1
|
Jukic L, Maskalan M, Grubic Z, Stingl Jankovic K, Kamenaric MB, Zunec R. Detection of novel HLA alleles by Next-Generation Sequencing in the Croatian population. HLA 2024; 103:e15523. [PMID: 38813591 DOI: 10.1111/tan.15523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
The introduction of Next-Generation Sequencing (NGS) methodology in the histocompatibility testing for both allo-HSCT and solid organ transplantation enables the sequencing of all HLA genes, which in turn leads to the discovery of many new HLA alleles. Over the last 3 years, we have identified 28 novel alleles (HLA-A*02:1079, A*03:01:01:112, A*11:01:01:83, A*11:01:01:87, A*24:595, A*68:01:01:15, B*07:02:01:107, B*08:01:01:67, B*08:01:01:69, B*13:02:01:25, B*15:01:82, B*15:18:08, B*18:01:01:76, B*27:02:06, B*27:05:02:34, B*40:06:01:17, B*40:517, C*04:01:01:173, C*04:477, C*05:276, C*07:01:01:130, C*12:03:80, C*12:03:01:62, DQA1*05:01:01:10, DPB1*13:01:07, DPB1*1146:01, DPB1*1456:01 and DPB1*1514:01) using the NGS method. The presented data emphasises the benefits gained by the utilisation of the NGS-based techniques in HLA genotyping but also provides new insight on the HLA polymorphism in the Croatian population.
Collapse
Affiliation(s)
- Lucija Jukic
- Tissue Typing Centre, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Maskalan
- Tissue Typing Centre, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Zorana Grubic
- Tissue Typing Centre, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Katarina Stingl Jankovic
- Tissue Typing Centre, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Burek Kamenaric
- Tissue Typing Centre, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Renata Zunec
- Tissue Typing Centre, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Zhou Z, Chen Y, Wang L. Causal influence of celiac disease on the risk of sarcoidosis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37736. [PMID: 38608121 PMCID: PMC11018160 DOI: 10.1097/md.0000000000037736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Observational research shows a link between celiac disease (CeD) and sarcoidosis, but the causal link between CeD and sarcoidosis is still unknown. A two-sample Mendelian randomization (MR) study was conducted to ascertain the causal connection between the 2 disorders. In our two-sample MR analysis, we identified independent genetic variants associated with CeD using publicly accessible GWAS data from people of European ancestry. Summary data for sarcoidosis were obtained from the FinnGen Consortium, the UK-Biobank, and a large GWAS dataset. To assess the association between CeD and sarcoidosis, our MR analysis used inverse variance weighted (IVW) as the primary method, incorporating the MR-Egger, weighted median (WM), and MR-PRESSO (outliers test) as a complementary method. In order to ensure that the findings were reliable, several sensitivity analyses were performed. Our study indicated that CeD had a significant causal relationship with sarcoidosis (IVW odds ratio (OR) = 1.13, 95% confidence interval (CI): 1.07-1.20, P = 5.58E-05; WM OR = 1.12, 95% CI: 1.03-1.23, P = 1.03E-02; MR-Egger OR = 1.07, 95% CI: 0.96-1.19, P = 2.20E-01). Additionally, we obtain the same results in the duplicated datasets as well, which makes our results even more reliable. The results of this investigation did not reveal any evidence of horizontal pleiotropy or heterogeneity. Our MR analysis showed a causal effect between CeD and an elevated risk of sarcoidosis. Further study is still needed to confirm the findings and look into the processes underlying these relationships.
Collapse
Affiliation(s)
- Zhangbing Zhou
- Department of Respiratory Medicine, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu First People’s Hospital, Chengdu, China
| | - Yunfeng Chen
- Department of Respiratory Medicine, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu First People’s Hospital, Chengdu, China
| | - Liu Wang
- Department of Rheumatology and Immunology, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
3
|
Stasiak M, Stasiak B, Zawadzka-Starczewska K, Lewiński A. Significance of HLA in Graves' disease and Graves' orbitopathy in Asian and Caucasian populations - a systematic review. Front Immunol 2023; 14:1256922. [PMID: 37841270 PMCID: PMC10568027 DOI: 10.3389/fimmu.2023.1256922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Graves' disease (GD) and Graves' orbitopathy (GO) development were suspected to be HLA-related in both Asian and Caucasian populations. However, most studies were performed with application of serological methods or low resolution genetic typing, which led to inconsistent results even among the same population. The present review is intended to summarize the state-of-art knowledge on the HLA significance in GD and GO in Asians and Caucasians, as well as to find the most significant alleles for each of the populations. Methods PubMed was searched for relevant articles using the following search terms: HLA plus thyroid-associated ophthalmopathy or Graves' disease or Graves' orbitopathy or thyroid eye disease or thyroid-associated orbitopathy. Results In Asian population GD was found to be associated mostly with B*46:01, DPB1*05:01, DRB1*08:02/03, DRB1*16:02, DRB1*14:03, DRB1*04:05, DQB1*05:02 and DQB1*03:03, while DRB1*07:01, DRB1*01:01, DRB1*13:02, DRB1*12:02 are potentially protective. HLA-B*38:02, DRB1*16:02, DQA1*01:02, DQB1*05:02 can be considered associated with increased risk of GO in Asians, while HLA-B*54:01 may play protective role. In Caucasians, C*07:01, DQA1*05:01, DRB1*03, DQB1*02:01 are associated with GD risk while DRB1*07:01, DQA1*02:01 may be protective. Significance of HLA in the course of GD and novel aspects of HLA amino acid variants and potential HLA-based treatment modalities were also discussed.
Collapse
Affiliation(s)
- Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, Lodz, Poland
| | - Bartłomiej Stasiak
- Institute of Information Technology, Lodz University of Technology, Lodz, Poland
| | | | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Transgenic HA-1-Specific CD8 + T-Lymphocytes Selectively Target Leukemic Cells. Cancers (Basel) 2023; 15:cancers15051592. [PMID: 36900382 PMCID: PMC10000933 DOI: 10.3390/cancers15051592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
A significant share of allogeneic hematopoietic stem cell transplantations (allo-HSCT) results in the relapse of malignant disease. The T cell immune response to minor histocompatibility antigens (MiHAs) promotes a favorable graft-versus-leukemia response. The immunogenic MiHA HA-1 is a promising target for leukemia immunotherapy, as it is predominantly expressed in hematopoietic tissues and presented by the common HLA A*02:01 allele. Adoptive transfer of HA-1-specific modified CD8+ T cells could complement allo-HSCT from HA-1- donors to HA-1+ recipients. Using bioinformatic analysis and a reporter T cell line, we discovered 13 T cell receptors (TCRs) specific for HA-1. Their affinities were measured by the response of the TCR-transduced reporter cell lines to HA-1+ cells. The studied TCRs showed no cross-reactivity to the panel of donor peripheral mononuclear blood cells with 28 common HLA alleles. CD8+ T cells after endogenous TCR knock out and introduction of transgenic HA-1-specific TCR were able to lyse hematopoietic cells from HA-1+ patients with acute myeloid, T-, and B-cell lymphocytic leukemia (n = 15). No cytotoxic effect was observed on cells from HA-1- or HLA-A*02-negative donors (n = 10). The results support the use of HA-1 as a target for post-transplant T cell therapy.
Collapse
|
5
|
Shen Y, Parks JM, Smith JC. HLA Class I Supertype Classification Based on Structural Similarity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:103-114. [PMID: 36453976 DOI: 10.4049/jimmunol.2200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
HLA class I proteins, a critical component in adaptive immunity, bind and present intracellular Ags to CD8+ T cells. The extreme polymorphism of HLA genes and associated peptide binding specificities leads to challenges in various endeavors, including neoantigen vaccine development, disease association studies, and HLA typing. Supertype classification, defined by clustering functionally similar HLA alleles, has proven helpful in reducing the complexity of distinguishing alleles. However, determining supertypes via experiments is impractical, and current in silico classification methods exhibit limitations in stability and functional relevance. In this study, by incorporating three-dimensional structures we present a method for classifying HLA class I molecules with improved breadth, accuracy, stability, and flexibility. Critical for these advances is our finding that structural similarity highly correlates with peptide binding specificity. The new classification should be broadly useful in peptide-based vaccine development and HLA-disease association studies.
Collapse
Affiliation(s)
- Yue Shen
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; and
| | - Jeremy C Smith
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; and.,Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| |
Collapse
|
6
|
Sun Y, Yuan F, Wang L, Dai D, Zhang Z, Liang F, Liu N, Long J, Zhao X, Xi Y. Recombination and mutation shape variations in the major histocompatibility complex. J Genet Genomics 2022; 49:1151-1161. [PMID: 35358716 DOI: 10.1016/j.jgg.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/14/2023]
Abstract
The major histocompatibility complex (MHC) is closely associated with numerous diseases, but its high degree of polymorphism complicates the discovery of disease-associated variants. In principle, recombination and de novo mutations are two critical factors responsible for MHC polymorphisms. However, direct evidence for this hypothesis is lacking. Here, we report the generation of fine-scale MHC recombination and de novo mutation maps of ∼5 Mb by deep sequencing (> 100×) of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families (a total of 190 individuals). Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries. The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate, particularly in MHC recombinant individuals. Notably, mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC, respectively, and evolution of the MHC locus was mainly controlled by positive selection. These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants.
Collapse
Affiliation(s)
- Yuying Sun
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Fang Yuan
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Ling Wang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Dongfa Dai
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhijian Zhang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fei Liang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Nan Liu
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Juan Long
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiao Zhao
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yongzhi Xi
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
7
|
Melin A, Routier É, Roy S, Pradere P, Le Pavec J, Pierre T, Chanson N, Scoazec JY, Lambotte O, Robert C. Sarcoid-like Granulomatosis Associated with Immune Checkpoint Inhibitors in Melanoma. Cancers (Basel) 2022; 14:cancers14122937. [PMID: 35740604 PMCID: PMC9221061 DOI: 10.3390/cancers14122937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
We aimed to review the clinical and biological presentation of granulomatosis associated with immune-checkpoint inhibitors (ICI) in patients with melanoma and to explore its association with classical sarcoidosis as well as with cancer response to ICI. To this end, a retrospective study on 18 melanoma patients with histologically proven ICI-induced granulomatosis over a 12-year period in a single center, as well as on 67 similar cases reported in the literature, was conducted. Results indicate ICI-induced granulomatosis is an early side effect (median time to onset: 2 months). Its clinical presentation, with predominant (90%) thoracic involvement, histopathological appearance and supposed underlying biology (involving the mTOR pathway in immune cells, Th17 polarization and TReg dysfunction) are indistinguishable from those of sarcoidosis. Moreover, it appears to be associated with ICI benefit (>65% objective response rate). Evolution is generally favorable, and symptomatic steroid treatment and/or ICI discontinuation are rarely necessary. ICI-associated granulomatosis is critical to explore for several reasons. Practically, it is essential to differentiate it from cancer progression. Secondly, this “experimental” sarcoidosis brings new elements that may help to address sarcoidosis origin and pathophysiology. Its association with ICI efficacy must be confirmed on a larger scale but could have significant impacts on patient management and biomarker definition.
Collapse
Affiliation(s)
- Audrey Melin
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
- Correspondence: (A.M.); (C.R.)
| | - Émilie Routier
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
| | - Séverine Roy
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
| | - Pauline Pradere
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Groupe Hospitalier Paris-Saint Joseph, 133 Av. de la Résistance, 92350 Le Plessis-Robinson, France; (P.P.); (J.L.P.)
| | - Jerome Le Pavec
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Groupe Hospitalier Paris-Saint Joseph, 133 Av. de la Résistance, 92350 Le Plessis-Robinson, France; (P.P.); (J.L.P.)
| | - Thibaut Pierre
- Department of Medical Imaging, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France;
| | - Noémie Chanson
- Department of Internal Medicine, Kremlin Bicêtre Hospital, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France; (N.C.); (O.L.)
| | - Jean-Yves Scoazec
- Université Paris Saclay, AP-HP, 63 rue Gabriel Péri, 94270 Le Kremlin Bicêtre, France;
- Department of Pathology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France
| | - Olivier Lambotte
- Department of Internal Medicine, Kremlin Bicêtre Hospital, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France; (N.C.); (O.L.)
- Université Paris Saclay, AP-HP, 63 rue Gabriel Péri, 94270 Le Kremlin Bicêtre, France;
| | - Caroline Robert
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
- Université Paris Saclay, AP-HP, 63 rue Gabriel Péri, 94270 Le Kremlin Bicêtre, France;
- Correspondence: (A.M.); (C.R.)
| |
Collapse
|
8
|
Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J Immunol Res 2022; 2022:9710376. [PMID: 35664353 PMCID: PMC9162874 DOI: 10.1155/2022/9710376] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/08/2022] [Indexed: 12/19/2022] Open
Abstract
The human leukocyte antigen (HLA) system is one of the most crucial host factors influencing disease progression in bacterial and viral infections. This review provides the basic concepts of the structure and function of HLA molecules in humans. Here, we highlight the main findings on the associations between HLA class I and class II alleles and susceptibility to important infectious diseases such as tuberculosis, leprosy, melioidosis, Staphylococcus aureus infection, human immunodeficiency virus infection, coronavirus disease 2019, hepatitis B, and hepatitis C in populations worldwide. Finally, we discuss challenges in HLA typing to predict disease outcomes in clinical implementation. Evaluation of the impact of HLA variants on the outcome of bacterial and viral infections would improve the understanding of pathogenesis and identify those at risk from infectious diseases in distinct populations and may improve the individual treatment.
Collapse
|
9
|
Association of HLA-DR1, HLA-DR13, and HLA-DR16 Polymorphisms with Systemic Lupus Erythematosus: A Meta-Analysis. J Immunol Res 2022; 2022:8140982. [PMID: 35469345 PMCID: PMC9034954 DOI: 10.1155/2022/8140982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives The principal purpose of this meta-analysis was to assess the association between HLA-DRB1 (HLA-DR1, HLA-DR13, and HLA-DR16) polymorphisms and SLE susceptibility. Methods We searched published case-control studies on the association between HLA-DRB1 polymorphisms and SLE susceptibility from PubMed and Web of Science databases. The pooled ORs with 95% CIs were utilized to estimate the strength of association of HLA-DR1, HLA-DR13, and HLA-DR16 polymorphisms and SLE susceptibility by fixed effect models. We also performed sensitivity analysis, trial sequential analysis, Begg's test, and Egg's test in this meta-analysis. Results A total of 18 studies were included in this meta-analysis. Overall analysis showed that HLA-DR1 and HLA-DR13 polymorphisms were associated with a decreased risk of SLE (OR = 0.76, 95% CI: 0.65-0.90, P < 0.01; OR = 0.58, 95% CI: 0.50-0.68, P < 0.01), and HLA-DR16 polymorphism was associated with an increased risk of SLE (OR = 1.70, 95% CI: 1.24-2.33, P < 0.01). In subgroup analysis of ethnicity, the results were as follows: HLA-DR1 polymorphism in Caucasians (OR = 0.76, 95% CI: 0.58-0.98,P = 0.04) and North Americans (OR = 0.64, 95% CI: 0.42-0.96,P = 0.03); HLA-DR13 polymorphism in Caucasians (OR = 0.62, 95% CI: 0.47-0.82,P < 0.01) and East Asians (OR = 0.44, 95% CI: 0.34-0.57,P < 0.01); and HLA-DR16 polymorphism in East Asians (OR = 2.62, 95% CI: 1.71-4.03,P < 0.01). Conclusions This meta-analysis showed that HLA-DR1 and HLA-DR13 are protective factors for SLE, and HLA-DR16 is a risk factor. Due to the limitations of this meta-analysis, the association between HLA-DRB1 polymorphisms and SLE susceptibility needs to be further researched before definitive conclusions are proved.
Collapse
|
10
|
Zhou S, Liu S, Zhao L, Sun HX. A Comprehensive Survey of Genomic Mutations in Breast Cancer Reveals Recurrent Neoantigens as Potential Therapeutic Targets. Front Oncol 2022; 12:786438. [PMID: 35387130 PMCID: PMC8978336 DOI: 10.3389/fonc.2022.786438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Neoantigens are mutated antigens specifically generated by cancer cells but absent in normal cells. With high specificity and immunogenicity, neoantigens are considered as an ideal target for immunotherapy. This study was aimed to investigate the signature of neoantigens in breast cancer. Somatic mutations, including SNVs and indels, were obtained from cBioPortal of 5991 breast cancer patients. 738 non-silent somatic variants present in at least 3 patients for neoantigen prediction were selected. PIK3CA (38%), the highly mutated gene in breast cancer, could produce the highest number of neoantigens per gene. Some pan-cancer hotspot mutations, such as PIK3CA E545K (6.93%), could be recognized by at least one HLA molecule. Since there are more SNVs than indels in breast cancer, SNVs are the major source of neoantigens. Patients with hormone receptor-positive or HER2 negative are more competent to produce neoantigens. Age, but not the clinical stage, is a significant contributory factor of neoantigen production. We believe a detailed description of breast cancer neoantigen signatures could contribute to neoantigen-based immunotherapy development.
Collapse
Affiliation(s)
- Si Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Songming Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lijian Zhao
- College of Medical Technology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Xi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Gededzha MP, Mampeule N, Gandini A, Mayne ES. SARS-CoV-2 Host Immunogenetic Biomarkers. Methods Mol Biol 2022; 2511:133-147. [PMID: 35838957 DOI: 10.1007/978-1-0716-2395-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 causes generally mild symptoms, with approximately 10-20% of cases progressing to severe disease. The pathophysiologic mechanisms by which SARS-CoV-2 causes severe disease are largely unknown. Data have indicated the involvement of different immunogenetic markers such as HLA, T, and B cells, to be associated with disease outcome. This has led to interest in these genes as potential biomarkers of SARS-CoV-2 susceptibility and for predicting prognosis and response to vaccines and other therapeutic strategies. In this chapter, we discussed outline protocols for characterizing these potential biomarkers and methods for identifying SARS-CoV-2 biomarkers using the Luminex® 100/200 technology and next-generation sequencing.
Collapse
Affiliation(s)
- Maemu P Gededzha
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Services, Johannesburg, South Africa.
| | - Nakampe Mampeule
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Anastasia Gandini
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Elizabeth S Mayne
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
The analysis of a subset of HLA region associations in type 1 diabetes and multiple sclerosis suggests the involvement mechanisms other than antigen presentation in the pathogenesis. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction: current status and recent advances. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 12:100052. [PMID: 35755950 PMCID: PMC9216660 DOI: 10.1016/j.iotech.2021.100052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last few decades, immunotherapy has shown significant therapeutic efficacy in a broad range of cancer types. Antitumor immune responses are contingent on the recognition of tumor-specific antigens, which are termed neoantigens. Tumor neoantigens are ideal targets for immunotherapy since they can be recognized as non-self antigens by the host immune system and thus are able to elicit an antitumor T-cell response. There are an increasing number of studies that highlight the importance of tumor neoantigens in immunoediting and in the sensitivity to immune checkpoint blockade. Therefore, one of the most fundamental tasks in the field of immuno-oncology research is the identification of patient-specific neoantigens. To this end, a plethora of computational approaches have been developed in order to predict tumor-specific aberrant peptides and quantify their likelihood of binding to patients' human leukocyte antigen molecules in order to be recognized by T cells. In this review, we systematically summarize and present the most recent advances in computational neoantigen prediction, and discuss the challenges and novel methods that are being developed to resolve them. Tumors have the ability to acquire immune escape mechanisms. Tumor-specific aberrant peptides (neoantigens) can elicit an immune response by the host immune system. The identification of neoantigens is one of the most fundamental tasks in the field of immuno-oncology research. A plethora of computational approaches have been developed in order to predict patient-specificneoantigens.
Collapse
Affiliation(s)
- G Fotakis
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - D Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Wang F, Dong L, Wang W, Chen N, Zhang W, He J, Zhu F. The polymorphism of HLA-A, -C, -B, -DRB3/4/5, -DRB1, -DQB1 loci in Zhejiang Han population, China using NGS technology. Int J Immunogenet 2021; 48:485-489. [PMID: 34553840 DOI: 10.1111/iji.12554] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
The distributions of HLA allele and haplotype are various in the populations. Currently, the data for HLA alleles and haplotypes at three fields resolution level in Chinese Han population is rare. Here, the HLA alleles and haplotypes of the 1734 cord blood samples from Zhejiang Han population, China were reported at three fields resolution. All samples were randomly collected from the Zhejiang Cord Blood Bank, China. HLA-A, -B, -C, -DRB1, -DQB1, -DRB3/4/5 loci was genotyped using next generation sequencing method. The genotypes of the samples were assigned using the HLA TypeStream Visual Software version 1.2.0. The frequency of alleles, haplotype estimation and linkage disequilibrium analysis were performed with the Arlequin software 3.5.2.2. It was found that the top three frequent alleles of HLA-A, -B, -C, -DRB1, -DQB1, -DRB3/4/5 loci were A*11:01:01 (25.81%), A*24:02:01 (16.70%), A*02:01:01 (10.61%); B*40:01:02 (15.97%), B*46:01:01 (11.48%), B*58:01:01 (7.96%); C*07:02:01 (19.03%), C*01:02:01 (17.65%), C*03:04:01 (10.41%); DRB1*09:01:02G (17.96%), DRB1*12:02:01 (9.57%), DRB1*08:03:02 (9.54%); DQB1*03:01:01G (21.05%), DQB1*03:03:02 (19.15%), DQB1*06:01:01G (12.08%); DRB4*01:03:01 (25.72%), DRB3*02:02:01 (20.27%), DRB5*01:01:01 (10.96%), respectively. A total of 1528 distinct A∼C∼B∼DRB3/4/5∼DRB1∼DQB1 haplotypes were estimated, and the top three most common haplotypes were A*33:03:01∼C*03:02:02∼B*58:01:01∼DRB3*02:02:01∼DRB1*03:01:01∼ DQB1*02:01:01 (4.02%), A*30:01:01∼C*06:02:01∼B*13:02:01∼DRB4*01:03:01∼ DRB1*07:01:01 ∼DQB1*02:02:01 (3.11%) and A*02:07:01∼C*01:02:01∼B*46:01:01 ∼DRB4*01:03:01∼DRB1*09:01:02G∼DQB1*03:03:02 (3.05%). Some alleles of different HLA loci were shown strong linkage disequilibrium. In conclusion, the data of allele and haplotype of HLA-A, -B, -C, -DRB1, -DQB1 and -DRB3/4/5 loci at three fields resolution level were obtained in Zhejiang Han population, thus contributing to analyze the HLA ploymorphism in the populations.
Collapse
Affiliation(s)
- Fang Wang
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang Province, China.,Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang Province, 310052, China
| | - Lina Dong
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang Province, China.,Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang Province, 310052, China
| | - Wei Wang
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang Province, China.,Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang Province, 310052, China
| | - Nanying Chen
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang Province, China.,Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang Province, 310052, China
| | - Wei Zhang
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang Province, China.,Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang Province, 310052, China
| | - Ji He
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang Province, China.,Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang Province, 310052, China
| | - Faming Zhu
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang Province, China.,Key Laboratory of Blood Safety Research, Hangzhou, Zhejiang Province, 310052, China
| |
Collapse
|
15
|
Jantararoungtong T, Tempark T, Koomdee N, Medhasi S, Sukasem C. Genotyping HLA alleles to predict the development of Severe cutaneous adverse drug reactions (SCARs): state-of-the-art. Expert Opin Drug Metab Toxicol 2021; 17:1049-1064. [PMID: 34148467 DOI: 10.1080/17425255.2021.1946514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Pharmacogenomics has great potential in reducing drug-induced severe cutaneous adverse drug reactions (SCARs). Pharmacogenomic studies have revealed an association between HLA genes and SCARs including acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN).Areas covered: Pharmacogenomics-guided therapy could prevent severe drug hypersensitivity reactions. The US Food and Drug Administration (FDA), Clinical Pharmacogenetics Implementation Consortium (CPIC), and Dutch Pharmacogenetics Working Group (DPWG) provided guidelines in the translation of clinically relevant and evidence-based SCARs pharmacogenomics research into clinical practice. In this review, we intended to summarize the significant HLA alleles associated with SCARs induced by different drugs in different populations. We also summarize the SCARs associated with genetic and non-genetic factors and the cost-effectiveness of screening tests.Expert opinion: The effectiveness of HLA screening on a wider scale in clinical practice requires significant resources, including state-of-the-art laboratory; multidisciplinary team approach and health care provider education and engagement; clinical decision support alert system via electronic medical record (EMR); laboratory standards and quality assurance; evidence of cost-effectiveness; and cost of pharmacogenomics tests and reimbursement.
Collapse
Affiliation(s)
- Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sadeep Medhasi
- Center of Medical Genomics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
| |
Collapse
|
16
|
Al Naqbi H, Mawart A, Alshamsi J, Al Safar H, Tay GK. Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula. Immunogenetics 2021; 73:131-152. [PMID: 33528690 PMCID: PMC7946680 DOI: 10.1007/s00251-021-01204-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Since the discovery of human leukocyte antigens (HLAs), the function of major histocompatibility complex (MHC) gene families in a wide range of diseases have been the subject of research for decades. In particular, the associations of autoimmune disorders to allelic variants and candidate genes encoding the MHC are well documented. However, despite decades of research, the knowledge of MHC associations with human disease susceptibility have been predominantly studied in European origin, with limited understanding in different populations and ethnic groups. This is particularly evident in countries and ethnic populations of the Arabian Peninsula. Human MHC haplotypes, and its association with diseases, of the variable ethnic groups of this region are poorly studied. This review compiled published manuscripts that have reported a list of autoimmune diseases (insulin-dependent diabetes mellitus, systemic lupus erythematosus, myasthenia gravis, rheumatoid arthritis, psoriasis vulgaris, and multiple sclerosis) associated with MHC class I and class II in the populations of the Arabian Peninsula, specifically Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, the United Arab Emirates, and Yemen. Data available was compared with other three ethnic groups, namely Caucasians, Asians, and Africans. The limited data available in the public domain on the association between MHC gene and autoimmune diseases highlight the challenges in the Middle Eastern region.
Collapse
Affiliation(s)
- Halima Al Naqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aurélie Mawart
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
17
|
Washah HN, Salifu EY, Soremekun O, Elrashedy AA, Munsamy G, Olotu FA, Soliman ME. Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives. Comb Chem High Throughput Screen 2020; 23:687-698. [DOI: 10.2174/1386207323666200427113734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
For the past few decades, the mechanisms of immune responses to cancer have been
exploited extensively and significant attention has been given into utilizing the therapeutic
potential of the immune system. Cancer immunotherapy has been established as a promising
innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through
various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer
therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet
to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help
transform the treatment paradigm of several tumors by providing a therapeutically efficient method of
cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the
application of immunotherapy. Herein, we gave an insightful overview of the types of
immunotherapy techniques used currently, their mechanisms of action, and discussed some
bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides
some future perspectives in the use of bioinformatics tools for immunotherapy.
Collapse
Affiliation(s)
- Houda N. Washah
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Elliasu Y. Salifu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi Soremekun
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Ahmed A. Elrashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Geraldene Munsamy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A. Olotu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
18
|
Borba V, Malkova A, Basantsova N, Halpert G, Andreoli L, Tincani A, Amital H, Shoenfeld Y. Classical Examples of the Concept of the ASIA Syndrome. Biomolecules 2020; 10:biom10101436. [PMID: 33053910 PMCID: PMC7600067 DOI: 10.3390/biom10101436] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) was first introduced in 2011 by Shoenfeld et al. and encompasses a cluster of related immune mediated diseases, which develop among genetically prone individuals as a result of adjuvant agent exposure. Since the recognition of ASIA syndrome, more than 4400 documented cases have been reported so far, illustrated by heterogeneous clinical manifestations and severity. In this review, five enigmatic conditions, including sarcoidosis, Sjögren's syndrome, undifferentiated connective tissue disease, silicone implant incompatibility syndrome (SIIS), and immune-related adverse events (irAEs), are defined as classical examples of ASIA. Certainly, these disorders have been described after an adjuvant stimulus (silicone implantation, drugs, infections, metals, vaccines, etc.) among genetically predisposed individuals (mainly the HLA-DRB1 and PTPN22 gene), which induce an hyperstimulation of the immune system resulting in the production of autoantibodies, eventually leading to the development of autoimmune diseases. Circulating autonomic autoantibodies in the sera of patients with silicone breast implants, as well as anatomopathological aspects of small fiber neuropathy in their skin biopsies have been recently described. To our knowledge, these novel insights serve as a common explanation to the non-specific clinical manifestations reported in patients with ASIA, leading to the redefinition of the ASIA syndrome diagnostic criteria.
Collapse
Affiliation(s)
- Vânia Borba
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel; (V.B.); (G.H.); (H.A.)
| | - Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, 5265601 Saint-Petersburg, Russia; (A.M.); (N.B.)
| | - Natalia Basantsova
- Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, 5265601 Saint-Petersburg, Russia; (A.M.); (N.B.)
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel; (V.B.); (G.H.); (H.A.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Laura Andreoli
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (L.A.); (A.T.)
- Rheumatology and Clinical Immunology, ASST Spedali Civili, 25123 Brescia, Italy
| | - Angela Tincani
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (L.A.); (A.T.)
- Rheumatology and Clinical Immunology, ASST Spedali Civili, 25123 Brescia, Italy
- Ministry of Health of the Russian Federation, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Howard Amital
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel; (V.B.); (G.H.); (H.A.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel; (V.B.); (G.H.); (H.A.)
- Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, 5265601 Saint-Petersburg, Russia; (A.M.); (N.B.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
19
|
Unraveling the susceptibility of paracoccidioidomycosis: Insights towards the pathogen-immune interplay and immunogenetics. INFECTION GENETICS AND EVOLUTION 2020; 86:104586. [PMID: 33039601 DOI: 10.1016/j.meegid.2020.104586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis caused by Paracoccidioides spp. This disease comprises three clinical forms: symptomatic acute and chronic forms (PCM disease) and PCM infection, a latent form without clinical symptoms. PCM disease differs markedly according to severity, clinical manifestations, and host immune response. Fungal virulence factors and adhesion molecules are determinants for entry, latency, immune escape and invasion, and dissemination in the host. Neutrophils and macrophages play a paramount role in first-line defense against the fungus through the recognition of antigens by pattern recognition receptors (PRRs), activating their microbicidal machinery. Furthermore, the clinical outcome of the PCM is strongly associated with the variability of cytokines and immunoglobulins produced by T and B cells. While the mechanisms that mediate susceptibility or resistance to infection are dictated by the immune system, some genetic factors may alter gene expression and its final products and, hence, modulate how the organism responds to infection and injury. This review outlines the main findings relative to this topic, addressing the complexity of the immune response triggered by Paracoccidioides spp. infection from preclinical investigations to studies in humans. Here, we focus on mechanisms of fungal pathogenesis, the patterns of innate and adaptive immunity, and the genetic and molecular basis related to immune response and susceptibility to the development of the PCM and its clinical forms. Immunogenetic features such as HLA system, cytokines/cytokines receptors genes and other immune-related genes, and miRNAs are likewise discussed. Finally, we point out the occurrence of PCM in patients with primary immunodeficiencies and call attention to the research gaps and challenges faced by the PCM field.
Collapse
|
20
|
Current perspectives on the immunopathogenesis of sarcoidosis. Respir Med 2020; 173:106161. [PMID: 32992264 DOI: 10.1016/j.rmed.2020.106161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Sarcoidosis is an inflammatory systemic disease that commonly affects the lungs or lymph nodes but can manifest in other organs. Herein, we review the latest evidence establishing how innate and adaptive immune responses contribute to the pathogenesis and clinical course of sarcoidosis. We discuss the possible role of microbial organisms as etiologic agents in sarcoidosis and the evidence supporting sarcoidosis as an autoimmune disease. We also discuss how animal and in vitro human models have advanced our understanding of the immunopathogenesis of sarcoidosis. Finally, we discuss therapeutics for sarcoidosis and the effects on the immune system.
Collapse
|
21
|
Killian M, Habougit C, Monard E, Gramont B. Systemic sarcoidosis revealed by venepunctures: a very rare but rewarding cutaneous manifestation. BMJ Case Rep 2020; 13:13/9/e235784. [PMID: 32900730 DOI: 10.1136/bcr-2020-235784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 67-year-old man was referred to our department for the onset of cutaneous lesions following venepunctures. His recent medical history included brief flu-like syndrome, persistent cough, dyspnoea, dry mouth, blurred vision and weight loss. The extensive clinical, biological and radiological check-up showed signs consistent with systemic sarcoidosis: right uveitis, hypercalcemia, renal failure, inflammatory syndrome, elevated levels of ACE, alveolitis with elevated CD4+/CD8+ T cell ratio, hilar and mediastinal lymphadenopathy, bilateral pulmonary infiltrates, mild bronchial obstruction and lowered diffusing capacity of the lungs for carbon monoxide. Multiple biopsy samples (bronchus, accessory salivary glands and one of the skin lesions) eventually confirmed the diagnosis. Corticosteroids resulted in skin lesions resolution in a few days and overall clinical, biological and lung function improvement. The infiltration of scars by granulomatous tissue is well recognised in sarcoidosis but its onset in venepuncture sites is a very rare but easily recognisable condition, which can be helpful for quick diagnosis purpose.
Collapse
Affiliation(s)
- Martin Killian
- Department of Internal Medicine, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, Loire, France .,GIMAP, Université Jean Monnet Saint-Etienne, Saint-Etienne, Loire, France
| | - Cyril Habougit
- Laboratory of Pathology, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, Loire, France
| | - Eric Monard
- Department of Internal Medicine, Centre Hospitalier Chalon sur Saone, Chalon-sur-Saone, France
| | - Baptiste Gramont
- Department of Internal Medicine, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, Loire, France
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Sarcoidosis is a systemic disease characterized by granulomatous inflammation of unknown cause. There is extensive heterogeneity between patients with respect to the number and types of organs involved, disease course, and response to therapy. Recent research in the field has leveraged 'omics' techniques such as transcriptomics to identify important 'molecular profiles' in the disease. These tools may help in identifying clinically useful biomarkers and targets for therapy. RECENT FINDINGS Several studies have used gene expression profiling of predesignated lists or the entire genome to find genes and markers that differentiate sarcoidosis from healthy controls, but only a few have compared sarcoidosis patients based on disease phenotypes and organ involvement. The common gene pathways that have been repeatedly identified include those related to the interferon response, T-cell receptor signaling, and the major histocompatibility complex. SUMMARY While the molecular profiling studies to date offer the ability to compare sarcoidosis and health as well as across tissues, further longitudinal studies that include sarcoidosis patients with varying outcomes with respect to organ involvement and response to treatment are needed to identify clinically important phenotypes in the disease that can then be differentiated based on molecular features.
Collapse
Affiliation(s)
- Nicholas K. Arger
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Brian O’Connor
- National Jewish Health, Center for Genes, Environment, & Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Laura L. Koth
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Cismaru AL, Grimm L, Rudin D, Ibañez L, Liakoni E, Bonadies N, Kreutz R, Hallberg P, Wadelius M, Haschke M, Largiadèr CR, Amstutz U. High-Throughput Sequencing to Investigate Associations Between HLA Genes and Metamizole-Induced Agranulocytosis. Front Genet 2020; 11:951. [PMID: 32973882 PMCID: PMC7473498 DOI: 10.3389/fgene.2020.00951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objective: Agranulocytosis is a rare and potentially life-threatening complication of metamizole (dipyrone) intake that is characterized by a loss of circulating neutrophil granulocytes. While the mechanism underlying this adverse drug reaction is not well understood, involvement of the immune system has been suggested. In addition, associations between genetic variants in the Human Leukocyte Antigen (HLA) region and agranulocytosis induced by other drugs have been reported. The aim of the present study was to assess whether genetic variants in classical HLA genes are associated with the susceptibility to metamizole-induced agranulocytosis (MIA) in a European population by targeted resequencing of eight HLA genes. Design: A case-control cohort of Swiss patients with a history of neutropenia or agranulocytosis associated with metamizole exposure (n = 53), metamizole-tolerant (n = 39) and unexposed controls (n = 161) was recruited for this study. A high-throughput resequencing (HTS) and high-resolution typing method was used to sequence and analyze eight HLA loci in a discovery subset of this cohort (n = 31 cases, n = 38 controls). Identified candidate alleles were investigated in the full Swiss cohort as well as in two independent cohorts from Germany and Spain using HLA imputation from genome-wide SNP array data. In addition, variant calling based on HTS data was performed in the discovery subset for the class I genes HLA-A, -B, and -C using the HLA-specific mapper hla-mapper. Results: Eight candidate alleles (p < 0.05) were identified in the discovery subset, of which HLA-C∗04:01 was associated with MIA in the full Swiss cohort (p < 0.01) restricted to agranulocytosis (ANC < 0.5 × 109/L) cases. However, no candidate allele showed a consistent association in the Swiss, German and Spanish cohorts. Analysis of individual sequence variants in class I genes produced consistent results with HLA typing but did not reveal additional small nucleotide variants associated with MIA. Conclusion: Our results do not support an HLA-restricted T cell-mediated immune mechanism for MIA. However, we established an efficient high-resolution (three-field) eight-locus HTS HLA resequencing method to interrogate the HLA region and demonstrated the feasibility of its application to pharmacogenetic studies.
Collapse
Affiliation(s)
- Anca Liliana Cismaru
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Livia Grimm
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Rudin
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Luisa Ibañez
- Clinical Pharmacology Service, Hospital Universitari Vall d'Hebron, Department of Pharmacology, Therapeutics and Toxicology, Fundació Institut Català de Farmacologia, Autonomous University of Barcelona, Barcelona, Spain
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Manuel Haschke
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ursula Amstutz
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Zhang Y, Chen Y, Xu H, Fang J, Zhao Z, Hu W, Yang X, Ye J, Cheng Y, Wang J, Sun W, Wang J, Yang H, Yan J, Fang L. SOAPTyping: an open-source and cross-platform tool for sequence-based typing for HLA class I and II alleles. BMC Bioinformatics 2020; 21:295. [PMID: 32640979 PMCID: PMC7646500 DOI: 10.1186/s12859-020-03624-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
Background The human leukocyte antigen (HLA) gene family plays a key role in the immune response and thus is crucial in many biomedical and clinical settings. Utilizing Sanger sequencing, the golden standard technology for HLA typing enables accurate identification of HLA alleles in high-resolution. However, only the commercial software, such as uTYPE, SBT-Assign, and SBTEngine, and very few open-source tools could be applied to perform HLA typing based on Sanger sequencing. Results We developed a user-friendly, cross-platform and open-source desktop application, known as SOAPTyping, for Sanger-based typing in HLA class I and II alleles. SOAPTyping can produce accurate results with a comprehensible protocol and featured functions. Moreover, SOAPTyping supports a more advanced group-specific sequencing primers (GSSP) module to solve the ambiguous typing results. We used SOAPTyping to analyze 36 samples with known HLA typing from the University of California Los Angeles (UCLA) International HLA DNA Exchange platform and 100 anonymous clinical samples, and the HLA typing results from SOAPTyping are identical to the golden results and 5.5 times faster than commercial software uTYPE, which shows the usability of SOAPTyping. Conclusions We introduce the SOAPTyping as the first open-source and cross-platform HLA typing software with the capability of producing high-resolution HLA typing predictions from Sanger sequence data.
Collapse
Affiliation(s)
- Yong Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Huixin Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Weipeng Hu
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | | | - Jia Ye
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yun Cheng
- Zhejiang Hospital, No 12 Lingyin Road, Hangzhou, 310013, Xihu District, China
| | - Jiayin Wang
- Department of Computer Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710048, Shaanxi, China
| | - Weiqiang Sun
- Shanghai Institute for Advanced Communication and Data Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China.,James D. Watson Institute of Genome Science, Hangzhou, 310008, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China.,James D. Watson Institute of Genome Science, Hangzhou, 310008, China
| | - Jing Yan
- Zhejiang Hospital, No 12 Lingyin Road, Hangzhou, 310013, Xihu District, China.
| | - Lin Fang
- BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Nesic M, El-Galaly TC, Bøgsted M, Pedersen IS, Dybkær K. Mutational landscape of immune surveillance genes in diffuse large B-cell lymphoma. Expert Rev Hematol 2020; 13:655-668. [PMID: 32293210 DOI: 10.1080/17474086.2020.1755958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Immune surveillance is the dynamic process whereby the immune system identifies and kills tumor cells based on their aberrant expression of stress-related surface molecules or presentation of tumor neoantigens. It plays a crucial role in controlling the initiation and progression of hematologic cancers such as leukemia and lymphoma, and it has been reported that diffuse large B-cell lymphoma (DLBCL) fails to express specific cell-surface molecules that are necessary for the recognition and elimination of tumor cells. AREAS COVERED This review is based on a systematic search strategy to identify relevant literature in the PubMed and Embase databases. Ten candidate genes are identified based on mutational frequency, and functions with detailed mapping performed for hotspot alterations that may have a functional impact on malignant transformation and decreased immune surveillance efficacy. EXPERT OPINION Ongoing development of technology and bioinformatics tools combined with data from large clinical cohorts have the potential to define the mutational landscape associated with immune surveillance in DLBCL. Specific functional studies are required to make an unambiguous link between genetic aberrations and biological impact on impaired immune surveillance.
Collapse
Affiliation(s)
- Marijana Nesic
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Martin Bøgsted
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University , Aalborg, Denmark.,Department of Molecular Diagnostics, Aalborg University Hospital , Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| |
Collapse
|
26
|
Tokić S, Žižkova V, Štefanić M, Glavaš-Obrovac L, Marczi S, Samardžija M, Sikorova K, Petrek M. HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 allele and haplotype frequencies defined by next generation sequencing in a population of East Croatia blood donors. Sci Rep 2020; 10:5513. [PMID: 32218484 PMCID: PMC7099076 DOI: 10.1038/s41598-020-62175-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing (NGS) is increasingly used in transplantation settings, but also as a method of choice for in-depth analysis of population-specific HLA genetic architecture and its linkage to various diseases. With respect to complex ethnic admixture characteristic for East Croatian population, we aimed to investigate class-I (HLA-A, -B, -C) and class-II (HLA-DRB1, -DQA1, -DQB1) HLA diversity at the highest, 4-field resolution level in 120 healthy, unrelated, blood donor volunteers. Genomic DNA was extracted and HLA genotypes of class I and DQA1 genes were defined in full-length, -DQB1 from intron 1 to 3′ UTR, and -DRB1 from intron 1 to intron 4 (Illumina MiSeq platform, Omixon Twin algorithms, IMGT/HLA release 3.30.0_5). Linkage disequilibrium statistics, Hardy-Weinberg departures, and haplotype frequencies were inferred by exact tests and iterative Expectation-Maximization algorithm using PyPop 0.7.0 and Arlequin v3.5.2.2 software. Our data provide first description of 4-field allele and haplotype frequencies in Croatian population, revealing 192 class-I and class-II alleles and extended haplotypic combinations not apparent from the existing 2-field HLA reports from Croatia. This established reference database complements current knowledge of HLA diversity and should prove useful in future population studies, transplantation settings, and disease-associated HLA screening.
Collapse
Affiliation(s)
- Stana Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia.
| | - Veronika Žižkova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia.
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia
| | - Saška Marczi
- Department of Laboratory Diagnostics and Clinical Transfusion Medicine, Clinical Institute of Transfusion Medicine, Osijek University Hospital, J. Huttlera 4, HR-31000, Osijek, Croatia
| | - Marina Samardžija
- Department of Laboratory Diagnostics and Clinical Transfusion Medicine, Clinical Institute of Transfusion Medicine, Osijek University Hospital, J. Huttlera 4, HR-31000, Osijek, Croatia
| | - Katerina Sikorova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
27
|
Huang C, Chen SP, Huang YH, Chen HY, Wang YF, Lee MH, Wang SJ. HLA class I alleles are associated with clinic-based migraine and increased risks of chronic migraine and medication overuse. Cephalalgia 2020; 40:493-502. [PMID: 31973566 DOI: 10.1177/0333102420902228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We aimed to evaluate associations of human leukocyte antigen variants with migraine or headache in hospital and population-based settings. METHODS The case-control study population, aged 30-70, included 605 clinic-based migraine patients in a medical center and 8449 population-based participants in Taiwan Biobank (TWB). Clinic-based cases were ascertained by neurologists. Participants in Taiwan Biobank were interviewed by a structured questionnaire including headache and migraine history; among them, 2394 had headache or migraine history while 6055 were free of headache and served as controls. All subjects were genotyped by Axiom Genome-Wide Single Nucleotide Polymorphism Arrays and imputed for eight classical human leukocyte antigen genes. Human leukocyte antigen frequencies were compared between clinic-based and self-reported patients and controls. We utilized likelihood ratio tests to examine human leukocyte antigen-disease associations and logistic regressions to estimate the effect of human leukocyte antigen alleles on migraine. RESULTS Human leukocyte antigen-B and C showed significant associations with clinic-based migraine (q-value < 0.05). Human leukocyte antigen-B*39:01, human leukocyte antigen-B*51:01, human leukocyte antigen-B*58:01 and human leukocyte antigen-C*03:02 were significantly associated with migraine, with age and sex-adjusted odds ratios (95% CIs) of 1.80 (1.28-2.53), 1.50 (1.15-1.97), 1.36 (1.14-1.62) and 1.36 (1.14-1.62), correspondingly. Clinic-based migraineurs carrying human leukocyte antigen-B*58:01 or human leukocyte antigen-C*03:02 had 1.63 (1.11-2.39) -fold likelihood to have chronic migraine with medication-overuse headache compared to episodic migraine. However, no human leukocyte antigen genes were associated with self-reported headache or migraine in the community. CONCLUSIONS Human leukocyte antigen class I genetic variants are positively associated with risk of clinic-based migraine but not self-reported migraine or headache and may contribute to migraine chronification and medication overuse.
Collapse
Affiliation(s)
- Claire Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei.,Brain Research Center, National Yang-Ming University, Taipei.,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
| | - Yu-Han Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei
| | - Yen-Feng Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei.,Brain Research Center, National Yang-Ming University, Taipei.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
| |
Collapse
|
28
|
Starshinova AA, Malkova AM, Basantsova NY, Zinchenko YS, Kudryavtsev IV, Ershov GA, Soprun LA, Mayevskaya VA, Churilov LP, Yablonskiy PK. Sarcoidosis as an Autoimmune Disease. Front Immunol 2020; 10:2933. [PMID: 31969879 PMCID: PMC6960207 DOI: 10.3389/fimmu.2019.02933] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the large number of performed studies, the etiology and pathogenesis of sarcoidosis still remain unknown. Most researchers allude to the possible autoimmune or immune-mediated genesis of the disease. This review attempts an integral analysis of currently available information suggesting an autoimmune genesis of sarcoidosis and is divided into four categories: the evaluation of clinical signs described both in patients with sarcoidosis and “classic” autoimmune diseases, the role of triggering factors in the development of sarcoidosis, the presence of immunogenic susceptibility in the development of the disease, and the analysis of cellular and humoral immune responses in sarcoidosis. Studying the etiology and pathogenesis of sarcoidosis will improve diagnostic procedures as well as the prognosis and patients' quality of life.
Collapse
Affiliation(s)
- Anna A Starshinova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Anna M Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Natalia Y Basantsova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Yulia S Zinchenko
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Immunology Department, Institute of Experimental Medicine, St. Petersburg, Russia.,Immunology Department, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gennadiy A Ershov
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Lidia A Soprun
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Vera A Mayevskaya
- Foreign Languages Department, St. Petersburg University of Economics, St. Petersburg, Russia
| | - Leonid P Churilov
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Piotr K Yablonskiy
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| |
Collapse
|
29
|
Pradana KA, Widjaya MA, Wahjudi M. Indonesians Human Leukocyte Antigen (HLA) Distributions and Correlations with Global Diseases. Immunol Invest 2019; 49:333-363. [PMID: 31648579 DOI: 10.1080/08820139.2019.1673771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In Human, Major Histocompatibility Complex known as Human Leukocyte Antigen (HLA). The HLA grouped into three subclasses regions: the class I region, the class II region, and the class III region. There are thousands of polymorphic HLAs, many of them are proven to have correlations with diseases. Indonesia consists of diverse ethnicity people and populations. It carries a unique genetic diversity between one and another geographical positions. This paper aims to extract Indonesians HLA allele data, mapping the data, and correlating them with global diseases. From the study, it is found that global diseases, like Crohn's disease, rheumatoid arthritis, Graves' disease, gelatin allergy, T1D, HIV, systemic lupus erythematosus, juvenile chronic arthritis, and Mycobacterial disease (tuberculosis and leprosy) suspected associated with the Indonesian HLA profiles.
Collapse
Affiliation(s)
- Krisnawan Andy Pradana
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia.,Department of Anatomy and Histology Faculty of Medicine, Airlangga University, Tambaksari, Surabaya City, Indonesia
| | | | - Mariana Wahjudi
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia
| |
Collapse
|
30
|
Jones SE, Pollak N. Variability of Sarcoid Skin Manifestations Is Illustrated in a Patient With Multiple Concurrent Pinna Lesions. EAR, NOSE & THROAT JOURNAL 2019; 100:409-410. [PMID: 31578109 DOI: 10.1177/0145561319871227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Samuel E Jones
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Natasha Pollak
- Department of Otolaryngology-Head and Neck Surgery, 12314Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Bennett D, Bargagli E, Refini RM, Rottoli P. New concepts in the pathogenesis of sarcoidosis. Expert Rev Respir Med 2019; 13:981-991. [DOI: 10.1080/17476348.2019.1655401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David Bennett
- Respiratory Diseases and Lung Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Medical and Surgical Sciences & Neurosciences, University of Siena, Siena, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Medical and Surgical Sciences & Neurosciences, University of Siena, Siena, Italy
| | - Paola Rottoli
- Department of Medical and Surgical Sciences & Neurosciences, University of Siena, Siena, Italy
- Regional Coordinator for Rare Respiratory Diseases for Tuscany, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
32
|
Petrkova J, Borucka J, Kalab M, Klevcova P, Michalek J, Taborsky M, Petrek M. Increased Expression of miR-146a in Valvular Tissue From Patients With Aortic Valve Stenosis. Front Cardiovasc Med 2019; 6:86. [PMID: 31294031 PMCID: PMC6606704 DOI: 10.3389/fcvm.2019.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
miR-146a has been implicated in the regulation of the immune response as well as in inflammatory process of atherosclerosis. In the present study, we have investigated the expression of miR-146a and its targets, TLR4 a IRAK1, in aortic valve stenosis. A total of 58 patients with aortic stenosis (non- and atherosclerotic; tissue obtained during standard aortic valve replacement) were enrolled. The relative expression of mir-146a was higher in valvular tissue from patients with atherosclerosis compared to those without atherosclerosis (p = 0.01). Number of the IRAK1 and TLR4 transcripts did not differ between the investigated groups. There was a trend toward elevation of miR-146a expression in context of inflammatory infiltrate observed in the valvular tissue from patients with atherosclerosis (p = 0.06). In conclusion, in line with the acknowledged role of miR-146a in atherosclerotic inflammation, our data suggest it may be extended to the specific location of aortic valves in aortic stenosis.
Collapse
Affiliation(s)
- Jana Petrkova
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Internal Medicine I - Cardiology, Palacky University and University Hospital, Olomouc, Czechia
| | - Jana Borucka
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia
| | - Martin Kalab
- Department of Cardiac Surgery, Palacky University and University Hospital, Olomouc, Czechia
| | - Petra Klevcova
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia
| | - Jaroslav Michalek
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Milos Taborsky
- Internal Medicine I - Cardiology, Palacky University and University Hospital, Olomouc, Czechia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia.,Laboratory of Cardiogenomics, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
33
|
Inaoka PT, Shono M, Kamada M, Espinoza JL. Host-microbe interactions in the pathogenesis and clinical course of sarcoidosis. J Biomed Sci 2019; 26:45. [PMID: 31182092 PMCID: PMC6558716 DOI: 10.1186/s12929-019-0537-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022] Open
Abstract
Sarcoidosis is a rare inflammatory disease characterized by the development of granulomas in various organs, especially in the lungs and lymph nodes. Clinics of the disease largely depends on the organ involved and may range from mild symptoms to life threatening manifestations. Over the last two decades, significant advances in the diagnosis, clinical assessment and treatment of sarcoidosis have been achieved, however, the precise etiology of this disease remains unknown. Current evidence suggests that, in genetically predisposed individuals, an excessive immune response to unknown antigen/s is crucial for the development of sarcoidosis. Epidemiological and microbiological studies suggest that, at least in a fraction of patients, microbes or their products may trigger the immune response leading to sarcoid granuloma formation. In this article, we discuss the scientific evidence on the interaction of microbes with immune cells that may be implicated in the immunopathogenesis of sarcoidosis, and highlight recent studies exploring potential implications of human microbiota in the pathogenesis and the clinical course of sarcoidosis.
Collapse
Affiliation(s)
- Pleiades T Inaoka
- Department of Physical Therapy, School of Health Sciences, Kanazawa University, Kodatsuno, Kanazawa, 577-8502, Japan
| | - Masato Shono
- Faculty of Medicine, Kindai University, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 577-8502, Japan
| | - Mishio Kamada
- Faculty of Medicine, Kindai University, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 577-8502, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 577-8502, Japan.
| |
Collapse
|
34
|
Goncu B, Yucesan E, Aysan E, Kandas NO. HLA Class I Expression Changes in Different Types of Cultured Parathyroid Cells. EXP CLIN TRANSPLANT 2019; 20:854-862. [PMID: 30995898 DOI: 10.6002/ect.2018.0388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Tissue-specific immunogenicity can be characterized by the determination of human leukocyte antigens (HLA). Parathyroid hyperplasia tissue cells are presumed to have the ability to lose HLA class I expression profile during cultivation, whereas healthy parathyroid cells are presumed to already express HLA class I molecules at low levels. However, there are conflicting results about the expression of HLA class I antigens. In this study, our aim was to evaluate different patterns of HLA class I expression in different parathyroid tissue cells. MATERIALS AND METHODS Parathyroid tissue cells were isolated enzymatically and cultured in vitro. Expression of HLA class I (HLA-A, HLA-B, HLA-C) mRNA and protein levels were studied in 7 parathyroid adenomas and 9 parathyroid hyperplasia tissue samples by reverse transcriptase-polymerase chain reaction and Western blot analyses. RESULTS HLA-A protein expression remained stable in parathyroid adenoma and hyperplasia tissue, but HLA-A mRNA expression decreased in adenoma tissue. In parathyroid hyperplasia tissue, HLA-B protein expression remained stable, although mRNA expres-sion levels decreased during cultivation. HLA-C mRNA expression was steady in parathyroid adenoma yet significantly decreased in hyperplasia tissue samples. HLA-C protein expression levels were below 30 pg for both types of parathyroid tissue during cultivation. CONCLUSIONS HLA class I expression levels of para-thyroid hyperplasia and adenoma tissue were not found to be similar. Parathyroid hyperplasia tissue is the donor tissue for the treatment of permanent hypoparathyroidism. Therefore, expression patterns of HLA class I are directly relevant to the transplant process. In particular, the HLA region is highly polymorphic, and, as a consequence of this, heterogeneous correlations among HLA-A, HLA-B, and HLA-C expression patterns of parathyroid tissue should be evaluated in detail before transplant for future studies.
Collapse
Affiliation(s)
- Beyza Goncu
- From the Experimental Research Center, Bezmialem Vakif University, Istanbul, Turkey
| | | | | | | |
Collapse
|