1
|
Zhang C, Xu M, Yang M, Liao A, Lv P, Liu X, Chen Y, Liu H, He Z. Efficient generation of cloned cats with altered coat colour by editing of the KIT gene. Theriogenology 2024; 222:54-65. [PMID: 38621344 DOI: 10.1016/j.theriogenology.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
Coat colour largely determines the market demand for several cat breeds. The KIT proto-oncogene (KIT) gene is a key gene controlling melanoblast differentiation and melanogenesis. KIT mutations usually cause varied changes in coat colour in mammalian species. In this study, we used a pair of single-guide RNAs (sgRNAs) to delete exon 17 of KIT in somatic cells isolated from two different Chinese Li Hua feline foetuses. Edited cells were used as donor nuclei for somatic cell nuclear transfer (SCNT) to generate cloned embryos presenting an average cleavage rate exceeding 85%, and an average blastocyst formation rate exceeding 9.5%. 131 cloned embryos were transplanted into four surrogates, and all surrogates carried their pregnancies to term, and delivered 4.58% (6/131) alive cloned kittens, with 1.53% (2/131) being KIT-edited heterozygotes (KITD17/+). The KITD17/+ cats presented an obvious darkness reduction in the mackerel tabby coat. Immunohistochemical analysis (IHC) of skin tissues indicated impaired proliferation and differentiation of melanoblasts caused by the lack of exon17 in feline KIT. To our knowledge, this is the first report on coat colour modification of cats through gene editing. The findings could facilitate further understanding of the regulatory role of KIT on feline coat colour and provide a basis for the breeding of cats with commercially desired coat colour.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meina Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Min Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Alian Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Peiru Lv
- Henan Liosio Biotechnology Co., Ltd, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hongbo Liu
- Henan Liosio Biotechnology Co., Ltd, PR China.
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Guo P, Chen J, Luo L, Zhang X, Li X, Huang Y, Wu Z, Tian Y. Identification of Differentially Expressed Genes and microRNAs in the Gray and White Feather Follicles of Shitou Geese. Animals (Basel) 2024; 14:1508. [PMID: 38791725 PMCID: PMC11117251 DOI: 10.3390/ani14101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The Shitou goose, a highly recognized indigenous breed with gray plumage originating from Chaozhou Raoping in Guangdong Province, China, is renowned for being the largest goose species in the country. Notably, during the pure breeding process of Shitou geese, approximately 2% of the offspring in each generation unexpectedly exhibited white plumage. To better understand the mechanisms underlying white plumage color formation in Shitou geese, we conducted a comparative transcriptome analysis between white and gray feather follicles, aiming to identify key genes and microRNAs that potentially regulate white plumage coloration in this unique goose breed. Our results revealed a number of pigmentation genes, encompassing TYR, TYRP1, EDNRB2, MLANA, SOX10, SLC45A2, GPR143, TRPM1, OCA2, ASIP, KIT, and SLC24A5, which were significantly down-regulated in the white feather follicles of Shitou geese. Among these genes, EDNRB2 and KIT emerged as the most promising candidate genes for white plumage coloration in Shitou geese. Additionally, our analysis also uncovered 46 differentially expressed miRNAs. Of these, miR-144-y may play crucial roles in the regulation of feather pigmentation. Furthermore, the expression of novel-m0086-5p, miR-489-y, miR-223-x, miR-7565-z, and miR-3535-z exhibits a significant negative correlation with the expression of pigmentation genes including TYRP1, EDNRB2, MLANA, SOX10, TRPM1, and KIT, suggesting these miRNAs may indirectly regulate the expression of these genes, thereby influencing feather color. Our findings provide valuable insights into the genetic mechanisms underlying white plumage coloration in Shitou geese and contribute to the broader understanding of avian genetics and coloration research.
Collapse
Affiliation(s)
- Pengyun Guo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Junpeng Chen
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou 515800, China;
| | - Lei Luo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xumeng Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xiujin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Zhongping Wu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| |
Collapse
|
3
|
Zheng H, Xiong SY, Xiao SJ, Zhang ZK, Tu JM, Cui DS, Yu NB, Huang ZY, Li LY, Guo YM. Association between MC1R gene and coat color segregation in Shanxia long black pig and Lulai black pig. BMC Genom Data 2023; 24:74. [PMID: 38036989 PMCID: PMC10691012 DOI: 10.1186/s12863-023-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Coat color, as a distinct phenotypic characteristic of pigs, is often subject to preference and selection, such as in the breeding process of new breed. Shanxia long black pig was derived from an intercross between Berkshire boars and Licha black pig sows, and it was bred as a paternal strain with high-quality meat and black coat color. Although the coat color was black in the F1 generation of the intercross, it segregated in the subsequent generations. This study aims to decode the genetic basis of coat color segregation and develop a method to distinct black pigs from the spotted in Shanxia long black pig. RESULTS Only a QTL was mapped at the proximal end of chromosome 6, and MC1R gene was picked out as functional candidate gene. A total of 11 polymorphic loci were identified in MC1R gene, and only the c.67_68insCC variant was co-segregating with coat color. This locus isn't recognized by any restriction endonuclease, so it can't be genotyped by PCR-RFLP. The c.370G > A polymorphic locus was also significantly associated with coat color, and has been in tightly linkage disequilibrium with the c.67_68insCC. Furthermore, it is recognized by BspHI. Therefore, a PCR-RFLP method was set up to genotype this locus. Besides the 175 sequenced individuals, another more 1,391 pigs were genotyped with PCR-RFLP, and all of pigs with GG (one band) were black. CONCLUSION MC1R gene (c.67_68insCC) is the causative gene (mutation) for the coat color segregation, and the PCR-RFLP of c.370G > A could be used in the breeding program of Shanxia long black pig.
Collapse
Affiliation(s)
- Hao Zheng
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Shanxia Huaxi Pig Breeding Company Limited, Ganzhou, Jiangxi, 341000, China
| | - San-Ya Xiong
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Shi-Jun Xiao
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Ze-Kai Zhang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Jin-Min Tu
- Jiangxi Shanxia Huaxi Pig Breeding Company Limited, Ganzhou, Jiangxi, 341000, China
| | - Deng-Shuai Cui
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Nai-Biao Yu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Zhi-Yong Huang
- Jiangxi Shanxia Huaxi Pig Breeding Company Limited, Ganzhou, Jiangxi, 341000, China
| | - Long-Yun Li
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
- The College of Life Science, Nanchang Normal University, Nanchang, Jiangxi, 330045, China.
| | - Yuan-Mei Guo
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
| |
Collapse
|
4
|
Giovannini S, Strillacci MG, Bagnato A, Albertini E, Sarti FM. Genetic and Phenotypic Characteristics of Belted Pig Breeds: A Review. Animals (Basel) 2023; 13:3072. [PMID: 37835678 PMCID: PMC10571877 DOI: 10.3390/ani13193072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Belted pig breeds have unique, distinguishing phenotypic characteristics. This review summarises the current knowledge on pig breeds displaying a belted coat pattern. Belts of different widths and positions around the animal's trunk characterise specific pig breeds from all around the world. All the breeds included in the present paper have been searched through the FAO domestic animal diversity information system (DAD-IS), Every country was checked to identify all breeds described as having black or red piebald coat pattern variations. Advances in genomic technologies have made it possible to identify the specific genes and genetic markers associated with the belted phenotype and explore the genetic relationships between different local breeds. Thus, the origin, history, and production traits of these breeds, together with all the genomic information related to the mechanism of skin pigmentation, are discussed. By increasing our understanding of these breeds, we can appreciate the richness of our biological and cultural heritage and work to preserve the biodiversity of the world's animals.
Collapse
Affiliation(s)
- Samira Giovannini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Maria Giuseppina Strillacci
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Alessandro Bagnato
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| |
Collapse
|
5
|
Cha J, Jin D, Kim JH, Kim SC, Lim JA, Chai HH, Jung SA, Lee JH, Lee SH. Genome-wide association study revealed the genomic regions associated with skin pigmentation in an Ogye x White Leghorn F2 chicken population. Poult Sci 2023; 102:102720. [PMID: 37327746 PMCID: PMC10404675 DOI: 10.1016/j.psj.2023.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 06/18/2023] Open
Abstract
Skin color in chickens is an economically important trait that determines the first impression of a consumer toward a broiler and can ultimately affect consumer choice in the market. Therefore, identification of genomic regions associated with skin color is crucial for increasing the sales value of chickens. Although previous studies have attempted to reveal the genetic markers associated with the skin coloration in chickens, most were limited to investigations of candidate genes, such as melanin-related genes, and focused on case/control studies based on a single or small population. In this study, we performed a genome-wide association study (GWAS) on 770 F2 intercrosses produced by an experimental population of 2 chicken breeds, namely Ogye and White Leghorns, with different skin colors. The GWAS demonstrated that the L* value among the 3 skin color traits is highly heritable, and the genomic regions located on 2 chromosomes (20 and Z) were detected to harbor SNPs significantly associated with the skin color trait, accounting for most of the total genetic variance. Particular genomic regions spanning a ∼2.94 Mb region on GGA Z and a ∼3.58 Mb region on GGA 20 were significantly associated with skin color traits, and in these regions, certain candidate genes, including MTAP, FEM1C, GNAS, and EDN3, were found. Our findings could help elucidate the genetic mechanisms underlying chicken skin pigmentation. Furthermore, the candidate genes can be used to provide a valuable breeding strategy for the selection of specific chicken breeds with ideal skin coloration.
Collapse
Affiliation(s)
- Jihye Cha
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Daehyeok Jin
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang 50000, South Korea
| | - Jae-Hwan Kim
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Seung-Chang Kim
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang 50000, South Korea
| | - Jin A Lim
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Han-Ha Chai
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Seul A Jung
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Jun-Heon Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Seung-Hwan Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
6
|
Sun J, Xiao J, Jiang Y, Wang Y, Cao M, Wei J, Yu T, Ding X, Yang G. Genome-Wide Association Study on Reproductive Traits Using Imputation-Based Whole-Genome Sequence Data in Yorkshire Pigs. Genes (Basel) 2023; 14:genes14040861. [PMID: 37107619 PMCID: PMC10137786 DOI: 10.3390/genes14040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Reproductive traits have a key impact on production efficiency in the pig industry. It is necessary to identify the genetic structure of potential genes that influence reproductive traits. In this study, a genome-wide association study (GWAS) based on chip and imputed data of five reproductive traits, namely, total number born (TNB), number born alive (NBA), litter birth weight (LBW), gestation length (GL), and number of weaned (NW), was performed in Yorkshire pigs. In total, 272 of 2844 pigs with reproductive records were genotyped using KPS Porcine Breeding SNP Chips, and then chip data were imputed to sequencing data using two online software programs: the Pig Haplotype Reference Panel (PHARP v2) and Swine Imputation Server (SWIM 1.0). After quality control, we performed GWAS based on chip data and the two different imputation databases by using fixed and random model circulating probability unification (FarmCPU) models. We discovered 71 genome-wide significant SNPs and 25 potential candidate genes (e.g., SMAD4, RPS6KA2, CAMK2A, NDST1, and ADCY5). Functional enrichment analysis revealed that these genes are mainly enriched in the calcium signaling pathway, ovarian steroidogenesis, and GnRH signaling pathways. In conclusion, our results help to clarify the genetic basis of porcine reproductive traits and provide molecular markers for genomic selection in pig breeding.
Collapse
Affiliation(s)
- Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jinhong Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaxin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Minghao Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jialin Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
7
|
Zheng S, Xu P, Wu Z, Zhang H, Li D, Liu S, Liu B, Ren J, Chen H, Huang M. Genetic structure and domestication footprints of the tusk, coat color, and ear morphology in East Chinese pigs. J Genet Genomics 2022; 49:1053-1063. [PMID: 35413463 DOI: 10.1016/j.jgg.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
The domestication and artificial selection of wild boars have led to dramatic morphological and behavioral changes, especially in East Chinese (ECN) pigs. Here, we provide insights into the population structure and current genetic diversity of representative ECN pig breeds. We identify a 500-kb region containing six tooth development-relevant genes with almost completely different haplotypes between ECN pigs and Chinese wild boars or European domestic pigs. Notably, the c.195A>G missense mutation in exon 2 of AMBN may cause alterations in its protein structure associated with tusk degradation in ECN pigs. In addition, ESR1 may play an important role in the reproductive performance of ECN pigs. A major haplotype of the large lop ear-related MSRB3 gene and eight alleles in the deafness-related GRM7 gene may affect ear morphology and hearing in ECN pigs. Interestingly, we find that the two-end black (TEB) coat color in Jinhua pigs is most likely caused by EDNRB with genetic mechanisms different from other Chinese TEB pigs. This study identifies key loci that may be artificially selected in Chinese native pigs related to the tusk, coat color, and ear morphology, thus providing new insights into the genetic mechanisms of domesticated pigs.
Collapse
Affiliation(s)
- Sumei Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Xu
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China
| | - Zhongping Wu
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hui Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Desen Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaojuan Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bingbing Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Ren
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hao Chen
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China.
| | - Min Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
8
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Guo Q, Jiang Y, Wang Z, Bi Y, Chen G, Bai H, Chang G. Genome-Wide Analysis Identifies Candidate Genes Encoding Beak Color of Duck. Genes (Basel) 2022; 13:1271. [PMID: 35886054 PMCID: PMC9322730 DOI: 10.3390/genes13071271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Beak color diversity is a broadly occurring phenomenon in birds. Here, we used ducks to identify candidate genes for yellow, black, and spotted beaks. For this, an F2 population consisting of 275 ducks was genotyped using whole genome resequencing containing 12.6 M single-nucleotide polymorphisms (SNPs) and three beak colors. Genome-wide association studies (GWAS) was used to identify the candidate and potential SNPs for three beak colors in ducks (yellow, spotted, and black). The results showed that 2753 significant SNPs were associated with black beaks, 7462 with yellow, and 17 potential SNPs with spotted beaks. Based on SNP annotation, MITF, EDNRB2, members of the POU family, and the SLC superfamily were the candidate genes regulating pigmentation. Meanwhile, isoforms MITF-M and EDNRB2 were significantly different between black and yellow beaks. MITF and EDNRB2 likely play a synergistic role in the regulation of melanin synthesis, and their mutations contribute to phenotypic differences in beak melanin deposition among individuals. This study provides new insights into genetic factors that may influence the diversity of beak color.
Collapse
Affiliation(s)
- Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Yong Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Zhixiu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Yulin Bi
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Voß K, Blaj I, Tetens JL, Thaller G, Becker D. Roan coat color in livestock. Anim Genet 2022; 53:549-556. [PMID: 35811453 DOI: 10.1111/age.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Since domestication, a wide variety of phenotypes including coat color variation has developed in livestock. This variation is mostly based on selective breeding. During the beginning of selective breeding, potential negative consequences did not become immediately evident due to low frequencies of homozygous animals and have been occasionally neglected. However, numerous studies of coat color genetics have been carried out over more than a century and, meanwhile, pleiotropic effects for several coat color genes, including disorders of even lethal impact, were described. Similar coat color phenotypes can often be found across species, caused either by conserved genes or by different genes. Even in the same species, more than one gene could cause the same or similar coat color phenotype. The roan coat color in livestock species is characterized by a mixture of white and colored hair in cattle, pig, sheep, goat, alpaca, and horse. So far, the genetic background of this phenotype is not fully understood, but KIT and its ligand KITLG (MGF) are major candidate genes in livestock species. For some of these species, pleiotropic effects such as subfertility in homozygous roan cattle or homozygous embryonic lethality in certain horse breeds have been described. This review aims to point out the similarities and differences of the roan phenotype across the following livestock species: cattle, pig, sheep, goat, alpaca, and horse; and provides the current state of knowledge on genetic background and pleiotropic effects.
Collapse
Affiliation(s)
- Katharina Voß
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
| | - Iulia Blaj
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
| | - Julia L Tetens
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
11
|
Dong H, Dong Z, Wang F, Wang G, Luo X, Lei C, Chen J. Whole Genome Sequencing Provides New Insights Into the Genetic Diversity and Coat Color of Asiatic Wild Ass and Its Hybrids. Front Genet 2022; 13:818420. [PMID: 35646088 PMCID: PMC9135160 DOI: 10.3389/fgene.2022.818420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
The diversity of livestock coat color results from human positive selection and is an indispensable part of breed registration. As an important biodiversity resource, Asiatic wild ass has many special characteristics, including the most visualized feature, its yellowish-brown coat color, and excellent adaptation. To explore the genetic mechanisms of phenotypic characteristics in Asiatic wild ass and its hybrids, we resequenced the whole genome of one Mongolian Kulan (a subspecies of Asiatic wild ass) and 29 Kulan hybrids (Mongolian Kulan ♂×Xinjiang♀), and the ancestor composition indicated the true lineage of the hybrids. XP-EHH (Cross Population Extended Haplotype Homozygosity), θπ-ratio (Nucleotide Diversity Ratio), CLR (Composite Likelihood Ratio) and θπ (Nucleotide Diversity) methods were used to detect the candidate regions of positive selection in Asiatic wild ass and its hybrids. Several immune genes (DEFA1, DEFA5, DEFA7, GIMAP4, GIMAP1, IGLC1, IGLL5, GZMB and HLA) were observed by the CLR and θπ methods. XP-EHH and θπ-ratio revealed that these genes are potentially responsible for coat color (KITLG) and meat quality traits (PDE1B and MYLK2). Furthermore, the heatmap was able to show the clear difference in the haplotype of the KITLG gene between the Kulan hybrids and Asiatic wild ass group and the Guanzhong black donkey group, which is a powerful demonstration of the key role of KITLG in donkey color. Therefore, our study may provide new insights into the genetic basis of coat color, meat quality traits and immunity of Asiatic wild ass and its hybrids.
Collapse
Affiliation(s)
- Hong Dong
- College of Animal Science and Technology, SHIHEZI University, Shihezi, China
| | - Zheng Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jingbo Chen
- College of Animal Science and Technology, SHIHEZI University, Shihezi, China
- *Correspondence: Jingbo Chen,
| |
Collapse
|
12
|
Du Z, D’Alessandro E, Zheng Y, Wang M, Chen C, Wang X, Song C. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Coat Color Candidate Genes. Animals (Basel) 2022; 12:ani12080969. [PMID: 35454216 PMCID: PMC9031378 DOI: 10.3390/ani12080969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The diversity of livestock coat color results from human positive selection and represents an indispensable part of breed identity. As an important biodiversity resource, pigs have many special characteristics, including the most visualized feature, coat color, and excellent adaptation, and the coat color represents an important phenotypic characteristic of the pig breed. Exploring the genetic mechanisms of phenotypic characteristics and the melanocortin system is of considerable interest in domestic animals because their energy metabolism and pigmentation have been under strong selection. In this study, 20 genes related to coat color in mammals were selected, and the structural variations (SVs) in these genic regions were identified by sequence alignment across 17 assembled pig genomes, from representing different types of pigs (miniature, lean, and fat type). A total of 167 large structural variations (>50 bp) of coat-color genes, which overlap with retrotransposon insertions (>50 bp), were obtained and designated as putative RIPs. Finally, 42 RIPs were confirmed by PCR detection. Additionally, eleven RIP sites were further evaluated for their genotypic distributions by PCR in more individuals of eleven domesticated breeds representing different coat color groups. Differential distributions of these RIPs were observed across populations, and some RIPs may be associated with breed differences.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci, 98168 Messina, Italy;
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
- Correspondence:
| |
Collapse
|
13
|
Shatokhin KS. Problems of mini-pig breeding. Vavilovskii Zhurnal Genet Selektsii 2021; 25:284-291. [PMID: 34901725 PMCID: PMC8627873 DOI: 10.18699/vj21.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
This article provides an overview of some problems of the breeding and reproduction of laboratory minipigs. The most obvious of these are the lack of centralized accounting of breeding groups, uniform selection standards
for reproduction and evaluation of breeding animals, as well as minimizing the accumulation of fitness-reducing
mutations and maintaining genetic diversity. According to the latest estimates, there are at least 30 breeding groups
of mini-pigs systematically used as laboratory animals in the world. Among them, there are both breed formations
represented by several colonies, and breeding groups consisting of a single herd. It was shown that the main selection
strategy is selection for the live weight of adults of 50–80 kg and the adaptation of animals to a specific type of biomedical experiments. For its implementation in the breeding of foreign mini-pigs, selection by live weight is practiced
at 140- and 154-day-old age. It was indicated that different herds of mini-pigs have their own breeding methods to
counteract inbred depression and maintain genetic diversity. Examples are the maximization of coat color phenotypes, the cyclical system of matching parent pairs, and the structuring of herds into subpopulations. In addition,
in the breeding of foreign mini-pigs, molecular genetic methods are used to monitor heterozygosity. Every effort is
made to keep the number of inbred crosses in the breeding of laboratory mini-pigs to a minimum, which is not always
possible due to their small number. It is estimated that to avoid close inbreeding, the number of breeding groups
should be at least 28 individuals, including boars of at least 4 genealogical lines and at least 4 families of sows. The
accumulation of genetic cargo in herds of mini-pigs takes place, but the harmful effect is rather the result of erroneous
decisions of breeders. Despite the fact that when breeding a number of mini-pigs, the goal was to complete the herds
with exclusively white animals, in most breeding groups there is a polymorphism in the phenotype of the coat color
Collapse
Affiliation(s)
- K S Shatokhin
- Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
14
|
Huang M, Zhang H, Wu ZP, Wang XP, Li DS, Liu SJ, Zheng SM, Yang LJ, Liu BB, Li GX, Jiang YC, Chen H, Ren J. Whole-genome resequencing reveals genetic structure and introgression in Pudong White pigs. Animal 2021; 15:100354. [PMID: 34543995 DOI: 10.1016/j.animal.2021.100354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
Pudong White (PDW) pigs, historically originating from Shanghai, are the only Chinese indigenous pigs characterised by their completely white coats, with the exception of Rongchang pigs. However, there is limited information concerning their overall genetic structure or relationship with other breeds, especially the East Chinese (ECN) and European pigs. To uncover the genetic structure, selection signatures, and potential exotic introgression in PDW pigs, we sampled 15 PDW pigs using whole-genome sequencing (~20×). We then conducted in-depth population genetic analyses in 320 pigs from 27 global pig groups, namely, European wild boars, Chinese wild boars, and outgroup. Neighbour-joining tree and principal component analysis confirmed that PDW pigs belonged to the ecotype of ECN pigs. Both f3, D-statistics, and structure analysis showed that PDW pigs shared apparent alleles with Large White (LW) pigs. Three statistics, rIBD, a haplotype heat map and copy number variation, further indicated that PDW pigs shared apparent alleles with LW pigs at the KIT Proto-Oncogene, Receptor Tyrosine Kinase (KIT) and PARG-MARCHF8 loci, suggesting that the lineage of European pigs in PDW originated from LW pigs. After further detecting the KIT mutations in different pig breeds, PDW was confirmed to have the same duplication region 1, duplication region 2, and the splicing mutation on intron 17 of KIT as LW pigs that determine the white coat colour phenotype in European white pigs. We hypothesised that LW pigs were imported to China ∼110-160 years ago according to the admixture time estimate and then crossed with ECN pigs, resulting in the introgression of the KIT alleles that produce the white coat colour phenotype in the PDW pig breed. To our knowledge, this study presents the first thorough description of the genetic structure of PDW pigs via whole-genome resequencing data; moreover, the results provide a basis for the national project for the conservation of this unique Chinese local population.
Collapse
Affiliation(s)
- M Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - H Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Z P Wu
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China
| | - X P Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - D S Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - S J Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - S M Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - L J Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - B B Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - G X Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Y C Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - H Chen
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China.
| | - J Ren
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Zhang H, Wu Z, Yang L, Zhang Z, Chen H, Ren J. Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J 2021; 35:e21261. [PMID: 33715225 DOI: 10.1096/fj.201903141rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022]
Abstract
C57BL/6 laboratory mice usually show black coat color. We observed a dilute (gray) coat color phenotype in progenies of two C57BL/6 mice. This phenotype is inherited in an autosomal recessive mode. To uncover the molecular mechanism underlying this naturally occurring phenotypic variation, we performed whole-genome sequencing (25×) on 10 offspring of the two founder mice. The whole-genome DNA sequencing and additional RNA-Seq data reveal that Myo5a is the gene responsible for the coat color dilution in C57BL/6 mice, and novel mutations in the Myo5a gene are likely causal. We further performed reverse transcription-quantitative PCR, and showed increased expression of truncated Myo5a transcripts encoding dysfunctional proteins and decreased expression of Myo5a full-length transcripts encoding functional proteins in mutant individuals. The decrease in full-length messenger RNA abundance was accompanied by reduced Myo5a protein level and deficient melanosome transport, a potential mechanistic link between the Myo5a mutations and the dilute color phenotype. This study not only advances our understanding of the molecular mechanisms of pigmentation in mice, but also provides a typical case of deciphering the molecular basis of phenotypic variation in mice by genomic analyses and subsequent functional work.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongping Wu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhang
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Hao Chen
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Ren S, Lyu G, Irwin DM, Liu X, Feng C, Luo R, Zhang J, Sun Y, Shang S, Zhang S, Wang Z. Pooled Sequencing Analysis of Geese ( Anser cygnoides) Reveals Genomic Variations Associated With Feather Color. Front Genet 2021; 12:650013. [PMID: 34220935 PMCID: PMC8249929 DOI: 10.3389/fgene.2021.650013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/28/2021] [Indexed: 02/03/2023] Open
Abstract
During the domestication of the goose a change in its feather color took place, however, the molecular mechanisms responsible for this change are not completely understood. Here, we performed whole-genome resequencing on three pooled samples of geese (feral and domestic geese), with two distinct feather colors, to identify genes that might regulate feather color. We identified around 8 million SNPs within each of the three pools and validated allele frequencies for a subset of these SNPs using PCR and Sanger sequencing. Several genomic regions with signatures of differential selection were found when we compared the gray and white feather color populations using the FST and Hp approaches. When we combined previous functional studies with our genomic analyses we identified 26 genes (KITLG, MITF, TYRO3, KIT, AP3B1, SMARCA2, ROR2, CSNK1G3, CCDC112, VAMP7, SLC16A2, LOC106047519, RLIM, KIAA2022, ST8SIA4, LOC106044163, TRPM6, TICAM2, LOC106038556, LOC106038575, LOC106038574, LOC106038594, LOC106038573, LOC106038604, LOC106047489, and LOC106047492) that potentially regulate feather color in geese. These results substantially expand the catalog of potential feather color regulators in geese and provide a basis for further studies on domestication and avian feather coloration.
Collapse
Affiliation(s)
- Shuang Ren
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guangqi Lyu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xin Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chunyu Feng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Runhong Luo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
17
|
Nosková A, Bhati M, Kadri NK, Crysnanto D, Neuenschwander S, Hofer A, Pausch H. Characterization of a haplotype-reference panel for genotyping by low-pass sequencing in Swiss Large White pigs. BMC Genomics 2021; 22:290. [PMID: 33882824 PMCID: PMC8061004 DOI: 10.1186/s12864-021-07610-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The key-ancestor approach has been frequently applied to prioritize individuals for whole-genome sequencing based on their marginal genetic contribution to current populations. Using this approach, we selected 70 key ancestors from two lines of the Swiss Large White breed that have been selected divergently for fertility and fattening traits and sequenced their genomes with short paired-end reads. RESULTS Using pedigree records, we estimated the effective population size of the dam and sire line to 72 and 44, respectively. In order to assess sequence variation in both lines, we sequenced the genomes of 70 boars at an average coverage of 16.69-fold. The boars explained 87.95 and 95.35% of the genetic diversity of the breeding populations of the dam and sire line, respectively. Reference-guided variant discovery using the GATK revealed 26,862,369 polymorphic sites. Principal component, admixture and fixation index (FST) analyses indicated considerable genetic differentiation between the lines. Genomic inbreeding quantified using runs of homozygosity was higher in the sire than dam line (0.28 vs 0.26). Using two complementary approaches, we detected 51 signatures of selection. However, only six signatures of selection overlapped between both lines. We used the sequenced haplotypes of the 70 key ancestors as a reference panel to call 22,618,811 genotypes in 175 pigs that had been sequenced at very low coverage (1.11-fold) using the GLIMPSE software. The genotype concordance, non-reference sensitivity and non-reference discrepancy between thus inferred and Illumina PorcineSNP60 BeadChip-called genotypes was 97.60, 98.73 and 3.24%, respectively. The low-pass sequencing-derived genomic relationship coefficients were highly correlated (r > 0.99) with those obtained from microarray genotyping. CONCLUSIONS We assessed genetic diversity within and between two lines of the Swiss Large White pig breed. Our analyses revealed considerable differentiation, even though the split into two populations occurred only few generations ago. The sequenced haplotypes of the key ancestor animals enabled us to implement genotyping by low-pass sequencing which offers an intriguing cost-effective approach to increase the variant density over current array-based genotyping by more than 350-fold.
Collapse
Affiliation(s)
- Adéla Nosková
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland.
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | | | - Danang Crysnanto
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | | | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| |
Collapse
|
18
|
Bovo S, Ribani A, Muñoz M, Alves E, Araujo JP, Bozzi R, Charneca R, Di Palma F, Etherington G, Fernandez AI, García F, García-Casco J, Karolyi D, Gallo M, Gvozdanović K, Martins JM, Mercat MJ, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Schiavo G, Škrlep M, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Genome-wide detection of copy number variants in European autochthonous and commercial pig breeds by whole-genome sequencing of DNA pools identified breed-characterising copy number states. Anim Genet 2020; 51:541-556. [PMID: 32510676 DOI: 10.1111/age.12954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30-35 animals per pool) obtaining an average depth per pool of 42×. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production systems.
Collapse
Affiliation(s)
- S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - E Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J P Araujo
- Centro de Investigação de Montanha, Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, Ponte de Lima, 4990-706, Portugal
| | - R Bozzi
- DAGRI - Animal Science Section, Università di Firenze, Via delle Cascine 5, Firenze, 50144, Italy
| | - R Charneca
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - F Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - G Etherington
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - A I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - F García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J García-Casco
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - D Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, Zagreb, 10000, Croatia
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, Roma, 00198, Italy
| | - K Gvozdanović
- Faculty of Agrobiotechnical Sciences Osijek, University of Osijek, Vladimira Preloga 1, Osijek, 31000, Croatia
| | - J M Martins
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - M J Mercat
- IFIP Institut Du Porc, La Motte au Vicomte, BP 35104, Le Rheu Cedex, 35651, France
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - R Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, Barcelona, 08140, Spain
| | - Č Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, Baisogala, 82317, Lithuania
| | - J Riquet
- GenPhySE, INRA, Université de Toulouse, Chemin de Borde-Rouge 24, Auzeville Tolosane, Castanet Tolosan, 31326, France
| | - R Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Škrlep
- Kmetijski Inštitut Slovenije, Hacquetova 17, Ljubljana, SI-1000, Slovenia
| | - G Usai
- AGRIS SARDEGNA, Loc. Bonassai, Sassari, 07100, Italy
| | - V J Utzeri
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, Wolpertshausen, 74549, Germany
| | - C Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| |
Collapse
|