Li YH, Kim NH. Xanthoangelol promotes early embryonic development of porcine embryos by relieving endoplasmic reticulum stress and enhancing mitochondrial function. Reprod Biomed Online 2023; 47:103211. [PMID: 37246104 DOI: 10.1016/j.rbmo.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/30/2023]
Abstract
RESEARCH QUESTION Does the addition of an antioxidant agent, xanthoangelol (XAG), to the culture medium improve in-vitro development of porcine embryos? DESIGN Early porcine embryos were incubated in the presence of 0.5 μmol/l XAG in in-vitro culture (IVC) media and analysed using various techniques, including immunofluorescence staining, reactive oxygen species (ROS) detection, TdT-mediated dUTP nick-end labelling (TUNEL), and reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR). RESULTS The addition of 0.5 μmol/l XAG to IVC media increased the rate of blastocyst formation, total cell number, glutathione concentrations and proliferative capacity, while reducing reactive oxygen species concentrations, apoptosis and autophagy. In addition, upon XAG treatment, the abundance of mitochondria and mitochondrial membrane potential significantly increased (both P < 0.001), and the genes related to mitochondrial biogenesis (TFAM, NRF1 and NRF2) were significantly up-regulated (all P < 0.001). XAG treatment also significantly increased the endoplasmic reticulum abundance (P < 0.001) and reduced the concentrations of endoplasmic reticulum stress (ERS) marker GRP78 (P = 0.003) and expression of the ERS-related genes EIF2α, GRP78, CHOP, ATF6, ATF4, uXBP1 and sXBP 1 (all P < 0.001). CONCLUSION XAG promotes early embryonic development in porcine embryos in vitro by reducing oxidative stress, enhancing mitochondrial function and relieving ERS.
Collapse
Affiliation(s)
- Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China; College of Agriculture, Yanbian University, Yanji 133002, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Chao-Rui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China.
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
5
|
Feng YQ, Zhao AH, Wang JJ, Tian Y, Yan ZH, Dri M, Shen W, De Felici M, Li L. Oxidative stress as a plausible mechanism for zearalenone to induce genome toxicity. Gene 2022; 829:146511. [PMID: 35447234 DOI: 10.1016/j.gene.2022.146511] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN), a common non-steroidal estrogenic mycotoxin of the Fusarium genus, is one of the most frequent and powerful contaminant of grains and cereal products representing a serious threat for people and livestock health. In fact, ZEN causes cytotoxicity and genotoxicity in a variety of cell types at least in part through binding to estrogen receptors (ERs). The main pathways through which ZEN induces such effects remain, however, elusive. In particular, how the mycotoxin causes DNA damage, dysregulates DNA repair mechanisms, changes epigenome of targeted cells and, not least, affects chromatin conformation and non-coding RNA (ncRNA), is unclear. In the present paper, following extensive review of the literature about such ZEN effects and our own experience in studying the effects of this compound on reproductive processes, we propose that increased production of reactive oxygen species (ROS) and consequently oxidative stress (OS) are central in ZEN genotoxicity. Besides to shed light on the action mechanisms of the mycotoxin, this notion might help to develop effective strategies to counteract its deleterious biological effects.
Collapse
Affiliation(s)
- Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Dri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Miao X, Yu Y, Zhao Z, Wang Y, Qian X, Wang Y, Li S, Wang C. Chromosome-Level Haplotype Assembly for Equus asinu. Front Genet 2022; 13:738105. [PMID: 35692816 PMCID: PMC9186339 DOI: 10.3389/fgene.2022.738105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Haplotype provides significant insights into understanding genomes at both individual and population levels. However, research on many non-model organisms is still based on independent genetic variations due to the lack of haplotype.Results: We conducted haplotype assembling for Equus asinu, a non-model organism that plays a vital role in human civilization. We described the hybrid single individual assembled haplotype of the Dezhou donkey based on the high-depth sequencing data from single-molecule real-time sequencing (×30), Illumina short-read sequencing (×211), and high-throughput chromosome conformation capture (×56). We assembled a near-complete haplotype for the high-depth sequenced Dezhou donkey individual and a phased cohort for the resequencing data of the donkey population.Conclusion: Here, we described the complete chromosome-scale haplotype of the Dezhou donkey with more than a 99.7% phase rate. We further phased a cohort of 156 donkeys to form a donkey haplotype dataset with more than 39 million genetic variations.
Collapse
Affiliation(s)
- Xinyao Miao
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- College of Forensic & Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yonghan Yu
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Yinan Wang
- College of Forensic & Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaobo Qian
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Shengbin Li
- College of Forensic & Medicine, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shengbin Li, ; Changfa Wang,
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- *Correspondence: Shengbin Li, ; Changfa Wang,
| |
Collapse
|
7
|
Song JL, Sun YJ, Liu GQ, Zhang GL. Deoxynivalenol and zearalenone: Different mycotoxins with different toxic effects in donkey (Equus asinus) endometrial epithelial cells. Theriogenology 2021; 179:162-176. [PMID: 34879314 DOI: 10.1016/j.theriogenology.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEA), which are commonly found in feed products, exhibit serious negative effects on the reproductive systems of domestic animals. However, the toxicity of mycotoxins on the uterine function of donkey (Equus asinus) remains unclear. This study investigated the biological effects of DON and ZEA exposure on donkey endometrial epithelial cells (EECs). It was administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro. The results showed that 10 μM DON exposure markedly changed the expression levels of pyroptosis-associated genes and that 30 μM ZEA exposure changed the expression levels of inflammation-associated genes in EECs. The mRNA expression of cancer-promoting genes was markedly upregulated in cells exposed to DON and 30 μM ZEA; in particular, 10 μM and 30 μM DON and ZEA markedly disturbed the expression of androgen and estrogen secretion-related genes. Furthermore, Q-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed EECs. Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of EECs from donkey in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Jiang Sun
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Gui-Qin Liu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, 252059, China; Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng, Shandong, 252059, China
| | - Guo-Liang Zhang
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
8
|
Huang CW, Liao WR, How CM, Yen PL, Wei CC. Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117233. [PMID: 33940230 DOI: 10.1016/j.envpol.2021.117233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 μM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 μM). Furthermore, ZEN (50 μM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Wan-Ru Liao
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| |
Collapse
|
9
|
Song JL, Zhang GL. Deoxynivalenol and Zearalenone: Different Mycotoxins with Different Toxic Effects in the Sertoli Cells of Equus asinus. Cells 2021; 10:cells10081898. [PMID: 34440667 PMCID: PMC8394322 DOI: 10.3390/cells10081898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) and zearalenone (ZEA) are type B trichothecene mycotoxins that exert serious toxic effects on the reproduction of domestic animals. However, there is little information about the toxicity of mycotoxins on testis development in Equus asinus. This study investigated the biological effects of DON and ZEA exposure on Sertoli cells (SCs) of Equus asinus; (2) Methods: We administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro; (3) Results: The results showed that 10 μM DON exposure remarkably changed pyroptosis-associated genes and that 30 μM ZEA exposure changed inflammation-associated genes in SCs. The mRNA expression of cancer-promoting genes was remarkably upregulated in the cells exposed to DON or 30 μM ZEA; in particular, DON and ZEA remarkably disturbed the expression of androgen and oestrogen secretion-related genes. Furthermore, quantitative RT-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed SCs; (4) Conclusions: Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of SCs from Equus asinus in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Correspondence:
| |
Collapse
|
10
|
Márton É, Varga A, Széles L, Göczi L, Penyige A, Nagy B, Szilágyi M. The Cell-Free Expression of MiR200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells. Int J Mol Sci 2020; 21:ijms21249725. [PMID: 33419253 PMCID: PMC7766742 DOI: 10.3390/ijms21249725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to physiological estrogens or xenoestrogens (e.g., zearalenone or bisphenol A) increases the risk for cancer. However, little information is available on their significance in ovarian cancer. We present a comprehensive study on the effect of estradiol, zearalenone and bisphenol A on the phenotype, mRNA, intracellular and cell-free miRNA expression of human epithelial ovarian cell lines. Estrogens induced a comparable effect on the rate of cell proliferation and migration as well as on the expression of estrogen-responsive genes (GREB1, CA12, DEPTOR, RBBP8) in the estrogen receptor α (ERα)-expressing PEO1 cell line, which was not observable in the absence of this receptor (in A2780 cells). The basal intracellular and cell-free expression of miR200s and miR203a was higher in PEO1, which was accompanied with low ZEB1 and high E-cadherin expression. These miRNAs showed a rapid but intermittent upregulation in response to estrogens that was diminished by an ERα-specific antagonist. The role of ERα in the regulation of the MIR200B-MIR200A-MIR429 locus was further supported by publicly available ChIP-seq data. MiRNA expression of cell lysates correlated well with cell-free miRNA expression. We conclude that cell-free miR200s might be promising biomarkers to assess estrogen sensitivity of ovarian cells.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lajos Széles
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lóránd Göczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Faculty of Pharmacology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Correspondence:
| |
Collapse
|
11
|
Soler L, Stella A, Seva J, Pallarés FJ, Lahjouji T, Burlet-Schiltz O, Oswald IP. Proteome changes induced by a short, non-cytotoxic exposure to the mycoestrogen zearalenone in the pig intestine. J Proteomics 2020; 224:103842. [PMID: 32454255 DOI: 10.1016/j.jprot.2020.103842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/28/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Intestinal epithelial homeostasis is regulated by a complex network of signaling pathways. Among them is estrogen signaling, important for the proliferation and differentiation of epithelial cells, immune signaling and metabolism. The mycotoxin zearalenone (ZEN) is an estrogen disruptor naturally found in food and feed. The exposure of the intestine to ZEN has toxic effects including alteration of the immune status and is possibly implicated in carcinogenesis, but the molecular mechanisms linked with these effects are not clear. Our objective was to explore the proteome changes induced by a short, non-cytotoxic exposure to ZEN in the intestine using pig jejunal explants. Our results indicated that ZEN promotes little proteome changes, but significantly related with an induction of ERα signaling and a consequent disruption of highly interrelated signaling cascades, such as NF-κB, ERK1/2, CDX2 and HIF1α. The toxicity of ZEN leads also to an altered immune status characterized by the activation of the chemokine CXCR4/SDF-1 axis and an accumulation of MHC-I proteins. Our results connect the estrogen disrupting activity of ZEN with its intestinal toxic effect, associating the exposure to ZEN with cell-signaling disorders similar to those involved in the onset and progression of diseases such as cancer and chronic inflammatory disorders. SIGNIFICANCE: The proteomics results presented in our study indicate that the endocrine disruptor activity of ZEN is able to regulate a cascade of highly inter-connected signaling events essential for the small intestinal crypt-villus cycle and immune status. These molecular mechanisms are also implicated in the onset and progress of intestinal immune disorders and cancer indicating that exposure to ZEN could play an important role in intestinal pathogenesis.
Collapse
Affiliation(s)
- Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Alexandre Stella
- Toulouse Proteomics Infrastructure, Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Juan Seva
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Francisco Jose Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Tarek Lahjouji
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Toulouse Proteomics Infrastructure, Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
12
|
Yi Y, Wan S, Hou Y, Cheng J, Guo J, Wang S, Khan A, Sun N, Li H. Chlorogenic acid rescues zearalenone induced injury to mouse ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110401. [PMID: 32143102 DOI: 10.1016/j.ecoenv.2020.110401] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Zearalenone (ZEA), a toxic substance produced by Fusarium fungi, accumulated in cereals grain and animal feed, causes injury to humans and animals. ZEA can induce obvious reproductive toxicity with the ovarian granulosa cells (GCs) as the main target. However, the study on exploring the protective compounds against ZEA-induced mouse primary ovarian GCs damage remains less. In the current study, the protective effect of 20 compounds derived from traditional Chinese medicines (TCMs) on the injury of mouse GCs caused by ZEA were evaluated using MTT assay and the cell morphology. Our results showed that chlorogenic acid (250, 500, and 1000 μg/mL) significantly suppress ZEA-induced GCs death. Western blot analysis suggested chlorogenic acid could rescue the up-regulated apoptosis of GCs induced by ZEA via attenuating the protein expression of cleaved caspase-3, the ratio of Bax/Bcl-2 and cleaved-PARP. Our results provide strong evidence that chlorogenic acid warrants further optimization for more potent and safer compounds for against the ZEA lead toxicity to humans and animals.
Collapse
Affiliation(s)
- YanYan Yi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - ShuangXiu Wan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China; School of Pharmacy, Heze University, Heze, Shangdong, 274000, People's Republic of China
| | - YaXin Hou
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jia Cheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - JianHua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX, 77843, USA
| | - Shaoyu Wang
- School of Community Health, Faculty of Science, Charles Sturt University, NSW, 2800, Australia
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
13
|
Serra A, Fratello M, Cattelani L, Liampa I, Melagraki G, Kohonen P, Nymark P, Federico A, Kinaret PAS, Jagiello K, Ha MK, Choi JS, Sanabria N, Gulumian M, Puzyn T, Yoon TH, Sarimveis H, Grafström R, Afantitis A, Greco D. Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E708. [PMID: 32276469 PMCID: PMC7221955 DOI: 10.3390/nano10040708] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics.
Collapse
Affiliation(s)
- Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (M.F.); (L.C.); (A.F.); (P.A.S.K.)
- BioMediTech Institute, Tampere University, FI-33014 Tampere, Finland
| | - Michele Fratello
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (M.F.); (L.C.); (A.F.); (P.A.S.K.)
- BioMediTech Institute, Tampere University, FI-33014 Tampere, Finland
| | - Luca Cattelani
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (M.F.); (L.C.); (A.F.); (P.A.S.K.)
- BioMediTech Institute, Tampere University, FI-33014 Tampere, Finland
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (I.L.); (H.S.)
| | - Georgia Melagraki
- Nanoinformatics Department, NovaMechanics Ltd., Nicosia 1065, Cyprus; (G.M.); (A.A.)
| | - Pekka Kohonen
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (P.K.); (P.N.); (R.G.)
- Division of Toxicology, Misvik Biology, 20520 Turku, Finland
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (P.K.); (P.N.); (R.G.)
- Division of Toxicology, Misvik Biology, 20520 Turku, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (M.F.); (L.C.); (A.F.); (P.A.S.K.)
- BioMediTech Institute, Tampere University, FI-33014 Tampere, Finland
| | - Pia Anneli Sofia Kinaret
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (M.F.); (L.C.); (A.F.); (P.A.S.K.)
- BioMediTech Institute, Tampere University, FI-33014 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Karolina Jagiello
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (K.J.); (T.P.)
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - My Kieu Ha
- Center for Next Generation Cytometry, Hanyang University, Seoul 04763, Korea; (M.K.H.); (J.-S.C.); (T.-H.Y.)
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Jang-Sik Choi
- Center for Next Generation Cytometry, Hanyang University, Seoul 04763, Korea; (M.K.H.); (J.-S.C.); (T.-H.Y.)
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Natasha Sanabria
- National Institute for Occupational Health, Johannesburg 30333, South Africa; (N.S.); (M.G.)
| | - Mary Gulumian
- National Institute for Occupational Health, Johannesburg 30333, South Africa; (N.S.); (M.G.)
- Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (K.J.); (T.P.)
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Tae-Hyun Yoon
- Center for Next Generation Cytometry, Hanyang University, Seoul 04763, Korea; (M.K.H.); (J.-S.C.); (T.-H.Y.)
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (I.L.); (H.S.)
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (P.K.); (P.N.); (R.G.)
- Division of Toxicology, Misvik Biology, 20520 Turku, Finland
| | - Antreas Afantitis
- Nanoinformatics Department, NovaMechanics Ltd., Nicosia 1065, Cyprus; (G.M.); (A.A.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (M.F.); (L.C.); (A.F.); (P.A.S.K.)
- BioMediTech Institute, Tampere University, FI-33014 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Lahjouji T, Bertaccini A, Neves M, Puel S, Oswald IP, Soler L. Acute Exposure to Zearalenone Disturbs Intestinal Homeostasis by Modulating the Wnt/β-Catenin Signaling Pathway. Toxins (Basel) 2020; 12:toxins12020113. [PMID: 32053894 PMCID: PMC7076757 DOI: 10.3390/toxins12020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
The mycotoxin zearalenone (ZEN), which frequently contaminates cereal-based human food and animal feed, is known to have an estrogenic effect. The biological response associated with exposure to ZEN has rarely been reported in organs other than the reproductive system. In the intestine, several studies suggested that ZEN might stimulate molecular changes related to the activation of early carcinogenesis, but the molecular mechanisms behind these events are not yet known. In this study, we investigated gene expression and changes in protein abundance induced by acute exposure to ZEN in the jejunum of castrated male pigs using an explant model. Our results indicate that ZEN induces the accumulation of ERα but not ERβ, modulates Wnt/β-catenin and TGF-β signaling pathways, and induces molecular changes linked with energy sensing and the antimicrobial activity without inducing inflammation. Our results confirm that the intestine is a target for ZEN, inducing changes that promote cellular proliferation and could contribute to the onset of intestinal pathologies.
Collapse
|
15
|
Yin H, Han S, Chen Y, Wang Y, Li D, Zhu Q. T-2 Toxin Induces Oxidative Stress, Apoptosis and Cytoprotective Autophagy in Chicken Hepatocytes. Toxins (Basel) 2020; 12:toxins12020090. [PMID: 32013230 PMCID: PMC7076762 DOI: 10.3390/toxins12020090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
T-2 toxin is type A trichothecenes mycotoxin, which produced by fusarium species in cereal grains. T-2 toxin has been shown to induce a series of toxic effects on the health of human and animal, such as immunosuppression and carcinogenesis. Previous study has proven that T-2 toxin caused hepatotoxicity in chicken, but the regulatory mechanism is unclear. In the present study, we assessed the toxicological effect of T-2 toxin on apoptosis and autophagy in hepatocytes. The total of 120 1-day-old healthy broilers were allocated randomly into four groups and reared for 21 day with complete feed containing 0 mg/kg, 0.5 mg/kg, 1 mg/kg or 2 mg/kg T-2 toxin, respectively. The results showed that the apoptosis rate and pathological changes degree hepatocytes were aggravated with the increase of T-2 toxin. At the molecular mechanism level, T-2 toxin induced mitochondria-mediated apoptosis by producing reactive oxygen species, promoting cytochrome c translocation between the mitochondria and cytoplasm, and thus promoting apoptosomes formation. Meanwhile, the expression of the autophagy-related protein, ATG5, ATG7 and Beclin-1, and the LC3-II/LC3-I ratio were increased, while p62 was downregulated, suggesting T-2 toxin caused autophagy in hepatocytes. Further experiments demonstrated that the PI3K/AKT/mTOR signal may be participated in autophagy induced by T-2 toxin in chicken hepatocytes. These data suggest a possible underlying molecular mechanism for T-2 toxin that induces apoptosis and autophagy in chicken hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Zhu
- Correspondence: ; Tel.: +86-028-8629-0991
| |
Collapse
|
16
|
Rai A, Das M, Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 2019; 60:2710-2729. [DOI: 10.1080/10408398.2019.1655388] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ankita Rai
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Mukul Das
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| |
Collapse
|
17
|
Zhang GL, Feng YL, Song JL, Zhou XS. Zearalenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals' Granulosa Cells. Front Genet 2018; 9:667. [PMID: 30619484 PMCID: PMC6305301 DOI: 10.3389/fgene.2018.00667] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Zearalenone (ZEA), one of the most prevalent estrogenic mycotoxins, is mainly produced by Fusarium fungi and has been proven to affect the reproductive capacity of animals. Exposure of farm animals to ZEA is a global public health concern because of its toxicity and wide distribution in animal feeds. In vitro and in vivo experiments indicate that ZEA possesses estrogenic activity in mice, swine, Equus asinus and cattle. The precise mechanism of the reproductive toxicity of ZEA has not been established yet. This article reviews evidence on the deleterious effects of ZEA on mammalian folliculogenesis from early to final oogenesis stages. Such effects include impaired granulosa cell (GC) development and follicle steroidogenesis, reduced oocyte nest breakdown, damaged meiotic progression, poor fetal oocyte survival, accelerated primordial follicle activation and enhanced follicle atresia. These phenomena may result in reproductive and non-reproductive problems in domestic animals. In addition, emerging data indicates that ZEA may cause mRNA expression changes in the GCs. In general, E. asinus is more sensitive than swine to ZEA exposure. Finally, results of in vivo animal studies and in vitro tests are reported and discussed.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Qingdao Agricultural University, Qingdao, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | - Yu-Long Feng
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | | | - Xiang-Shan Zhou
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|