1
|
Lan M, Qin Q, Xie Y, Zhang C, Liu Z, Xu X, Zhang J, Xu S, Yang J, Zhang H, Alatan S, Wang Z, Liu Z. Construction of ceRNA networks of lncRNA and miRNA associated with intramuscular fat deposition in Ujumqin sheep. Front Vet Sci 2025; 12:1559727. [PMID: 40177664 PMCID: PMC11963774 DOI: 10.3389/fvets.2025.1559727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The molecular mechanisms underlying intramuscular fat (IMF) deposition are crucial for enhancing lamb meat quality. This process is regulated by a network of transcription factors. Exploring the role of non-coding RNAs, particularly lncRNAs and miRNAs, in IMF deposition can clarify its complex genetics and offer resources for breeding Inner Mongolian local breeds. Methods We evaluated carcass and lamb meat quality parameters using 60 six-month-old Ujumqin sheep with similar body weights. To investigate non-coding RNA's role in IMF deposition, we identified differentially expressed genes and pathways between the longissimus dorsi and femoral biceps. Additionally, we analyzed these genes and the lncRNA-miRNA-mRNA co-regulatory network in high- and low-IMF femoral biceps groups. Results We identified 11,529 mRNAs (747 differentially expressed), 9,874 lncRNAs (1,428 differentially expressed), and 761 miRNAs (12 differentially expressed). GO and KEGG enrichment analyses showed these genes are involved in lipid metabolism, fatty acid oxidation, and energy metabolism. We constructed a ceRNA network with 12 lncRNAs, 4 miRNAs, and 6 mRNAs. Notably, lncRNA MSTRG.13155.1 interacts with miR-1343-3p_R + 2, promoting IMF deposition by releasing HADHA gene expression. Dual-luciferase reporter assays confirmed MSTRG.13155.1 and HADHA as miR-1343-3p_R + 2 targets. RT-qPCR validated the expression trends of key mRNAs, miRNAs, and lncRNAs, consistent with sequencing results. Discussion Our comprehensive analysis of differentially expressed genes and pathways in Ujumqin sheep's longissimus dorsi and femoral biceps, along with high- and low-IMF groups, has revealed the complex genetics of IMF deposition. This offers valuable resources for Inner Mongolian local breed selection. The interaction between lncRNA MSTRG.13155.1 and miR-1343-3p_R + 2, and their regulation of HADHA expression, provides new insights into IMF deposition mechanisms. Future research can explore these mechanisms' universality and specificity across different breeds and environments.
Collapse
Affiliation(s)
- Mingxi Lan
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuchun Xie
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science and Technology, Hebei Science and Technology Normal University, Qinhuangdao, Hebei, China
| | - Chongyan Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhichen Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingwen Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Songsong Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ji Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haijun Zhang
- Erdos Agricultural and Animal Husbandry Science Research Institute, Ordos, China
| | - Suhe Alatan
- East Ujumqin Banner Hishig Animal Husbandry Development Co., Ltd., East Ujumqin Banner, China
| | - Zhixin Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Li J, Zhao X, Wang Y, Wang J. Non-Coding RNAs in Regulating Fat Deposition in Farm Animals. Animals (Basel) 2025; 15:797. [PMID: 40150326 PMCID: PMC11939817 DOI: 10.3390/ani15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Fat deposition represents a crucial feature in the expenditure of physical energy and affects the meat quality of farm animals. It is regulated by multiple genes and regulators. Of them, non-coding RNAs (ncRNAs) play a critical role in modulating the fat deposition process. As well as being an important protein source, farm animals can be used as medical models, so many researchers worldwide have explored their mechanism of fat deposition. This article summarizes the transcription factors, regulatory genes, and signaling pathways involved in the molecular regulation process of fat deposition; outlines the progress of researching the roles of microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) in fat deposition in common farm animals including pigs, cattle, sheep, ducks, and chickens; and identifies scientific problems in the field that must be further investigated. It has been demonstrated that ncRNAs play a critical role in regulating the fat deposition process and have great potential in improving meat quality traits.
Collapse
Affiliation(s)
- Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
3
|
Liu W, Chen M, Liu Y, Li X, Li H, Wang J. Understanding lncRNAs: key regulators of myogenesis and lipogenesis in farm animals. Front Vet Sci 2025; 12:1540613. [PMID: 40027357 PMCID: PMC11868070 DOI: 10.3389/fvets.2025.1540613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides in length. Recent studies have demonstrated their involvement in regulating gene expression and various biological processes. Among these, myogenesis and lipogenesis are particularly important because of their direct effects on muscle development and fat deposition in farm animals. These processes are crucial for determining meat quality, growth rates, and overall economic value in animal husbandry. Although the specific mechanisms through which lncRNAs influence these pathways are still under investigation, further research into their roles in muscle and fat development is crucial for optimizing farm animal breeding strategies. Here, we review the characteristics of lncRNAs, including their biogenesis, localization, and structures, with a particular focus on their association with myogenesis and adipogenesis. This review seeks to establish a theoretical foundation for enhancing farm animal production. In particular, focusing on lncRNAs may reveal how these molecules can enhance the economic traits of farm animals, thereby contributing to the optimization of farm animal breeding processes.
Collapse
Affiliation(s)
- Wenjing Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yining Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinxin Li
- Institute of Scientific Research, Guangxi University, Nanning, China
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Zhang Y, Chen A, Lu S, Liu D, Xuan X, Lei X, Zhong M, Gao F. Noncoding RNA profiling in omentum adipose tissue from obese patients and the identification of novel metabolic biomarkers. Front Genet 2025; 16:1533637. [PMID: 39981261 PMCID: PMC11839770 DOI: 10.3389/fgene.2025.1533637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background Obesity, a prevalent metabolic disorder, is linked to perturbations in the balance of gene expression regulation. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), play pivotal roles in regulating gene expression. The aim of this study was to identify additional ncRNA candidates that are implicated in obesity, elucidating their potential as key regulators of the pathogenesis of obesity. Methods We identified distinct ncRNA expression profiles in omental adipose tissue in obese and healthy subjects through comprehensive whole-transcriptome sequencing. Subsequent analyses included functional annotation with GO and KEGG pathway mapping, validation via real-time quantitative polymerase chain reaction (qRT‒PCR), the exploration of protein‒protein interactions (PPIs), and the identification of key regulatory genes through network analysis. Results The results indicated that, compared with those in healthy individuals, various lncRNAs, circRNAs, and miRNAs were significantly differentially expressed in obese subjects. Further verifications of top changed gene expressions proved the most genes' consistence with RNA-sequencing including 11 lncRNAs and 4 circRNAs. Gene network analysis highlighted the most significant features associated with metabolic pathways, specifically ENST00000605862, ENST00000558885, and ENST00000686149. Collectively, our findings suggest potential ncRNA therapeutic targets for obesity, including ENST00000605862, ENST00000558885, and ENST00000686149.
Collapse
Affiliation(s)
- Yongjiao Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Ao Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Dong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaolei Xuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaofei Lei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fei Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| |
Collapse
|
5
|
Xing Y, Ma C, Guan H, Shen J, Shen Y, Li G, Sun G, Tian Y, Kang X, Liu X, Li H, Tian W. Multi-Omics Insights into Regulatory Mechanisms Underlying Differential Deposition of Intramuscular and Abdominal Fat in Chickens. Biomolecules 2025; 15:134. [PMID: 39858528 PMCID: PMC11763713 DOI: 10.3390/biom15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Excessive abdominal fat deposition in chickens disadvantages feed conversion, meat production, and reproductive performance. Intramuscular fat contributes to meat texture, tenderness, and flavor, serving as a vital indicator of overall meat quality. Therefore, a comprehensive analysis of the regulatory mechanisms governing differential deposition of abdominal versus intramuscular fat is essential in breeding higher-quality chickens with ideal fat distribution. This review systematically summarizes the regulatory mechanisms underlying intramuscular and abdominal fat traits at chromatin, genomic, transcriptional, post-transcriptional, translational, and epigenetic-modification scales. Additionally, we summarize the role of non-coding RNAs and protein-coding genes in governing intramuscular and abdominal fat deposition. These insights provide a valuable theoretical foundation for the genetic engineering of high-quality and high-yielding chicken breeds.
Collapse
Affiliation(s)
- Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Jianing Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Ying Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| |
Collapse
|
6
|
Li D, Chen Y, Zhu X, Yang Y, Li H, Zhao RC. A novel human specific lncRNA MEK6-AS1 regulates adipogenesis and fatty acid biosynthesis by stabilizing MEK6 mRNA. J Biomed Sci 2025; 32:6. [PMID: 39773638 PMCID: PMC11708274 DOI: 10.1186/s12929-024-01098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity. The aim of our work is to identify lncRNAs that have important regulatory in differentiation of human mesenchymal stem cells (MSCs) into adipocytes, and to provide effective targets for clinical prevention and treatment of obesity and related metabolic disorders. METHODS We extracted primary MSCs from human adipose tissue, and conducted expression profile analysis of lncRNAs during adipogenic differentiation of MSCs to screen changed lncRNAs. Characteristics of lncRNA were revealed mainly by RACE and RNA FISH. Loss- and gain-of function experiments in vivo and in vitro were used to analyze effects of lncRNA. Targeted metabolomics was utilized to detect levels of free fatty acids. RNA pull-down, mRNA stability tests, etc. were employed to explore mechanisms of lncRNA. RESULTS Human-specific lncRNA, we named it MEK6-AS1, was the most up-regulated transcript during adipogenic differentiation of MSCs. MEK6-AS1 was highly expressed in adipose tissue samples from individuals with BMI ≥ 25 and positively correlated with adipogenic marker genes in these samples. Knocking down lncRNA inhibited expression of adipogenic differentiation markers and ectopic adipogenesis, reducing contents of various free fatty acids, as well as promoting osteogenic differentiation. Overexpression of lncRNA had the opposite effects to the above processes. We also found that MEK6-AS1 was elevated during hepatic steatosis organoid generation. Mechanistically, MEK6-AS1 worked partially through stabilization of MEK6 mRNA by NAT10. CONCLUSIONS We have identified a human-specific lncRNA (MEK6-AS1) with position information in the genomic database but has not been extensively reported. We demonstrated that MEK6-AS1 as a novel lncRNA involved in adipogenic differentiation and adipogenesis, fatty acid metabolism, and osteogenic differentiation. We found that MEK6-AS1 may exert its effect by enhancing MEK6 mRNA stability through NAT10. Our study may provide insights into implication of lncRNAs in stem cell biology and offer a new potential therapeutic target for the prevention and treatment of obesity and other related disease.
Collapse
Affiliation(s)
- Di Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Yunhua Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Xingyu Zhu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Yanlei Yang
- Clinical Biobank, Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
7
|
Zhang W, Raza SHA, Li B, Yang W, Khan R, Aloufi BH, Zhang G, Zuo F, Zan L. LncBNIP3 Inhibits Bovine Intramuscular Preadipocyte Differentiation via the PI3K-Akt and PPAR Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24260-24271. [PMID: 39453846 DOI: 10.1021/acs.jafc.4c05383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Intramuscular fat (IMF) content is an economic trait in beef cattle that improves the meat quality. Studies have highlighted the correlation between long noncoding RNAs (lncRNAs) and IMF development. In this study, lncBNIP3 knockdown promoted bovine intramuscular preadipocyte differentiation. RNA-seq analysis of intramuscular preadipocytes with lncBNIP3 knockdown identified 230 differentially expressed genes. The PI3K-Akt and PPAR signaling pathways were enriched. lncBNIP3 interference promoted mRNA and protein expression of key genes in PI3K-Akt signaling pathway. LncBNIP3 interference reversed the effects of an AKT-inhibitor MK-2206 on Akt protein expression and lipid droplet accumulation, promoted mRNA and protein expression of essential genes in the PPAR signaling pathway, and ameliorated the inhibitory effects of a PPARg antagonist GW9662 on lipid accumulation. Therefore, lncBNIP3 inhibition of bovine intramuscular preadipocyte differentiation is likely mediated via the PI3K-Akt and PPAR signaling pathways. This study identified a valuable lncRNA with functional roles in IMF accumulation and revealed new strategies to improve beef quality.
Collapse
Affiliation(s)
- Wenzhen Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, P.R. China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculturer, Peshawar 25130, Pakistan
| | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha'il 2440, Saudi Arabia
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
8
|
Silva WJ, Cruz A, Duque G. MicroRNAs and their Modulatory Effect on the Hallmarks of Osteosarcopenia. Curr Osteoporos Rep 2024; 22:458-470. [PMID: 39162945 DOI: 10.1007/s11914-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF THE REVIEW Osteosarcopenia is a geriatric syndrome associated with disability and mortality. This review summarizes the key microRNAs that regulate the hallmarks of sarcopenia and osteoporosis. Our objective was to identify components similarly regulated in the pathology and have therapeutic potential by influencing crucial cellular processes in both bone and skeletal muscle. RECENT FINDINGS The simultaneous decline in bone and muscle in osteosarcopenia involves a complex crosstalk between these tissues. Recent studies have uncovered several key mechanisms underlying this condition, including the disruption of cellular signaling pathways that regulate bone remodeling and muscle function and regeneration. Accordingly, emerging evidence reveals that dysregulation of microRNAs plays a significant role in the development of each of these hallmarks of osteosarcopenia. Although the recent recognition of osteosarcopenia as a single diagnosis of bone and muscle deterioration has provided new insights into the mechanisms of these underlying age-related diseases, several knowledge gaps have emerged, and a deeper understanding of the role of common microRNAs is still required. In this study, we summarize current evidence on the roles of microRNAs in the pathogenesis of osteosarcopenia and identify potential microRNA targets for treating this condition. Among these, microRNAs-29b and -128 are upregulated in the disease and exert adverse effects by inhibiting IGF-1 and SIRT1, making them potential targets for developing inhibitors of their activity. MicroRNA-21 is closely associated with the occurrence of muscle and bone loss. Conversely, microRNA-199b is downregulated in the disease, and its reduced activity may be related to increased myostatin and GSK3β activity, presenting it as a target for developing analogues that restore its function. Finally, microRNA-672 stands out for its ability to protect skeletal muscle and bone when expressed in the disease, highlighting its potential as a possible therapy for osteosarcopenia.
Collapse
Affiliation(s)
- William J Silva
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - André Cruz
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group. Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Liao Y, Peng Z, Zhou X, Zhou H, Meng Z, Xu S, Sun T, Nüssler AK, Yang W. Competing endogenous RNA networks were associated with fat accumulation in skeletal muscle of aged male mice. Mech Ageing Dev 2024; 220:111953. [PMID: 38834155 DOI: 10.1016/j.mad.2024.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Muscle aging contributed to morbidity and mortality in the elderly adults by leading to severe outcomes such as frailty, falls and fractures. Post-transcriptional regulation especially competing endogenous RNA (ceRNA) mechanism may modulate the process of skeletal muscle aging. RNA-seq was performed in quadriceps of 6-month-old (adult) and 22-month-old (aged) male mice to identify differentially expressed ncRNAs and mRNAs and further construct ceRNA networks. Decreased quadriceps-body weight ratio and muscle fiber cross-sectional area as well as histological characteristics of aging were observed in the aged mice. Besides, there were higher expressions of atrogin-1 and MuRF-1 and lower expression of Myog, Myf4 and Myod1 in the quadriceps of aged mice relative to that of adult mice. The expression of 85 lncRNAs, 52 circRNAs, 10 miRNAs and 277 mRNAs were significantly dysregulated in quadriceps between the two groups, among which two ceRNA networks lncRNA 2700081O15Rik/circRNA_0000820-miR-673-3p-Tmem120b were constructed. Level of triglycerides and expression of PPARγ, C/EBPα, FASN and leptin were elevated and the expression of adiponectin was reduced in quadriceps of aged mice compared with that of adult mice. LncRNA 2700081O15Rik/circRNA_0000820-miR-673-3p-Tmem120b were possibly associated with the adipogenesis and fat accumulation in skeletal muscle of age male mice.
Collapse
Affiliation(s)
- Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Huanhuan Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Taoping Sun
- Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, Tübingen 72076, Germany
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
| |
Collapse
|
10
|
Zhang D, Ma X, Li H, Li X, Wang J, Zan L. SERPINE1AS2 regulates intramuscular adipogenesis by inhibiting PAI1 protein expression. Int J Biol Macromol 2024; 275:133592. [PMID: 38960265 DOI: 10.1016/j.ijbiomac.2024.133592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Antisense long non-coding RNAs (lncRNAs) played a crucial role in the precise regulation of essential biological processes and were abundantly present in animals. Many of these antisense lncRNAs have been identified as key roles in adipose tissue accumulation in livestock, underscoring their vital role in the regulation of animal physiology. Nonetheless, the functional roles of these antisense lncRNAs in regulating adipogenesis and the specific molecular mechanisms these processes were still unclear, which was a significant gap in current scientific research. In this study, we identified and characterized SERPINE1AS2, a novel natural antisense lncRNA, was highly expressed in the fat tissues of adult cattle and calves. Its expression gradually increased during the differentiation of intramuscular adipocytes. Through functional studies, we observed that knockdown of SERPINE1AS2 inhibited the proliferation and adipogenesis of intramuscular adipocytes, while overexpression of SERPINE1AS2 produced the opposite effect. RNA sequencing (RNA-seq) analysis following SERPINE1AS2 knockdown revealed that differential expression genes (DEGs) were significantly enriched in key signaling pathways, notably the MAPK, Wnt, and mTOR signaling pathways. Furthermore, SERPINE1AS2 interacted with Plasminogen Activator Inhibitor-1 (PAI1), forming RNA dimers through complementary base pairing and consequently influencing PAI1 expression. Interestingly, studies on PAI1 suggested that reduced expression facilitated adipogenesis and the downregulation of PAI1 alleviated the inhibitory effect of reduced SERPINE1AS2 on adipogenesis. In summary, this study suggested that SERPINE1AS2 played a crucial role in the adipogenesis of bovine intramuscular adipocytes by modulating the expression of PAI1. SERPINE1AS2 also regulated adipogenesis by engaging in the MAPK, Wnt, and mTOR signaling pathways. Our results suggested that SERPINE1AS2 had a complex regulatory mechanism on adipogenesis in intramuscular adipocytes.
Collapse
Affiliation(s)
- Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huaxuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuefeng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
11
|
Peng Y, Zhu M, Gong Y, Wang C. Identification and functional prediction of lncRNAs associated with intramuscular lipid deposition in Guangling donkeys. Front Vet Sci 2024; 11:1410109. [PMID: 39036793 PMCID: PMC11258529 DOI: 10.3389/fvets.2024.1410109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024] Open
Abstract
Many studies have shown that long non-coding RNAs (lncRNAs) play key regulatory roles in various biological processes. However, the importance and molecular regulatory mechanisms of lncRNAs in donkey intramuscular fat deposition remain to be further investigated. In this study, we used published transcriptomic data from the longissimus dorsi muscle of Guangling donkeys to identify lncRNAs and obtained 196 novel lncRNAs. Compared with the coding genes, the novel lncRNAs and the known lncRNAs exhibited some typical features, such as shorter transcript length and smaller exons. A total of 272 coding genes and 52 lncRNAs were differentially expressed between the longissimus dorsi muscles of the low-fat and high-fat groups. The differentially expressed genes were found to be involved in various biological processes related to lipid metabolism. The potential target genes of differentially expressed lncRNAs were predicted by cis and trans. Functional analysis of lncRNA targets showed that some lncRNAs may act on potential target genes involved in lipid metabolism processes and regulate lipid deposition in the longissimus dorsi muscle. This study provides valuable information for further investigation of the molecular mechanisms of lipid deposition traits in donkeys, which may improve meat traits and facilitate the selection process of donkeys in future breeding.
Collapse
Affiliation(s)
- Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| |
Collapse
|
12
|
Xing W, Li S. LncRNA ENSGALG00000021686 regulates fat metabolism in chicken hepatocytes via miR-146b/AGPAT2 pathway. Anim Genet 2024; 55:420-429. [PMID: 38369771 DOI: 10.1111/age.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The liver contributes to lipid metabolism as the hub of fat synthesis. Long non-coding RNAs (lncRNAs) are considered the regulators of cellular processes. Since LncRNA ENSGALG00000021686 (lncRNA 21 686) has been described as a regulator of lipid metabolism, the present study aimed to clarify the role of lncRNA 21 686 in chicken hepatocytes' lipid metabolism. Thirty-two chickens were divided into four groups and were treated with diets containing different amounts of fat, and the hepatic expression of lncRNA 21 686 and miR-146b along with the levels of proteins involved in the regulation of fat metabolism, lipid indices and oxidative stress were measured. Moreover, primary chicken hepatocytes were transfected with lncRNA 21 686 small interfering RNA or microRNA (miRNA, miR)-146b mimics to measure the consequences of suppressing lncRNA or inducing miRNA expression on the levels of proteins involved in fat metabolism and stress markers. The results showed that the high-fat diet modulated the expression of lncRNA 21 686 and miR-146b (p-value < 0.001). Moreover, there was a significant increase in 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 (AGPAT2) gene expression and protein levels and modulated fat-related markers. Furthermore, the results showed that lncRNA 21 686 suppression reduced the expression of AGPAT2 and its downstream proteins (p-value < 0.05). Overexpression of miR-146b regulated fat metabolism indicator expression. Transfection experiments revealed that lncRNA 21 686 suppression increased miR-146b expression. The findings suggested a novel mechanism containing lncRNA 21 686/miR-146b/AGPAT2 in the regulation of fat metabolism in chicken hepatocytes.
Collapse
Affiliation(s)
- Wenhao Xing
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijie Li
- Dongying Jintengsheng Medical Device Sales Co., Ltd., Dongying, Shandong Province, China
| |
Collapse
|
13
|
Bai Y, Li J, Wei Y, Chen Z, Liu Z, Guo D, Jia X, Niu Y, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S. Proteome Analysis Related to Unsaturated Fatty Acid Synthesis by Interfering with Bovine Adipocyte ACSL1 Gene. Antioxidants (Basel) 2024; 13:641. [PMID: 38929080 PMCID: PMC11200461 DOI: 10.3390/antiox13060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Unsaturated fatty acids (UFAs) in beef play a vital role in promoting human health. Long-chain fatty acyl-CoA synthase 1 (ACSL1) is a crucial gene for UFA synthesis in bovine adipocytes. To investigate the protein expression profile during UFA synthesis, we performed a proteomic analysis of bovine adipocytes by RNA interference and non-interference with ACSL1 using label-free techniques. A total of 3558 proteins were identified in both the NC and si-treated groups, of which 1428 were differentially expressed proteins (DEPs; fold change ≥ 1.2 or ≤ 0.83 and p-value < 0.05). The enrichment analysis of the DEPs revealed signaling pathways related to UFA synthesis or metabolism, including cAMP, oxytocin, fatty acid degradation, glycerol metabolism, insulin, and the regulation of lipolysis in adipocytes (p-value < 0.05). Furthermore, based on the enrichment analysis of the DEPs, we screened 50 DEPs that potentially influence the synthesis of UFAs and constructed an interaction network. Moreover, by integrating our previously published transcriptome data, this study established a regulatory network involving differentially expressed long non-coding RNAs (DELs), highlighting 21 DEPs and 13 DELs as key genes involved in UFA synthesis. These findings present potential candidate genes for further investigation into the molecular mechanisms underlying UFA synthesis in bovines, thereby offering insights to enhance the quality of beef and contribute to consumer health in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.B.); (J.L.); (Y.W.); (Z.C.); (Z.L.); (D.G.); (X.J.); (Y.N.); (B.S.); (X.Z.); (X.H.); (J.W.); (X.L.); (S.L.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.B.); (J.L.); (Y.W.); (Z.C.); (Z.L.); (D.G.); (X.J.); (Y.N.); (B.S.); (X.Z.); (X.H.); (J.W.); (X.L.); (S.L.)
| | | | | | | | | |
Collapse
|
14
|
Jin Z, Gao H, Fu Y, Ren R, Deng X, Chen Y, Hou X, Wang Q, Song G, Fan N, Ma H, Yin Y, Xu K. Whole-Transcriptome Analysis Sheds Light on the Biological Contexts of Intramuscular Fat Deposition in Ningxiang Pigs. Genes (Basel) 2024; 15:642. [PMID: 38790271 PMCID: PMC11121357 DOI: 10.3390/genes15050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of pork is significantly impacted by intramuscular fat (IMF). However, the regulatory mechanism of IMF depositions remains unclear. We performed whole-transcriptome sequencing of the longissimus dorsi muscle (IMF) from the high (5.1 ± 0.08) and low (2.9 ± 0.51) IMF groups (%) to elucidate potential mechanisms. In summary, 285 differentially expressed genes (DEGs), 14 differentially expressed miRNAs (DEMIs), 83 differentially expressed lncRNAs (DELs), and 79 differentially expressed circRNAs (DECs) were identified. DEGs were widely associated with IMF deposition and liposome differentiation. Furthermore, competing endogenous RNA (ceRNA) regulatory networks were constructed through co-differential expression analyses, which included circRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 47 DECs) and lncRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 36 DELs) regulatory networks. The circRNAs sus-TRPM7_0005, sus-MTUS1_0004, the lncRNAs SMSTRG.4269.1, and MSTRG.7983.2 regulate the expression of six lipid metabolism-related target genes, including PLCB1, BAD, and GADD45G, through the binding sites of 2-4068, miR-7134-3p, and miR-190a. For instance, MSTRG.4269.1 regulates its targets PLCB1 and BAD via miRNA 2_4068. Meanwhile, sus-TRPM7_0005 controls its target LRP5 through ssc-miR-7134-3P. These findings indicate molecular regulatory networks that could potentially be applied for the marker-assisted selection of IMF to enhance pork quality.
Collapse
Affiliation(s)
- Zhao Jin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Ruimin Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoxiao Deng
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Yue Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaohong Hou
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Qian Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Ningyu Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
15
|
Wang L, Valencak TG, Shan T. Fat infiltration in skeletal muscle: Influential triggers and regulatory mechanism. iScience 2024; 27:109221. [PMID: 38433917 PMCID: PMC10907799 DOI: 10.1016/j.isci.2024.109221] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Fat infiltration in skeletal muscle (also known as myosteatosis) is now recognized as a distinct disease from sarcopenia and is directly related to declining muscle capacity. Hence, understanding the origins and regulatory mechanisms of fat infiltration is vital for maintaining skeletal muscle development and improving human health. In this article, we summarized the triggering factors such as aging, metabolic diseases and metabolic syndromes, nonmetabolic diseases, and muscle injury that all induce fat infiltration in skeletal muscle. We discussed recent advances on the cellular origins of fat infiltration and found several cell types including myogenic cells and non-myogenic cells that contribute to myosteatosis. Furthermore, we reviewed the molecular regulatory mechanism, detection methods, and intervention strategies of fat infiltration in skeletal muscle. Based on the current findings, our review will provide new insight into regulating function and lipid metabolism of skeletal muscle and treating muscle-related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Zhao W, Cai Z, Jiang Q, Zhang J, Yu B, Feng X, Fu X, Zhang T, Hu J, Gu Y. Transcriptome analysis reveals the role of long noncoding RNAs in specific deposition of inosine monphosphate in Jingyuan chickens. J Anim Sci 2024; 102:skae136. [PMID: 38738625 PMCID: PMC11249926 DOI: 10.1093/jas/skae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
Inosine monphosphate (IMP) is one of the important indicators for evaluating meat flavor, and long noncoding RNAs (lncRNAs) play an important role in its transcription and post-transcriptional regulation. Currently, there is little information about how lncRNA regulates the specific deposition of IMP in chicken muscle. In this study, we used transcriptome sequencing to analyze the lncRNAs of the breast and leg muscles of the Jingyuan chicken and identified a total of 357 differentially expressed lncRNAs (DELs), of which 158 were up-regulated and 199 were down-regulated. There were 2,203 and 7,377 cis- and trans-regulated target genes of lncRNAs, respectively, and we identified the lncRNA target genes that are involved in NEGF signaling pathway, glycolysis/glucoseogenesis, and biosynthesis of amino acids pathways. Meanwhile, 621 pairs of lncRNA-miRNA-mRNA interaction networks were constructed with target genes involved in purine metabolism, fatty acid metabolism, and biosynthesis of amino acids. Next, three interacting meso-networks gga-miR-1603-LNC_000324-PGM1, gga-miR-1768-LNC_000324-PGM1, and gga-miR-21-LNC_011339-AMPD1 were identified as closely associated with IMP-specific deposition. Both differentially expressed genes (DEGs) PGM1 and AMPD1 were significantly enriched in IMP synthesis and metabolism-related pathways, and participated in the anabolic process of IMP in the form of organic matter synthesis and energy metabolism. This study obtained lncRNAs and target genes affecting IMP-specific deposition in Jingyuan chickens based on transcriptome analysis, which deepened our insight into the role of lncRNAs in chicken meat quality.
Collapse
Affiliation(s)
- Wei Zhao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Zhengyun Cai
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Qiufei Jiang
- Animal Husbandry Extension Station, Yinchuan750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Baojun Yu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Xiaofang Feng
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Xi Fu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Jiahuan Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
17
|
Li R, Zhu R, Yang X, Feng Y, He Q, Wang H, Liu Q, Shi D, Huang J. The role of lncFABP4 in modulating adipogenic differentiation in buffalo intramuscular preadipocytes. Anim Sci J 2024; 95:e13951. [PMID: 38703069 DOI: 10.1111/asj.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 05/06/2024]
Abstract
Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.
Collapse
Affiliation(s)
- Ruirui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Xintong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Ye Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Qin He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Haopeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
18
|
Cao Y, Xing Y, Guan H, Ma C, Jia Q, Tian W, Li G, Tian Y, Kang X, Liu X, Li H. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes (Basel) 2023; 14:2197. [PMID: 38137019 PMCID: PMC10742768 DOI: 10.3390/genes14122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity, and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms underlying IMF deposition and the development of effective molecular markers have been hot topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple genomic approaches, including genome-wide association studies, whole transcriptome sequencing, proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This review comprehensively and systematically describes genetic and epigenetic factors associated with IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and provides promising applications for genetic improvement of meat quality in chicken.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
19
|
Ma M, Chen M, Wu X, Sooranna SR, Liu Q, Shi D, Wang J, Li H. A newly identified lncRNA lnc000100 regulates proliferation and differentiation of cattle skeletal muscle cells. Epigenetics 2023; 18:2270864. [PMID: 37910666 PMCID: PMC10768731 DOI: 10.1080/15592294.2023.2270864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
Cattle skeletal muscle development is a complex and highly coordinated biological process mediated by a series of myogenic regulators, which plays a critical role in beef yield and quality. Long non-coding RNAs (lncRNAs) have been shown to regulate skeletal muscle development. However, the molecular mechanism by which lncRNAs regulate skeletal muscle development is largely unknown. We performed transcriptome analysis of muscle tissues of adult and embryo Angus cattle to investigate the mechanism by which lncRNA regulates skeletal muscle development between adult and embryo cattle. A total of 37,115 candidate lncRNAs were detected, and a total of 1,998 lncRNAs were differentially expressed between the muscle tissue libraries of adult and embryo cattle, including 1,229 up-regulated lncRNAs and 769 down-regulated lncRNAs (adult cattle were the control group). We verified the expression of 7 differentially expressed lncRNAs by quantitative real-time PCR (RT-qPCR), and analysed the tissue expression profile of lnc000100, which is down-regulated in the longest dorsal muscle during foetal life and which is highly specifically expressed in muscle tissue. We found that the interference of lnc000100 significantly inhibited cell proliferation and promoted cell differentiation. Lnc000100 was located in the nucleus by RNA-FISH. Our research provides certain resources for the analysis of lncRNA regulating cattle skeletal muscle development, and may also provide new insights for improving beef production and breed selection.
Collapse
Affiliation(s)
- Mengke Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Suren R. Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
20
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
21
|
Zhu R, Guo D, Li R, Feng Y, Yang X, Huang Q, Zheng Y, Shi D, Huang J. A long non-coding RNA lnc210 promotes adipogenic differentiation of buffalo intramuscular adipocytes. Anim Biotechnol 2023; 34:2736-2744. [PMID: 36001396 DOI: 10.1080/10495398.2022.2114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) content is one of the most significant factors influencing beef quality in terms of tenderness, flavor, and juiciness. Thus, internal factors affecting IMF deposition have received considerable attention for decades. In this study, we demonstrated a long non-coding RNA, lnc210, promoted adipogenic differentiation of buffalo intramuscular adipocytes. lnc210 was rich in adipose tissue and showed increased expression with the adipogenic differentiation of buffalo intramuscular adipocytes. lnc210 was mainly expressed in the nucleus of adipocytes. Full-length lnc210 was obtained by rapid amplification of cDNA ends technology. lnc210 overexpression promoted lipid accumulation by upregulating the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG) and CCAAT enhancer binding protein alpha (C/EBPα) in buffalo intramuscular adipocytes. These results provide a basis for an in-depth analysis of the role of lnc210 in accelerating IMF deposition in buffaloes.
Collapse
Affiliation(s)
- Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Duo Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Ruirui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Ye Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Xintong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Qixin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yuanyu Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
22
|
Yue Y, Ge Z, Guo Z, Wang Y, Yang G, Sun S, Li X. Screening of lncRNA profiles during intramuscular adipogenic differentiation in longissimus dorsi and semitendinosus muscles in pigs. Anim Biotechnol 2023; 34:4616-4626. [PMID: 36794392 DOI: 10.1080/10495398.2023.2176319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Intramuscular fat content is an important factor that determines meat quality in pigs. In recent years, epigenetic regulation has increasingly studied the physiological model of intramuscular fat. Although long noncoding RNAs (lncRNAs) play essential roles in various biological processes, their role in intramuscular fat deposition in pigs remains largely unknown. In this study, intramuscular preadipocytes in the longissimus dorsi and semitendinosus of Large White pigs were isolated and induced into adipogenic differentiation in vitro. High-throughput RNA-seq was carried out to estimate the expression of lncRNAs at 0, 2 and 8 days post-differentiation. At this stage, 2135 lncRNAs were identified. KEGG analysis showed that the differentially expressed lncRNAs were common in pathways involved with adipogenesis and lipid metabolism. lnc_000368 was found to gradually increase during the adipogenic process. Reverse-transcription quantitative polymerase chain reaction and a western blot revealed that the knockdown of lnc_000368 significantly repressed the expression of adipogenic genes and lipolytic genes. As a result, lipid accumulation in porcine intramuscular adipocytes was impaired by the silencing of lnc_000368. Overall, our study identified a genome-wide lncRNA profile related to porcine intramuscular fat deposition, and the results suggest that lnc_000368 is a potential target gene that might be targeted in pig breeding in the future.
Collapse
Affiliation(s)
- Yanru Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Zihao Ge
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Zhicheng Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Yuhe Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Shiduo Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
- Key Laboratory of Livestock Biology, Northwest A & F University, Xianyang, China
| |
Collapse
|
23
|
Zhai B, Zhao Y, Li H, Li S, Gu J, Zhang H, Zhang Y, Li H, Tian Y, Li G, Wang Y. Weighted gene co-expression network analysis identified hub genes critical to fatty acid composition in Gushi chicken breast muscle. BMC Genomics 2023; 24:594. [PMID: 37805512 PMCID: PMC10559426 DOI: 10.1186/s12864-023-09685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND The composition and content of fatty acids in the breast muscle are important factors influencing meat quality. In this study, we investigated the fatty acid composition and content in the breast muscle of Gushi chickens at different developmental stages (14 weeks, 22 weeks, and 30 weeks). Additionally, we utilized transcriptomic data from the same tissue and employed WGCNA and module identification methods to identify key genes associated with the fatty acid composition in Gushi chicken breast muscle and elucidate their regulatory networks. RESULTS Among them, six modules (blue, brown, green, light yellow, purple, and red modules) showed significant correlations with fatty acid content and metabolic characteristics. Enrichment analysis revealed that these modules were involved in multiple signaling pathways related to fatty acid metabolism, including fatty acid metabolism, PPAR signaling pathway, and fatty acid biosynthesis. Through analysis of key genes, we identified 136 genes significantly associated with fatty acid phenotypic traits. Protein-protein interaction network analysis revealed that nine of these genes were closely related to fatty acid metabolism. Additionally, through correlation analysis of transcriptome data, we identified 51 key ceRNA regulatory networks, including six central genes, 7 miRNAs, and 28 lncRNAs. CONCLUSION This study successfully identified key genes closely associated with the fatty acid composition in Gushi chicken breast muscle, as well as their post-transcriptional regulatory networks. These findings provide new insights into the molecular regulatory mechanisms underlying the flavor characteristics of chicken meat and the composition of fatty acids in the breast muscle.
Collapse
Affiliation(s)
- Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, 450001, People's Republic of China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinxing Gu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China.
- The Shennong Laboratory, Zhengzhou, 450046, China.
| | - Yongcai Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
24
|
Zhu S, Zhang B, Zhu T, Wang D, Liu C, Liu Y, He Y, Liang W, Li W, Han R, Li D, Yan F, Tian Y, Li G, Kang X, Li Z, Jiang R, Sun G. miR-128-3p inhibits intramuscular adipocytes differentiation in chickens by downregulating FDPS. BMC Genomics 2023; 24:540. [PMID: 37700222 PMCID: PMC10496186 DOI: 10.1186/s12864-023-09649-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is the major indicator for evaluating chicken meat quality due to its positive correlation with tenderness, juiciness, and flavor. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) in intramuscular adipocyte differentiation. However, little is known about the association of miR-128-3p with intramuscular adipocyte differentiation. Our previous RNA-seq results indicated that miR-128-3p was differentially expressed at different periods in chicken intramuscular adipocytes, revealing a possible association with intramuscular adipogenesis. The purpose of this research was to investigate the biological functions and regulatory mechanism of miR-128-3p in chicken intramuscular adipogenesis. RESULTS The results of a series of assays confirmed that miR-128-3p could promote the proliferation and inhibit the differentiation of intramuscular adipocytes. A total of 223 and 1,050 differentially expressed genes (DEGs) were identified in the mimic treatment group and inhibitor treatment group, respectively, compared with the control group. Functional enrichment analysis revealed that the DEGs were involved in lipid metabolism-related pathways, such as the MAPK and TGF-β signaling pathways. Furthermore, target gene prediction analysis showed that miR-128-3p can target many of the DEGs, such as FDPS, GGT5, TMEM37, and ASL2. The luciferase assay results showed that miR-128-3p targeted the 3' UTR of FDPS. The results of subsequent functional assays demonstrated that miR-128-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting FDPS. CONCLUSION miR-128-3p inhibits chicken intramuscular adipocyte differentiation by downregulating FDPS. Our findings provide a theoretical basis for the study of lipid metabolism and reveal a potential target for molecular breeding to improve meat quality.
Collapse
Affiliation(s)
- Shuaipeng Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Binbin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Dongxue Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yixuan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenjie Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China.
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
25
|
Chen C, Chen W, Ding H, Wu P, Zhang G, Xie K, Zhang T. High-fat diet-induced gut microbiota alteration promotes lipogenesis by butyric acid/miR-204/ACSS2 axis in chickens. Poult Sci 2023; 102:102856. [PMID: 37390560 PMCID: PMC10331483 DOI: 10.1016/j.psj.2023.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023] Open
Abstract
The gut microbiota is known to have significant involvement in the regulation of lipogenesis and adipogenesis, yet the mechanisms responsible for this relationship remain poorly understood. The current study aims to provide insight into the potential mechanisms by which the gut microbiota modulates lipogenesis in chickens. Using chickens fed with a normal-fat diet (NFD, n = 5) and high-fat diet (HFD, n = 5), we analyzed the correlation between gut microbiota, cecal metabolomics, and lipogenesis by 16s rRNA sequencing, miRNA and mRNA sequencing as well as targeted metabolomics analysis. The potential metabolite/miRNA/mRNA axis regulated by gut microbiota was identified using chickens treated with antibiotics (ABX, n = 5). The possible mechanism of gut microbiota regulating chicken lipogenesis was confirmed by fecal microbiota transplantation (FMT) from chickens fed with NFD to chickens fed with HFD (n = 5). The results showed that HFD significantly altered gut microbiota composition and enhanced chicken lipogenesis, with a significant correlation between 3. Furthermore, HFD significantly altered the hepatic miRNA expression profiles and reduced the abundance of hepatic butyric acid. Procrustes analysis indicated that the HFD-induced dysbiosis of the gut microbiota might affect the expression profiles of hepatic miRNA. Specifically, HFD-induced gut microbiota dysbiosis may reduce the abundance of butyric acid and downregulate the expression of miR-204 in the liver. Multiomics analysis identified ACSS2 as a target gene of miR-204. Gut microbiota depletion by an antibiotic cocktail (ABX) showed a gut microbiota-dependent manner in the abundance of butyric acid and the expression of miR-204/ACSS2, which have been observed to be significantly correlated. Fecal microbiota transplantation from NFD chickens into HFD chickens effectively attenuated the HFD-induced excessive lipogenesis, elevated the abundance of butyric acid and the relative expression of miR-204, and reduced the expression of ACSS2 in the liver. Mechanistically, our results showed that the gut microbiota plays an antiobesity role by regulating the butyric acid/miR-204/ACSS2 axis in chickens. This work contributed to a better understanding of the functions of gut microbiota in regulating chicken lipogenesis.
Collapse
Affiliation(s)
- Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Weilin Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hao Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
26
|
Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-Coding RNAs and Adipogenesis. Int J Mol Sci 2023; 24:9978. [PMID: 37373126 PMCID: PMC10298535 DOI: 10.3390/ijms24129978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.
Collapse
Affiliation(s)
- Wenxiu Ru
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| |
Collapse
|
27
|
Gong Y, Lin Z, Wang Y, Liu Y. Research progress of non-coding RNAs regulation on intramuscular adipocytes in domestic animals. Gene 2023; 860:147226. [PMID: 36736503 DOI: 10.1016/j.gene.2023.147226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Intramuscular fat (IMF) is the main determinant of the economic value of domestic animal meat, and has a vital impact on the sensory quality characteristics, while the content of IMF is mainly determined by the size and number of intramuscular adipocytes. In recent years, due to the development of sequencing technology and omics technology, a large number of non-coding RNAs have been identified in intramuscular adipocytes. Non-coding RNAs are a kind of RNA regulatory factors with biological functions but without translation function, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These non-coding RNAs regulate the key genes of intramuscular adipocyte growth and development at post-transcriptional level through a variety of regulatory mechanisms, and affect the number and size of intramuscular adipocytes, thus affecting the content of IMF. Here, the review summarizes the candidate non-coding RNAs (miRNAs, lncRNAs, circRNAs) and genes involved in the regulation of intramuscular adipocytes, the related regulation mechanism and signaling pathways, in order to provide reference for further clarifying the molecular regulation mechanism of non-coding RNAs on intramuscular adipocytes in domestic animals.
Collapse
Affiliation(s)
- Yanrong Gong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
28
|
Chen R, Liao K, Liao H, Zhang L, Zhao H, Sun J. Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken. Anim Biosci 2023; 36:175-190. [PMID: 35073667 PMCID: PMC9834732 DOI: 10.5713/ab.21.0440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. METHODS Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. RESULTS lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). CONCLUSION This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.
Collapse
Affiliation(s)
- Ruonan Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000,
China
| | - Kai Liao
- College of Pharmacy, Shihezi University, Shihezi, 832000,
China
| | - Herong Liao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000,
China
| | - Li Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000,
China
| | - Haixuan Zhao
- College of Medical, Shihezi University, Shihezi, 832000,
China
| | - Jie Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000,
China,Corresponding Author: Jie Sun, Tel: +86-135-7974-2370, E-mail:
| |
Collapse
|
29
|
Yu S, Wang G, Liao J, Shen X, Chen J, Chen X. Co-expression analysis of long non-coding RNAs and mRNAs involved in intramuscular fat deposition in Muchuan black-bone chicken. Br Poult Sci 2023. [PMID: 36622203 DOI: 10.1080/00071668.2022.2162370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The intramuscular fat (IMF) content in meat products is positively correlated with meat quality, making it an important consumer trait. Long non-coding RNAs (lncRNAs) play central roles in regulating various biological processes, but little is currently known about the mechanisms by which they regulate IMF deposition in chickens. This study sampled the breast muscles of chickens with high (H) and low (L) IMF content and constructed six small RNA libraries. High-throughput sequencing technology was used to profile the breast muscle transcriptome (lncRNA and mRNA) and to identify the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) between the H and L groups. In total, 263 DELs (118 up-regulated and 145 down-regulated lncRNAs) and 443 DEGs (203 up-regulated and 240 down-regulated genes) were identified between the two groups. To analyse the DELs-DEGs interaction network, co-expression analysis was conducted to identify lncRNA-mRNA pairs. In total, 19,270 lncRNA/mRNA pairs were identified, including 16,398 significant correlation pairs that presented as positive and 2872 pairs that presented as negative. The lncRNA-mRNA network comprised 263 lncRNA nodes and 440 mRNA nodes. Pathway analysis, using the Kyoto Encyclopedia of Genes and Genomes, indicated that pathways associated with fat deposition and lipid metabolism such as the MAPK, PPAR, GnRH, ErbB and calcium signalling pathways, fatty acid elongation and fatty acid metabolism. Overall, the study identified potential candidate lncRNAs, genes and regulatory networks associated with chicken IMF deposition. These findings provide new insights to help clarify the regulatory mechanisms of IMF deposition in chickens which can be used to improve the IMF content in poultry.
Collapse
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xuemei Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Jia Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xianxin Chen
- Leshan Academy of Agricultural Sciences, Leshan, China
| |
Collapse
|
30
|
Li Y, He C, Ran L, Wang Y, Xiong Y, Wang Y, Zhu J, Lin Y. miR-130b duplex (miR-130b-3p/miR-130b-5p) negatively regulates goat intramuscular preadipocyte lipid droplets accumulation by inhibiting Krüppel-like factor 3 expression. J Anim Sci 2023; 101:skad184. [PMID: 37279650 PMCID: PMC10276645 DOI: 10.1093/jas/skad184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Intramuscular lipid deposition is important for meat quality improvement. microRNAs and their target mRNAs provide a new approach for studying the mechanism of fat deposition. The present study aimed to investigate the effect of miR-130b duplex (miR-130b-5p, miR-130b-3p) and its target gene KLF3 in regulating goat intramuscular adipocyte differentiation. Goat intramuscular preadipocytes were isolated from 7-d-old male Jianzhou big-ear goats and identified by Oil red O staining after differentiation induction. miR-130b-5p and miR-130b-3p mimics or inhibitors and their corresponding controls were transfected into goat intramuscular preadipocytes, respectively, and differentiation was induced by 50μM oleic acid for 48 h. Oil red O and Bodipy staining indicated that both miR-130b-5p and miR-130b-3p can reduce lipid droplets accumulation and triglyceride (TG) content (P < 0.01). Differentiation markers C/EBPα, C/EBPβ, PPARγ, pref1, fatty acids synthesis markers ACC, FASN, DGAT1, DGAT2, AGPAT6, TIP47, GPAM, ADRP, AP2, SREBP1, and TG markers LPL, ATGL, HSL were assessed by qPCR. All the markers measured were downregulated by miR-130b-5p and miR-130b-3p analog (P < 0.01), suggesting that miR-130b inhibits goat intramuscular adipocyte adipogenic differentiation, fatty acids synthesis, and lipid lipolysis. To examine the mechanism of miR-130b duplex inhibition of lipid deposition, TargetScan, miRDB, and starBase were used to predict the potential targets, KLF3 was found to be the only one intersection. Furthermore, the 3'UTR of KLF3 was cloned, qPCR analysis and dual luciferase activity assay showed that both miR-130b-5p and miR-130b-3p could directly regulate KLF3 expression (P < 0.01). In addition, overexpression and interference of KLF3 were conducted, it was found that KLF3 positively regulated lipid droplets accumulation by Oil red O, Bodipy staining, and TG content detection (P < 0.01). Quantitative PCR result indicated that KLF3 overexpression promoted lipid droplets accumulation relative genes C/EBPβ, PPARγ, pref1, ACC, FASN, DGAT1, DGAT2, AGPAT6, TIP47, GPAM, ADRP, SREBP1, LPL, and ATGL expression (P < 0.01). Downregulation of KLF3 inhibited the expression of genes such as C/EBPα, C/EBPβ, PPARγ, pref1, TIP47, GPAM, ADRP, AP2, LPL, and ATGL expression (P < 0.01). Taken together, these results indicate that miR-130b duplex could directly inhibit KLF3 expression, then attenuated adipogenic and TG synthesis genes expression, thus leading to its anti-adipogenic effect.
Collapse
Affiliation(s)
- Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Li Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
31
|
Ren T, Lin W, Yang X, Zhang Z, He S, Li W, Li Z, Zhang X. QPCTL Affects the Daily Weight Gain of the F2 Population and Regulates Myogenic Cell Proliferation and Differentiation in Chickens. Animals (Basel) 2022; 12:ani12243535. [PMID: 36552455 PMCID: PMC9774964 DOI: 10.3390/ani12243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Molecular breeding can accelerate the process of animal breeding and improve the breeding efficiency. To date, many Indel molecular markers have been identified in livestock and poultry, but how Indels affect economic traits is not well understood. For molecular breeding, it is crucial to reveal the mechanism of action of Indels and to provide more accurate information. The purpose of this study was to investigate how the 52/224-bp multiallelic Indels of the chicken QPCTL promoter area affect the daily weight gain of chickens and the potential regulatory mechanism of the QPCTL gene. The analysis was conducted by association analysis, qPCR, dual-fluorescence assay and Western blotting. The results showed that Indels in the QPCTL promoter region were significantly associated with the daily weight gain in chickens and that QPCTL expression showed a decreasing trend in embryonic breast muscle tissues. Furthermore, QPCTL expression was significantly higher in breast muscle tissues of the AC genotype than in those of the AB and BB genotypes. Based on the transcriptional activity results, the pGL3-C vector produced more luciferase activity than pGL3-A and pGL3-B. In addition, overexpression of QPCTL promoted chicken primary myoblast (CPM) proliferation and inhibited differentiation. The results of this study suggest that Indels in the promoter region of the QPCTL gene may regulate the proliferation and differentiation of CPMs by affecting the expression of QPCTL, which ultimately affects the growth rate of chickens. These Indels have important value for the molecular breeding of chickens, and QPCTL can be used as a candidate gene to regulate and improve chicken growth and development.
Collapse
Affiliation(s)
- Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiuxian Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shizi He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence: (Z.L.); (X.Z.)
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (Z.L.); (X.Z.)
| |
Collapse
|
32
|
Jiang Y, Liu J, Liu H, Zhang W, Li X, Liu L, Zhou M, Wang J, Su S, Ding X, Wang C. miR-381-3p Inhibits Intramuscular Fat Deposition through Targeting FABP3 by ceRNA Regulatory Network. BIOLOGY 2022; 11:biology11101497. [PMID: 36290402 PMCID: PMC9598794 DOI: 10.3390/biology11101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Intramuscular fat (IMF) deposition is an important determinant of pork quality and a complex process facilitated by non-coding ceRNAs. In this study, 52 Berkshire × Anqing Sixwhite crossbred pigs were slaughtered to measure eight carcass and pork quality traits. Whole-transcriptome sequencing analysis was performed using longissimus dorsi samples of six low- and high-IMF samples; 34 ceRNA networks, based on 881, 394, 158 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, were constructed. Following weighted gene co-expression network analysis between the low and high IMF, only one ceRNA, lncRNA4789/miR-381-3p/FABP3, that showed similar DE trend in longissimus dorsi tissue was retained. Dual-luciferase reporter assays further indicated that FABP3 was a direct, functional target of miR-381-3p, where miR-381-3p overexpression inhibited the mRNA and protein expression of FABP3. In addition, overexpressed lncRNA4789 attenuated the effect of miR-381-3p on FABP3 by sponging miR-381-3p. Cell function verification experiment demonstrated that miR-381-3p suppressed IMF deposition by inhibiting preadipocyte cell differentiation and lipid droplet deposition via the suppression of FABP3 expression in the peroxisome proliferator-activated receptor signalling pathway, whereas lncRNA4789 rescued FABP3 expression by sponging miR-381-3p. Our study may aid in identifying novel molecular markers for its optimization in IMF which is of importance in breeding for improving pork quality.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- National Animal Husbandry Service, Beijing 100125, China
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
33
|
Resveratrol Inhibits Proliferation and Differentiation of Porcine Preadipocytes by a Novel LincRNA-ROFM/miR-133b/AdipoQ Pathway. Foods 2022; 11:foods11172690. [PMID: 36076875 PMCID: PMC9455634 DOI: 10.3390/foods11172690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Resveratrol (RES) has a wide range of biological and pharmacological activities with various health benefits for humans as a food additive. In animal production, RES has been considered a potential functional feed additive for producing high-quality pork. Long noncoding RNAs (lncRNAs) have emerged as essential regulators of fat metabolism, and phytochemicals can regulate fat metabolism through lncRNA. However, it is unclear whether RES can improve back-fat thickness by regulating lncRNA. In this study, we identified a novel lncRNA, which was named a long intergenic non-protein coding RNA, a regulator of fat metabolism (LincRNA-ROFM), from our previous lncRNA sequencing data. LincRNA-ROFM can inhibit adipocyte proliferation and differentiation. In-depth analyses showed that LincRNA-ROFM acts as a molecular sponge for miR-133b, and adiponectin (AdipoQ) is a direct target of miR-133b in porcine preadipocytes. In addition, the expression of LincRNA-ROFM was positively correlated with AdipoQ. RES can promote the expression of LincRNA-ROFM by PPARα and C/EBPα. Altogether, our research showed that LincRNA-ROFM acts as a ceRNA to sequester miR-133b and is upregulated by RES, leading to heightened AdipoQ expression, and thus decreased adipocyte proliferation and differentiation, which reduces back-fat thickness of pigs. Taken together, the RES/LincRNA-ROFM/miR-133b/AdipoQ regulatory network preliminarily explains the mechanism of action of RES in inhibiting fat deposition, which provides new insight into the downstream mechanism of RES inhibition of fat deposits by regulating the lncRNA.
Collapse
|
34
|
Sun Y, Lin X, Zhang Q, Pang Y, Zhang X, Zhao X, Liu D, Yang X. Genome-wide characterization of lncRNAs and mRNAs in muscles with differential intramuscular fat contents. Front Vet Sci 2022; 9:982258. [PMID: 36003408 PMCID: PMC9393339 DOI: 10.3389/fvets.2022.982258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Meat quality is one of the most important traits in pig production. Long non-coding RNAs (lncRNAs) have been involved in diverse biological processes such as muscle development through regulating gene expression. However, studies on lncRNAs lag behind and a comparatively small number of lncRNAs have been identified in pigs. Also, the effects of lncRNAs on meat quality remain to be characterized. Here, we analyzed lncRNAs in longissimus thoracis (LT) and semitendinosus (ST) muscles, being different in meat quality, with RNA-sequencing technology. A total of 500 differentially expressed lncRNAs (DELs) and 2,094 protein-coding genes (DEGs) were identified. Through KEGG analysis on DELs, we first made clear that fat deposition might be the main reason resulting in the differential phenotype of LT and ST, for which cGMP–PKG and VEGF signaling pathways were the most important ones. In total, forty-one key DELs and 50 DEGs involved in the differential fat deposition were then characterized. One of the key genes, cAMP-response element binding protein 1, was selected to confirm its role in porcine adipogenesis with molecular biology methods and found that it promotes the differentiation of porcine preadipocytes, consistent with its higher expression level and intramuscular fat contents in LT than that in ST muscle. Furthermore, through integrated analysis of DELs and DEGs, transcription factors important for differential fat deposition were characterized among which BCL6 has the most target DEGs while MEF2A was targeted by the most DELs. The results provide candidate genes crucial for meat quality, which will contribute to improving meat quality with molecular-breeding strategies.
Collapse
Affiliation(s)
- Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xuelian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Di Liu
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiuqin Yang
| |
Collapse
|
35
|
Comprehensive Analysis of Differentially Expressed mRNAs, lncRNAs and circRNAs Related to Intramuscular Fat Deposition in Laiwu Pigs. Genes (Basel) 2022; 13:genes13081349. [PMID: 36011260 PMCID: PMC9407282 DOI: 10.3390/genes13081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are important classes of small noncoding RNAs that can regulate numerous biological processes. To understand the role of message RNA (mRNAs, lncRNAs and circRNAs) in the regulation of intramuscular fat (IMF) deposition, in this study the expression profiles of longissimus dorsi (LD) muscle from six Laiwu pigs (three with extremely high and three with extremely low IMF content) were sequenced based on rRNA-depleted library construction. In total, 323 differentially expressed protein-coding genes (DEGs), 180 lncRNAs (DELs) and 105 circRNAs (DECs) were detected between the high IMF and low IMF groups. Functional analysis indicated that most DEGs, and some target genes of DELs, were enriched into GO terms and pathways related to adipogenesis, suggesting their important roles in regulating IMF deposition. In addition, 12 DELs were observed to exhibit a positive relationship with stearoyl-CoA desaturase (SCD), phosphoenolpyruvate carboxykinase 1 (PCK1), and adiponectin (ADIPOQ), suggesting they are highly likely to be the target genes of DELs. Finally, we constructed a source gene-circRNA-miRNA connective network, and some of miRNA of the network have been reported to affect lipid metabolism or adipogenesis. Overall, this work provides a valuable resource for further research and helps to understand the potential functions of lncRNAs and circRNAs in IMF deposition.
Collapse
|
36
|
Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes (Basel) 2022; 13:genes13061033. [PMID: 35741795 PMCID: PMC9222894 DOI: 10.3390/genes13061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens.
Collapse
|
37
|
Roohaninasab M, Yavari SF, Babazadeh M, Hagh RA, Pazoki M, Amrovani M. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 2022; 22:603-619. [PMID: 35507254 DOI: 10.1007/s12012-022-09742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences, Sattarkhan St, Tehran, 1445613131, Iran
| | - Shadnaz Fakhteh Yavari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Motahareh Babazadeh
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
38
|
Huang CJ, Choo KB, Chen CF. The MicroRNA-Signaling-Peroxisome Proliferator-Activated Receptor Gamma Connection in the Modulation of Adipogenesis: Bioinformatics Projection on Chicken. Poult Sci 2022; 101:101950. [PMID: 35689996 PMCID: PMC9192975 DOI: 10.1016/j.psj.2022.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 10/29/2022] Open
|
39
|
Bao G, Li S, Zhao F, Wang J, Liu X, Hu J, Shi B, Wen Y, Zhao L, Luo Y. Comprehensive Transcriptome Analysis Reveals the Role of lncRNA in Fatty Acid Metabolism in the Longissimus Thoracis Muscle of Tibetan Sheep at Different Ages. Front Nutr 2022; 9:847077. [PMID: 35369085 PMCID: PMC8964427 DOI: 10.3389/fnut.2022.847077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays an important regulatory role in mammalian adipogenesis and lipid metabolism. However, their function in the longissimus thoracis (LT) muscle of fatty acid metabolism of Tibetan sheep remains undefined. In this study, fatty acid and fat content in LT muscle of Tibetan sheep were determined, and RNA sequencing was performed to reveal the temporal regularity of lncRNA expression and the effect of lncRNA-miRNA-mRNA ceRNA regulatory network on lipid metabolism of LT muscle in Tibetan sheep at four growth stages (4-month-old, 4 m; 1.5-year-old, 1.5 y; 3.5-year-old, 3.5 y; 6-year-old, 6 y). The results indicated that the intramuscular fat (IMF) content was highest at 1.5 y. Moreover, the monounsaturated fatty acid (MUFA) content in 1.5 y of Tibetan sheep is significantly higher than those of the other groups (P < 0.05), and it was also rich in a variety of polyunsaturated fatty acids (PUFA). A total of 360 differentially expressed lncRNAs (DE lncRNAs) were identified from contiguous period transcriptome comparative groups of 4 m vs. 1.5 y, 1.5 y vs. 3.5 y, 3.5 y vs. 6 y, and 4 m vs. 6 y, respectively. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis found that the target genes in lncRNA trans-mRNA were significantly related to the protein digestion, absorption, and fatty acid biosynthesis pathways (P < 0.05), which demonstrated that DE lncRNA trans-regulated the target genes, and further regulated the growth and development of the LT muscle and intramuscular fatty acid metabolism in Tibetan sheep. We further analyzed the role of the lncRNA-miRNA-mRNA regulatory network in the lipid metabolism of Tibetan sheep. Additionally, GPD2, LIPE (lipase E hormone-sensitive enzyme), TFDP2, CPT1A, ACACB, ADIPOQ, and other mRNA related to fatty acid and lipid metabolism and the corresponding lncRNA-miRNA regulatory pairs were identified. The enrichment analysis of mRNA in the regulatory network found that the AMPK signaling pathway was the most significantly enriched (P = 0.0000112361). Comprehensive transcriptome analysis found that the LIPE, ADIPOQ, ACACB, and CPT1A that were regulated by lncRNA might change the formation of energy metabolism in Tibetan sheep muscle through the AMPK signaling pathway, and oxidized muscle fibers are transformed into glycolytic muscle fibers, reduced IMF content, and the fatty acid profile also changed.
Collapse
Affiliation(s)
- Gaoliang Bao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuliang Wen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
40
|
Gao H, Dong H, Zheng J, Jiang X, Gong M, Hu L, He J, Wang Y. LINC01119 negatively regulates osteogenic differentiation of mesenchymal stem cells via the Wnt pathway by targeting FZD4. Stem Cell Res Ther 2022; 13:43. [PMID: 35093173 PMCID: PMC8800246 DOI: 10.1186/s13287-022-02726-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Mesenchymal stem cells (MSCs) can differentiate into diverse cell types under specific conditions. Dysfunction in the osteogenic differentiation of MSCs can result in bone metabolism-related diseases, including osteoporosis. Accumulating evidence has revealed that long non-coding RNA (lncRNAs) play critical regulatory roles during MSC differentiation.
Methods
In the present study, we identified an evolutionarily conserved lncRNA expressed during the osteogenic differentiation of MSCs, which we termed LINC01119. We first identified LINC01119 as a negative regulator of the osteogenic differentiation of MSCs.
Results
LINC01119 knockdown markedly induced calcium deposition in bone marrow MSCs and promoted the osteogenic differentiation of MSCs. More importantly, we demonstrated the underlying molecular basis through which LINC01119 regulates osteogenesis via the Wnt pathway by targeting FZD4. Furthermore, we observed that transcription factor EBF3 could directly bind the promoter site of LINC01119.
Conclusions
We first explored the molecular regulatory mechanism of LINC01119 during the osteogenic differentiation of MSCs and revealed that LINC01119 negatively regulates osteogenesis through the Wnt pathway by targeting FZD4.
Collapse
|
41
|
Zhai B, Zhao Y, Fan S, Yuan P, Li H, Li S, Li Y, Zhang Y, Huang H, Li H, Kang X, Li G. Differentially Expressed lncRNAs Related to the Development of Abdominal Fat in Gushi Chickens and Their Interaction Regulatory Network. Front Genet 2022; 12:802857. [PMID: 35003230 PMCID: PMC8740130 DOI: 10.3389/fgene.2021.802857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Chickens are one of the most important sources of meat worldwide, and the growth status of abdominal fat is closely related to production efficiency. Long noncoding RNAs (lncRNAs) play an important role in lipid metabolism and deposition regulation. However, research on the expression profile of lncRNAs related to the development of abdominal fat in chickens after hatching and their interaction regulatory networks is still lacking. To characterize the lncRNA expression profile during the development of chicken abdominal fat, abdominal adipose tissues from 6-, 14-, 22-, and 30-week-old Chinese Gushi chickens were herein used to construct 12 cDNA libraries, and a total of 3,827 new lncRNAs and 5,466 previously annotated lncRNAs were revealed. At the same time, based on the comparative analysis of five combinations, 276 differentially expressed lncRNAs (DE-lncRNAs) were screened. Functional enrichment analysis showed that the predicted target genes of these DE-lncRNAs were significantly enriched in pathways related to the posttranscriptional regulation of gene expression, negative regulation of cell proliferation, cell adhesion and other biological processes, glycosphingolipid biosynthesis, PPAR signaling, fatty acid degradation, fatty acid synthesis and others. In addition, association analysis of the lncRNA transcriptome profile was performed, and DE-lncRNA-related lncRNA-mRNA, lncRNA-miRNA and lncRNA-miRNA-mRNA interaction regulatory networks were constructed. The results showed that DE-lncRNA formed a complex network with PPAR pathway components, including PPARD, ACOX1, ADIPOQ, CPT1A, FABP5, ASBG2, LPL, PLIN2 and related miRNAs, including mir-200b-3p, mir-130b-3p, mir-215-5p, mir-122-5p, mir-223 and mir-125b-5p, and played an important regulatory role in biological processes such as lipid metabolism, adipocyte proliferation and differentiation. This study described the dynamic expression profile of lncRNAs in the abdominal fat of Gushi chickens for the first time and constructed the DE-lncRNA interaction regulatory network. The results expand the number of known lncRNAs in chicken abdominal fat and provide valuable resources for further elucidating the posttranscriptional regulatory mechanism of chicken abdominal fat development or deposition.
Collapse
Affiliation(s)
- Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| |
Collapse
|
42
|
Wu Q, Yang H, Tai R, Li C, Xia T, Liu Y, Sun C. Lnc-hipk1 inhibits mouse adipocyte apoptosis as a sponge of miR-497. Biofactors 2022; 48:135-147. [PMID: 34856026 DOI: 10.1002/biof.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 11/06/2022]
Abstract
Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long noncoding RNAs (lncRNA), and circular RNAs are closely related to the biological processes related to obesity. As a miRNA that widely present in different cell types, miR497 is proved to be involved in cell development. However, research on the role of miR-497 as a key factor in regulating the development of adipocytes is still in gap. The role of miR-497 in the apoptosis and proliferation of mouse-derived adipocytes was detected by RNA-seq analysis, RT-qPCR, Western blot, immunofluorescence, and dual-luciferase reporter assay. Using miR-497 mimics to treat 3T3-L1 cells, we found that miR-497 targeted Bcl-2 to promote adipocyte apoptosis through the mitochondrial pathway, and this effect was consistent in the apoptosis model composed of palmitic acid (PA) and hydrogen peroxide (H2 O2 ). LncRNA homeodomain-interacting protein kinase 1 (lnc-hipk1) sponged miR-148b to weaken its silencing of Bcl-2, forming the competitive endogenous RNAs (CeRNAs) regulatory network. Furthermore, overexpression of lnc-hipk1 inhibited the apoptosis of adipocytes by targeting miR-497/Bcl-2. Co-treatment of miR-497 and lnc-hipk1 showed that lnc-hipk1 reversed the apoptosis of adipocytes caused by miR-497 overexpression. And in vivo experiments further confirmed that this effect was also achieved by the CeRNA system of lnc-hipk1/miR-497/Bcl-2. In summary, lnc-hipk1 targets miR-497/Bcl-2 to regulate adipocyte apoptosis through the mitochondrial pathway. This research enriches the research content of ncRNAs and CeRNA in adipocyte development, and provides new targets for the treatment of obesity and other metabolic syndromes.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Pathophysiology, Medical College, Qinghai University, Xining, China
| | - Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruiqing Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaowei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianyu Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongnian Liu
- Department of Pathophysiology, Medical College, Qinghai University, Xining, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
43
|
Feng H, Liu T, Yousuf S, Zhang X, Huang W, Li A, Xie L, Miao X. Identification and analysis of lncRNA, miRNA and mRNA related to subcutaneous and intramuscular fat in Laiwu pigs. Front Endocrinol (Lausanne) 2022; 13:1081460. [PMID: 36714570 PMCID: PMC9880541 DOI: 10.3389/fendo.2022.1081460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) regulate adipocyte differentiation and metabolism, However, their function on subcutaneous and intramuscular adipose tissues in pigs is unclear. Intramuscular fat (IMF) is an important indicator for evaluating meat quality. Breeds with high IMF content are often accompanied by high subcutaneous fat (SCF), which severely affects the meat rate of pigs. It is of great significance for porcine breeding to study the mechanism of lncRNA related to adipogenesis and lipid metabolism. METHODS We identified differentially expressed lncRNAs, miRNAs and mRNAs in subcutaneous and intramuscular adipose tissues in three female Laiwu pigs by deep RNA-sequencing(|log2foldchange|≥1, P_value ≤ 0.05). The gene expression profiles of IMF and SCF in Laiwu pigs were comparatively analyzed by Bioinformatics methods to identify key lncRNAs, miRNAs, and mRNAs associated with lipid metabolism and adipogenesis. RESULTS A total of 1209 lncRNAs (DElncRNAs), 286 miRNAs (DEmiRNAs), and 1597 mRNAs (DEgenes) were differentially expressed between two types of adipose. Among them, 17 DElncRNAs and 103 target genes play a role in the co-expression network, as well as 59 DElncRNAs, 44 DEmiRNAs, and 88 DEgenes involved in ceRNA network. In GO(Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of DElncRNAs their target genes involved in many adipogenesis and lipid metabolism biological processes and signaling pathways, such as PPAR signaling pathway, Wnt signaling pathway, MAPK signaling pathway. CONCLUSIONS By constructing co-expression and ceRNAs network we found that Wnt signaling pathway play a critical regulatory role in intramuscular adipogenesis and lipid accumulation in Laiwu pigs. TCONS_00006525, TCONS_00046551 and TCONS_00000528 may target WNT5A, WNT10B and FDZ3 in co-expression network, TCONS_00026517 and other lncRNAs regulate the expression of PPARG, RXRG and SCD in ceRNA network, and were involved in Wnt signaling pathway. This study provides a theoretical basis for further understanding the post-transcriptional regulation mechanism of meat quality formation, predicting and treating diseases caused by ectopic fat.
Collapse
|
44
|
Zhang T, Chen L, Ding H, Wu P, Zhang G, Pan PZ, Xie PK, Dai G, Wang J. Construction of miRNA-mRNA network in the differentiation of chicken preadipocytes. Br Poult Sci 2021; 63:298-306. [PMID: 34738495 DOI: 10.1080/00071668.2021.2000585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. MicroRNAs (miRNAs) play key roles in regulating lipid metabolism, adipogenesis and fat deposition in chicken. To date, there are only a few miRNAs that had been confirmed to be involved in chicken adipogenesis. The detailed mechanisms by which miRNAs regulate chicken adipogenesis remain largely unknown. 2. To identify candidate miRNAs involved in chicken preadipocyte differentiation and explore potential mechanisms behind their functions, the following study analysed and identified miRNA and mRNA expression levels in undifferentiated and differentiated preadipocytes. Hub miRNA-mRNA interactions were identified, and the degree of connectivity of DE miRNAs in the network was established. 3. A total of 145 DE miRNAs and 660 DE mRNAs were identified between undifferentiated and differentiated preadipocytes. An miRNA-mRNA network was constructed, including 29 DE miRNAs and 155 DE mRNAs, forming 470 miRNA-mRNA interactions. Functional enrichment analysis showed that DE mRNAs in the network were significantly enriched in 712 biological processes and 13 KEGG pathways. Based on the connectivity degree, five DE miRNAs with higher degrees miR-195-x, gga-miR-200a-3p, gga-miR-135a-5p, novel-m0067-5p and novel-m0270-5p were identified as hub miRNAs. Fifty-eight DE mRNAs interacted with these five hub miRNAs and formed 70 miRNA-mRNA interactions. 4. This study constructed a miRNA-mRNA network associated with chicken preadipocyte differentiation and identified five hub miRNAs in the network. The findings identified the number of chicken adipogenic miRNAs and laid the foundation for elucidating the miRNA-mediated regulatory mechanism in chicken adipogenesis.
Collapse
Affiliation(s)
- Tao Zhang
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China.,Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009 China
| | - Lan Chen
- Yangzhou University, College of Veterinary Medicine, Yangzhou, China
| | - Hao Ding
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Pengfei Wu
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Genxi Zhang
- 88 Daxue South Road, Yangzhou City, Jiangsu Province, Yangzhou, 225009 China
| | - Professor Zhiming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, 225009 China
| | - Professor Kaizhou Xie
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Guojun Dai
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Jinyu Wang
- College of animal Science & Technology, Department of Animal Genetics, Breeding & Reproduction, Yangzhou, China
| |
Collapse
|
45
|
Yi X, He Z, Tian T, Kou Z, Pang W. LncIMF2 promotes adipogenesis in porcine intramuscular preadipocyte through sponging MiR-217. Anim Biotechnol 2021; 34:268-279. [PMID: 34346296 DOI: 10.1080/10495398.2021.1956509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intramuscular fat is positively related to meat quality including tenderness, flavor, and juiciness. Long noncoding RNA (LncRNA) plays a vital role in regulating adipogenesis. However, it is largely unknown about lncRNAs associated with porcine intramuscular adipocyte adipogenesis. In the present study, we focus on a novel LncRNA, which is named lncIMF2, associated with adipogenesis by our previous RNA-sequence analysis and bioinformatics analysis. We demonstrated LncIMF2 knockdown inhibited the proliferation of porcine intramuscular adipocytes while expression of cell cycle-related genes was decreased. Besides, we found LncIMF2 knockdown inhibited expression of adipogenic differentiation marker genes including PPARγ (Peroxisome proliferator-activated reporter gamma) and ATGL (Adipose triglyceride lipase). Similarly, overexpression of LncIMF2 promotes proliferation and differentiation of porcine intramuscular preadipocytes. Moreover, we proved that IncIMF2 acts as a molecular sponge for MicroRNA-217 (miR-217), which has been found associated with adipogenesis, thereby affecting the expression of the miR-217 target gene. Collectively, our findings will contribute to a deeper understanding of the role of LncRNA in pig IMF deposition for the improvement of meat quality.
Collapse
Affiliation(s)
- XuDong Yi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - ZhaoZhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - TingTing Tian
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - ZhongYun Kou
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - WeiJun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| |
Collapse
|
46
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
47
|
Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. Identification and functional prediction of long noncoding RNAs related to intramuscular fat content in Laiwu pigs. Anim Biosci 2021; 35:115-125. [PMID: 34289582 PMCID: PMC8738936 DOI: 10.5713/ab.21.0092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Intramuscular fat (IMF) is a critical economic indicator of pork quality. Studies on IMF among different pig breeds have been performed via high-throughput sequencing, but comparisons within the same pig breed remain unreported. Methods This study was performed to explore the gene profile and identify candidate long noncoding RNA (lncRNAs) and mRNAs associated with IMF deposition among Laiwu pigs with different IMF contents. Based on the longissimus dorsi muscle IMF content, eight pigs from the same breed and management were selected and divided into two groups: a high IMF (>12%, H) and low IMF group (<5%, L). Whole-transcriptome sequencing was performed to explore the differentially expressed (DE) genes between these two groups. Results The IMF content varied greatly among Laiwu pig individuals (2.17% to 13.93%). Seventeen DE lncRNAs (11 upregulated and 6 downregulated) and 180 mRNAs (112 upregulated and 68 downregulated) were found. Gene Ontology analysis indicated that the following biological processes played an important role in IMF deposition: fatty acid and lipid biosynthetic processes; the extracellular signal-regulated kinase cascade; and white fat cell differentiation. In addition, the peroxisome proliferator-activated receptor, phosphatidylinositol-3-kinase-protein kinase B, and mammalian target of rapamycin pathways were enriched in the pathway analysis. Intersection analysis of the target genes of DE lncRNAs and mRNAs revealed seven candidate genes associated with IMF accumulation. Five DE lncRNAs and 20 DE mRNAs based on the pig quantitative trait locus database were identified and shown to be related to fat deposition. The expression of five DE lncRNAs and mRNAs was verified by quantitative real time polymerase chain reaction (qRT-PCR). The results of qRT-PCR and RNA-sequencing were consistent. Conclusion These results demonstrated that the different IMF contents among pig individuals may be due to the DE lncRNAs and mRNAs associated with lipid droplets and fat deposition.
Collapse
Affiliation(s)
- Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| |
Collapse
|
48
|
Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. The role of long noncoding RNAs in livestock adipose tissue deposition - A review. Anim Biosci 2021; 34:1089-1099. [PMID: 33902176 PMCID: PMC8255878 DOI: 10.5713/ab.21.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
With the development of sequencing technology, numerous, long noncoding RNAs (lncRNAs) have been discovered and annotated. Increasing evidence has shown that lncRNAs play an essential role in regulating many biological and pathological processes, especially in cancer. However, there have been few studies on the roles of lncRNAs in livestock production. In animal products, meat quality and lean percentage are vital economic traits closely related to adipose tissue deposition. However, adipose tissue accumulation is also a pivotal contributor to obesity, diabetes, atherosclerosis, and many other diseases, as demonstrated by human studies. In livestock production, the mechanism by which lncRNAs regulate adipose tissue deposition is still unclear. In addition, the phenomenon that different animal species have different adipose tissue accumulation abilities is not well understood. In this review, we summarize the characteristics of lncRNAs and their four functional archetypes and review the current knowledge about lncRNA functions in adipose tissue deposition in livestock species. This review could provide theoretical significance to explore the functional mechanisms of lncRNAs in adipose tissue accumulation in animals.
Collapse
Affiliation(s)
- Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
49
|
Lei Z, Wu H, Xiong Y, Wei D, Wang X, Luoreng Z, Cai X, Ma Y. ncRNAs regulate bovine adipose tissue deposition. Mol Cell Biochem 2021; 476:2837-2845. [PMID: 33730298 DOI: 10.1007/s11010-021-04132-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
Lipid metabolism, which encompasses synthesis and degradation of lipids, is critical for a wide range of cellular functions, including structural and morphological properties of organelles, energy storage, signalling, and the stability and function of membrane proteins. Adipose tissue is a dynamic tissue type that performs a lot of significant physiological functions, including secretion, and is involved in maintaining homeostasis and in regulatory roles of other tissues based on paracrine or endocrine. More recently, several classes of non-coding RNAs (ncRNAs), such as long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA), have been discovered in adipocytes, and they act as critical regulators of gene expression in adipogenesis and regulate adipogenesis through multiple pathways. In the present paper, we discussed several classes of non-coding RNAs and summarized the latest research on the regulatory role of ncRNAs in bovine adipogenesis. We gave examples for known modes of action to look forward to providing reference information future scientific research in cattle breeding.
Collapse
Affiliation(s)
- Zhaoxiong Lei
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Xiaoyan Cai
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, YinChuan, China. .,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China. .,College of Life Science, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
50
|
Han F, Li J, Zhao R, Liu L, Li L, Li Q, He J, Liu N. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep. BMC Genomics 2021; 22:98. [PMID: 33526009 PMCID: PMC7852088 DOI: 10.1186/s12864-021-07385-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). RESULTS We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. CONCLUSIONS Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- Qufu Animal Husbandry and Veterinary Technical Service Center, Qufu, 273100, China
| | - Ranran Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Lanlan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qian Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|