1
|
Zhong G, Liu W, Venkatesan JK, Wang D, Madry H, Cucchiarini M. Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes to treat osteoarthritis. Mol Ther 2024:S1525-0016(24)00847-5. [PMID: 39741406 DOI: 10.1016/j.ymthe.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Despite various available treatments, highly prevalent osteoarthritis (OA) cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as a platform to deliver recombinant adeno-associated virus (rAAV) gene vectors with potency for OA. For the first time, to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation; up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to a 9.5-fold difference), including when provided in a pluronic F127 (PF127) hydrogel for reinforced delivery (up to a 5.9-fold difference). Such effects were accompanied by increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and decreased levels of Drp-1 (mitochondria fission) and proinflammatory tumor necrosis factor alpha (TNF-α; up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.
Collapse
Affiliation(s)
- Gang Zhong
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| |
Collapse
|
2
|
Qiao J, Zhong C, Zhang Q, Yang G, Li S, Jin J. ASA VI controls osteoarthritis in mice by maintaining mitochondrial homeostasis through Sirtuin 3. Int Immunopharmacol 2024; 140:112858. [PMID: 39111145 DOI: 10.1016/j.intimp.2024.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE The aim of this study was to investigate whether ASA VI controls osteoarthritis (OA) by regulating mitochondrial function. METHODS Primary chondrocytes were isolated and cultured from rat knee joints. The chondrocytes were treated with ASA VI and interleukin-1β (IL-1β) to simulate the inflammatory environment of OA. Cell viability, apoptosis, inflammatory cytokine levels, and extracellular matrix (ECM) component levels were assessed. Mitochondrial function, including ATP levels, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and mitochondrial DNA content, was evaluated. The expression of Sirtuin 3 (Sirt3), a key regulator of mitochondrial homeostasis, was examined. Additionally, a rat OA model was established by destabilizing the medial meniscus, and the effects of ASA VI on cartilage degeneration were assessed. RESULTS ASA VI treatment improved cell viability, reduced apoptosis, and decreased IL-6 and TNF-α levels in IL-1β-induced chondrocytes. ASA VI also upregulated Collagen II and Aggrecan expression, while downregulating ADAMTS5 and MMP-13 expression. Furthermore, ASA VI mitigated IL-1β-induced mitochondrial dysfunction by increasing ATP levels, restoring mitochondrial membrane potential, reducing ROS production, and preserving mitochondrial DNA content. These effects were accompanied by the activation of Sirt3. In the rat OA model, ASA VI treatment increased Sirt3 expression and alleviated cartilage degeneration. CONCLUSION ASA VI exerts chondroprotective and anti-inflammatory effects on IL-1β-induced chondrocytes by improving mitochondrial function through Sirt3 activation. ASA VI also attenuates cartilage degeneration in a rat OA model. These findings suggest that ASA VI may be a potential therapeutic agent for the treatment of osteoarthritis by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China; Hubei Sizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Chuanqi Zhong
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China; Hubei Sizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Qing Zhang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China; Hubei Sizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Gongxu Yang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China; Hubei Sizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Shuying Li
- School of Acupuncture and Orthopedics, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Jin
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China; Hubei Sizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Theyse LFH, Mazur EM. Osteoarthritis, adipokines and the translational research potential in small animal patients. Front Vet Sci 2024; 11:1193702. [PMID: 38831954 PMCID: PMC11144893 DOI: 10.3389/fvets.2024.1193702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Osteoartritis (OA) is a debilitating disease affecting both humans and animals. In the early stages, OA is characterized by damage to the extracellular matrix (ECM) and apoptosis and depletion of chondrocytes. OA progression is characterized by hyaline cartilage loss, chondrophyte and osteophyte formation, thickening of the joint capsule and function loss in the later stages. As the regenerative potential of cartilage is very limited and osteoarthritic changes are irreversible, prevention of OA, modulation of existing osteoarthritic joint inflammation, reducing joint pain and supporting joint function are the only options. Progression of OA and pain may necessitate surgical intervention with joint replacement or arthrodesis as end-stage procedures. In human medicine, the role of adipokines in the development and progression of OA has received increasing interest. At present, the known adipokines include leptin, adiponectin, visfatin, resistin, progranulin, chemerin, lipocalin-2, vaspin, omentin-1 and nesfatin. Adipokines have been demonstrated to play a pivotal role in joint homeostasis by modulating anabolic and catabolic balance, autophagy, apoptosis and inflammatory responses. In small animals, in terms of dogs and cats, naturally occurring OA has been clearly demonstrated as a clinical problem. Similar to humans, the etiology of OA is multifactorial and has not been fully elucidated. Humans, dogs and cats share many joint related degenerative diseases leading to OA. In this review, joint homeostasis, OA, adipokines and the most common joint diseases in small animals leading to naturally occurring OA and their relation with adipokines are discussed. The purpose of this review is highlighting the translational potential of OA and adipokines research in small animal patients.
Collapse
|
4
|
Zhang C, Huang H, Chen J, Zuo T, Ou Q, Ruan G, He J, Ding C. DNA Supramolecular Hydrogel-Enabled Sustained Delivery of Metformin for Relieving Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16369-16379. [PMID: 36945078 DOI: 10.1021/acsami.2c20496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Osteoarthritis (OA) is a musculoskeletal disorder affecting ∼500 million people worldwide. Metformin (MET), as an oral hypoglycemic drug approved by the Food and Drug Administration, has displayed promising potential for treating OA. Nonetheless, in the articular cavity, MET suffers from rapid clearance and cannot circumvent the severe inflammatory environment, greatly confining the therapeutic efficacy. Herein, DNA supramolecular hydrogel (DSH) has been utilized as a sustained drug delivery vehicle for MET to treat OA, which dramatically prolonged the retention time of MET in the articular cavity from 3 to 14 days and simultaneously exerted a greater anti-inflammatory effect. Our delivery platform, termed MET@DSH, better protects cartilage than single-agent MET. Additionally, the corresponding molecular mechanisms underlying the therapeutic effects were also analyzed. We anticipate this DNA supramolecular hydrogel-enabled sustained drug delivery and anti-inflammatory strategy will reshape the current landscape of OA treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Department of Rheumatology and Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hong Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Department of Rheumatology and Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jianmao Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Tingting Zuo
- College of Biological and Geographical Sciences, Yili Normal University, Yining, Xingjiang 835000, China
| | - Qianhua Ou
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
5
|
Li Z, Zhang Y, Tian F, Wang Z, Song H, Chen H, Wu B. Omentin-1 promotes mitochondrial biogenesis via PGC1α-AMPK pathway in chondrocytes. Arch Physiol Biochem 2023; 129:291-297. [PMID: 32930026 DOI: 10.1080/13813455.2020.1819337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Omentin-1 is a newly discovered metabolic regulatory adipokine. Studies have shown that omentin-1 possesses pleiotropic effects in different types of cells. This study aims to investigate the regulation by omentin-1 on mitochondrial biogenesis in chondrocytes. METHODOLOGY C-28/I2 chondrocytes were treated with omentin-1 (150 and 300 ng/ml) for 24 h. The expression of mitochondrial regulators, markers and the DNA copy was assessed. The mitochondrial morphology was observed by electron microscopy. The mitochondrial respiratory rate and ATP production in chondrocytes were measured by cell lysates. RESULTS Omentin-1 treatment up-regulated PGC-1α, NRF-1 and mitochondrial transcription factor A (TFAM) in cultured chondrocytes, indicating that omentin-1 could be involved in the regulation of mitochondrial function. Omentin-1 promoted mtDNA/nDNA and four mitochondrial genes (Tomm20, Tomm40, Timm9 and Atp5c1), mRNA transcripts as well as two mitochondrial protein expressions (SDHB and MTCO1). At a cellular level, omentin-1 enhanced the mitochondrial respiratory rate and ATP production. Mechanistically, we proved that omentin-1 increased AMPKα activation, and the blockage of AMPKα by its inhibitor compound C abolished the inductive effect of omentin-1 on PGC1α expression and mtDNA/nDNA ratio, indicating that the effect of omentin-1 is dependent on AMPKα activation. CONCLUSION Omentin-1 is a positive regulator of mitochondrial biogenesis in chondrocytes, and its action is dependent on the AMPK-PGC1α pathway. This study, therefore, implies that omentin-1 has the potential to remedy chondrocyte damage in the prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yao Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Fengde Tian
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Zihua Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haiyang Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haojie Chen
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Baolin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
7
|
Involvement of Mitochondrial Dysfunction in the Inflammatory Response in Human Mesothelial Cells from Peritoneal Dialysis Effluent. Antioxidants (Basel) 2022; 11:antiox11112184. [DOI: 10.3390/antiox11112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies have related mitochondrial impairment with peritoneal membrane damage during peritoneal dialysis (PD) therapy. Here, we assessed the involvement of mitochondrial dysfunction in the inflammatory response in human mesothelial cells, a hallmark in the pathogenesis of PD-related peritoneal membrane damage. Our ex vivo studies showed that IL-1β causes a drop in the mitochondrial membrane potential in cells from peritoneal effluent. Moreover, when mitochondrial damage was induced by inhibitors of mitochondrial function, a low-grade inflammatory response was generated. Interestingly, mitochondrial damage sensitized mesothelial cells, causing a significant increase in the inflammatory response induced by cytokines, in which ROS generation and NF-κB activation appear to be involved, since inflammation was counteracted by both mitoTEMPO (mitochondrial ROS scavenger) and BAY-117085 (NF-κB inhibitor). Furthermore, the natural anti-inflammatory antioxidant resveratrol significantly attenuated the inflammatory response, by reversing the decline in mitochondrial membrane potential and decreasing the expression of IL-8, COX-2 and PGE2 caused by IL-1β. These findings suggest that IL-1β regulates mitochondrial function in mesothelial cells and that mitochondrial dysfunction could induce an inflammatory scenario that sensitizes these cells, causing significant amplification of the inflammatory response induced by cytokines. Resveratrol may represent a promising strategy in controlling the mesothelial inflammatory response to PD.
Collapse
|
8
|
He Y, Ding Q, Chen W, Lin C, Ge L, Ying C, Xu K, Wu Z, Xu L, Ran J, Chen W, Wu L. LONP1 downregulation with ageing contributes to osteoarthritis via mitochondrial dysfunction. Free Radic Biol Med 2022; 191:176-190. [PMID: 36064070 DOI: 10.1016/j.freeradbiomed.2022.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is an age-related disorder and an important cause of disability that is characterized by a senescence-associated secretory phenotype and matrix degradation leading to a gradual loss of articular cartilage integrity. Mitochondria, as widespread organelles, are involved in regulation of complex biological processes such as energy synthesis and cell metabolism, which also have bidirectional communication with the nucleus to help maintain cellular homeostasis and regulate adaptation to a broad range of stressors. In light of the evidence that OA is strongly associated with mitochondrial dysfunction. In addition, mitochondria are considered to be the culprits of cell senescence, and mitochondrial function changes during ageing are considered to have a controlling role in cell fate. Mitochondrial dysfunction is also observed in age-related OA, however, the internal mechanism by which mitochondrial function changes with ageing to lead to the development of OA has not been elucidated. In this study, we found that the expression of Lon protease 1 (LONP1), a mitochondrial protease, was decreased in human OA cartilage and in ageing rat chondrocytes. Furthermore, LONP1 knockdown accelerated the progression and severity of osteoarthritis, which was associated with aspects of mitochondrial dysfunction including oxidative stress, metabolic changes and mitophagy, leading to downstream MAPK pathway activation. Antioxidant therapy with resveratrol suppressed oxidative stress and MAPK pathway activation induced by LONP1 knockdown to mitigate OA progression. Therefore, our findings demonstrate that LONP1 is a central regulator of mitochondrial function in chondrocytes and reveal that downregulation of LONP1 with ageing contributes to osteoarthritis.
Collapse
Affiliation(s)
- Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Qianhai Ding
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Wenliang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Lujie Ge
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Chenting Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Zhipeng Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Langhai Xu
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Weiping Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| |
Collapse
|
9
|
Lu D, Ding X, Lu W. Study on the Influencing Factors of Osteoarthritis in Southern China. Emerg Med Int 2022; 2022:2482728. [PMID: 36158765 PMCID: PMC9492436 DOI: 10.1155/2022/2482728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background Osteoarthritis (OA) is a common chronic disease with numerous and interacting influencing factors, and current inadequate patient perceptions and behaviors in access to care contribute to the difficulties in the diagnosis, treatment, and management of osteoarthritis. Objective The purpose of this study was to investigate the influencing factors of osteoarthritis (OA) in a southern Chinese population and to provide a scientific basis for the prevention and treatment of OA. Methods A 1 : 2 matched case-control study was used to select 160 patients with OA from three hospitals in southern China as a case group. Three hundred and twenty cases of the same sex and similar age (within ± 2 years) were selected as the control group, and relevant data were collected for univariate and multivariate conditional logistic regression analysis. Results There were no significant differences between the two groups of participants in terms of age, sex, and education (P > 0.05). Logistic regression statistical analysis showed that genetic factors (OR = 4.52, 95% CI = 1.56-7.83), body mass index (OR = 2.57, 95% CI = 1.16-5.84), alcohol consumption (OR = 3.81, 95% CI = 1.53-5.87), and a history of external joint limb injury (OR = 3.37, 95% CI = 1.67-5.24) would increase the risk of OA. In contrast, eating more fresh vegetables (OR = 0.08, 95% CI = 0.03-0.31), more fresh fruits (OR = 0.34, 95% CI = 0.12-0.96), more soy products (OR = 0.11, 95% CI = 0.04-0.45), and exposure to sunlight (OR = 0.31, 95% CI = 0.14-0.71) would reduce the OA risk of OA. Conclusion Obesity, alcohol consumption, and a history of joint trauma all increase the risk of OA in a southern Chinese population, whereas a diet rich in fresh vegetables, fresh fruit, soy products, and sun exposure would reduce the risk of OA. In the future, we should focus on improving patients' awareness of medical care and developing their self-management skills, improving GPs' treatment skills, improving negative attitudes of both doctors and patients, and promoting positive patient care.
Collapse
Affiliation(s)
- Danqing Lu
- Department of Orthopedics, The Second People's Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Xiaomin Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenqing Lu
- Department of Orthopedics, The Second People's Hospital of Kunshan, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Bonakdari H, Pelletier JP, Blanco FJ, Rego-Pérez I, Durán-Sotuela A, Aitken D, Jones G, Cicuttini F, Jamshidi A, Abram F, Martel-Pelletier J. Single nucleotide polymorphism genes and mitochondrial DNA haplogroups as biomarkers for early prediction of knee osteoarthritis structural progressors: use of supervised machine learning classifiers. BMC Med 2022; 20:316. [PMID: 36089590 PMCID: PMC9465912 DOI: 10.1186/s12916-022-02491-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Knee osteoarthritis is the most prevalent chronic musculoskeletal debilitating disease. Current treatments are only symptomatic, and to improve this, we need a robust prediction model to stratify patients at an early stage according to the risk of joint structure disease progression. Some genetic factors, including single nucleotide polymorphism (SNP) genes and mitochondrial (mt)DNA haplogroups/clusters, have been linked to this disease. For the first time, we aim to determine, by using machine learning, whether some SNP genes and mtDNA haplogroups/clusters alone or combined could predict early knee osteoarthritis structural progressors. METHODS Participants (901) were first classified for the probability of being structural progressors. Genotyping included SNP genes TP63, FTO, GNL3, DUS4L, GDF5, SUPT3H, MCF2L, and TGFA; mtDNA haplogroups H, J, T, Uk, and others; and clusters HV, TJ, KU, and C-others. They were considered for prediction with major risk factors of osteoarthritis, namely, age and body mass index (BMI). Seven supervised machine learning methodologies were evaluated. The support vector machine was used to generate gender-based models. The best input combination was assessed using sensitivity and synergy analyses. Validation was performed using tenfold cross-validation and an external cohort (TASOAC). RESULTS From 277 models, two were defined. Both used age and BMI in addition for the first one of the SNP genes TP63, DUS4L, GDF5, and FTO with an accuracy of 85.0%; the second profits from the association of mtDNA haplogroups and SNP genes FTO and SUPT3H with 82.5% accuracy. The highest impact was associated with the haplogroup H, the presence of CT alleles for rs8044769 at FTO, and the absence of AA for rs10948172 at SUPT3H. Validation accuracy with the cross-validation (about 95%) and the external cohort (90.5%, 85.7%, respectively) was excellent for both models. CONCLUSIONS This study introduces a novel source of decision support in precision medicine in which, for the first time, two models were developed consisting of (i) age, BMI, TP63, DUS4L, GDF5, and FTO and (ii) the optimum one as it has one less variable: age, BMI, mtDNA haplogroup, FTO, and SUPT3H. Such a framework is translational and would benefit patients at risk of structural progressive knee osteoarthritis.
Collapse
Affiliation(s)
- Hossein Bonakdari
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, R11.412, Montreal, QC, H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, R11.412, Montreal, QC, H2X 0A9, Canada
| | - Francisco J Blanco
- Unidad de Genomica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, A Coruña, Spain.,Grupo de Investigación de Reumatología Y Salud (GIR-S), Departamento de Fisioterapia, Medicina Y Ciencias Biomédicas, Facultad de Fisioterapia, Universidade da Coruña, Campus de Oza, A Coruña, Spain
| | - Ignacio Rego-Pérez
- Unidad de Genomica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, A Coruña, Spain
| | - Alejandro Durán-Sotuela
- Unidad de Genomica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, A Coruña, Spain
| | - Dawn Aitken
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Afshin Jamshidi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, R11.412, Montreal, QC, H2X 0A9, Canada
| | | | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, R11.412, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
11
|
Jávor P, Mácsai A, Butt E, Baráth B, Jász DK, Horváth T, Baráth B, Csonka Á, Török L, Varga E, Hartmann P. Mitochondrial Dysfunction Affects the Synovium of Patients with Rheumatoid Arthritis and Osteoarthritis Differently. Int J Mol Sci 2022; 23:ijms23147553. [PMID: 35886901 PMCID: PMC9319158 DOI: 10.3390/ijms23147553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence regarding the role of mitochondrial dysfunction in osteoarthritis (OA) and rheumatoid arthritis (RA). However, quantitative comparison of synovial mitochondrial derangements in these main arthritis forms is missing. A prospective clinical study was conducted on adult patients undergoing knee surgery. Patients were allocated into RA and OA groups based on disease-specific clinical scores, while patients without arthritis served as controls. Synovial samples were subjected to high-resolution respirometry to analyze mitochondrial functions. From the total of 814 patients, 109 cases were enrolled into the study (24 RA, 47 OA, and 38 control patients) between 1 September 2019 and 31 December 2021. The decrease in complex I-linked respiration and dyscoupling of mitochondria were characteristics of RA patients, while both arthritis groups displayed reduced OxPhos activity compared to the control group. However, no significant difference was found in complex II-related activity between the OA and RA groups. The cytochrome C release and H2O2 formation were increased in both arthritis groups. Mitochondrial dysfunction was present in both arthritis groups; however, to a different extent. Consequently, mitochondrial protective agents may have major benefits for arthritis patients. Based on our current study, we recommend focusing on respiratory complex I in rheumatoid arthritis research.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Attila Mácsai
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Edina Butt
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Bálint Baráth
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Dávid Kurszán Jász
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Bence Baráth
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary;
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - László Török
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Department of Sports Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Endre Varga
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Correspondence:
| |
Collapse
|
12
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
13
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|
14
|
Moqbel SAA, Zeng R, Ma D, Xu L, Lin C, He Y, Ma C, Xu K, Ran J, Jiang L, Wu L. The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway. Stem Cell Res Ther 2022; 13:127. [PMID: 35337368 PMCID: PMC8951683 DOI: 10.1186/s13287-022-02758-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Osteoarthritis (OA) is a debilitating disease that inflicts intractable pain, a major problem that humanity faces, especially in aging populations. Stem cells have been used in the treatment of many chronic diseases, including OA. Cartilage progenitor/stem cells (CPSCs) are a type of stem cells with the ability to self- renew and differentiate. They hold a promising future for the understanding of the progression of OA and for its treatment. Previous studies have reported the relationship between mitochondrial dynamics and mesenchymal stem cell (MSC) proliferation, differentiation and aging. Mitochondrial dynamic and morphology change during stem cell differentiation. Methods This study was performed to access the relationship between mitochondrial dynamics and chondrogenic differentiation of CPSCs. Mitochondrial fusion and fission levels were measured during the chondrogenic differentiation process of CPSCs. After that, we used mitochondrial fusion promoter to induce fusion in CPSCs and then the chondrogenic markers were measured. Transmission electron microscopy (TEM) and confocal microscopy were used to capture the mass and fusion status of mitochondria. Lentiviruses were used to detect the role of mitofusin 2 (Mfn2) in CPSC chondrogenic differentiation. In vivo, Mfn2 was over-expressed in sheets of rat CPSCs, which were then injected intra-articularly into the knees of rats. Results Mitochondrial fusion markers were upregulated during the chondrogenic induction process of CPSCs. The mass of mitochondria was higher in differentiated CPSC, and the fusion status was obvious relative to un-differentiated CPSC. Chondrogenesis of CPSCs was upregulated with the induction by mitochondrial fusion promoter. Mfn2 over-expression significantly increased chondrocyte-specific gene expression and reversed OA through NOTCH2 signal pathway. Conclusions Our study demonstrated that the mitochondrial fusion promotes chondrogenesis differentiation of CPSCs. Mfn2 accelerates the chondrogenesis differentiation of CPSCs through Notch2. In vivo, Mfn2-OE in sheets of rCPSCs ameliorated OA in the rat model. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02758-7.
Collapse
Affiliation(s)
- Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rong Zeng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Diana Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Langhai Xu
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
15
|
Shang P, Liu Y, Jia J. Paeonol inhibits inflammatory response and protects chondrocytes by upregulating sirtuin 1. Can J Physiol Pharmacol 2022; 100:283-290. [PMID: 35235465 DOI: 10.1139/cjpp-2021-0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Paeonol is the bioactive component in Paeonia lactiflora Pall., Cynanchum paniculatum and Paeonia × suffruticosa Andr. Paeonol has been previously demonstrated to inhibit the release of tumor necrosis factor α (TNF-α) and interluekin 6 (IL-6) in chondrocytes. Sirtuin 1 (SIRT1) is downregulated in degraded cartilage and paeonol could induce nuclear accumulation of SIRT1. Therefore, the present study aims to investigate the possible role of paeonol in chondrocyte inflammation and cartilage protection in osteoarthritis (OA) as well as its regulation of SIRT1. Primary chondrocytes from rat knee joints were transfected with short hairpin (sh) - SIRT1 and (or) paeonol prior to IL-1β exposure, and then inflammatory response, apoptosis, and extracellular matrix (ECM) degradation in the cells were evaluated concurrent with the activation of the nuclear factor κβ (NF-κβ) signaling pathway. Increased levels of TNF-α, IL-17, IL-6, matrix metalloproteinase 1 (MMP-1), MMP-3, and MMP-13 along with decreased tissue inhibitor of metalloproteinases 1 and type II collagen levels were found in IL-1β-stimulated chondrocytes. Chondrocyte apoptosis was elevated and the NF-κβ signaling pathway was activated in response to IL-1β treatment. Paeonol enhanced SIRT1 expression to inactivate the NF-κβ signaling pathway, thereby ameliorating inflammatory cytokine secretion, ECM degradation, and chondrocyte apoptosis. In conclusion, the results of the present study confirm the potential of paeonol as a candidate OA drug.
Collapse
Affiliation(s)
- Peng Shang
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Ying Liu
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Junqing Jia
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
16
|
Artificial Mitochondrial Transfer (AMT) for the Management of Age-related Musculoskeletal Degenerative Disorders: An Emerging Avenue for Bone and Cartilage Metabolism Regulation. Stem Cell Rev Rep 2022; 18:2195-2201. [PMID: 35230643 DOI: 10.1007/s12015-022-10357-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Musculoskeletal system disorders are among the most common age-related conditions worldwide. All associated with a degeneration of the supporting tissues under pro-inflammatory micro- and macro-environments, the erosion of cartilage and later of bones, are the main hallmarks of these pathologies. Affected chondrocytes, osteoblasts and synoviocytes, that are all critical actors in the bone and cartilage defects exhibit mitochondrial dysfunction that develops immediately following cartilage and bone injury, and leads to tissue residing specific cell death, cartilage degeneration, bone erosion, and ultimately post-traumatic musculoskeletal degeneration. Herein, we would like to introduce a novel concept for bone and cartilage related defects treatment based on artificial transfer of exogeneous functional mitochondria (AMT). Particularly, we believe that because mitochondrial failure critically contributes to degenerative disorders onset and progression, replacing malfunctioning mitochondria with their healthy and functional counterparts can represent a novel, and effective therapeutic solution for the management of bone and cartilage related degenerative diseases. Artificial mitochondrial transfer (AMT) may reverse the failed metabolic status of musculoskeletal tissues cells and reduce bone and cartilage tissues defects by restoring mitochondrial bioenergetics.
Collapse
|
17
|
Abstract
PROPOSE OF REVIEW To summarize the evidence that suggests that osteoarthritis (OA) is a mitochondrial disease. RECENT FINDINGS Mitochondrial dysfunction together with mtDNA damage could contribute to cartilage degradation via several processes such as: (1) increased apoptosis; (2) decreased autophagy; (3) enhanced inflammatory response; (4) telomere shortening and increased senescence chondrocytes; (5) decreased mitochondrial biogenesis and mitophagy; (6) increased cartilage catabolism; (7) increased mitochondrial fusion leading to further reactive oxygen species production; and (8) impaired metabolic flexibility. SUMMARY Mitochondria play an important role in some events involved in the pathogenesis of OA, such as energy production, the generation of reactive oxygen and nitrogen species, apoptosis, authophagy, senescence and inflammation. The regulation of these processes in the cartilage is at least partially controlled by retrograde regulation from mitochondria and mitochondrial genetic variation. Retrograde regulation through mitochondrial haplogroups exerts a signaling control over the nuclear epigenome, which leads to the modulation of nuclear genes, cellular functions and development of OA. All these data suggest that OA could be considered a mitochondrial disease as well as other complex chronic disease as cancer, cardiovascular and neurologic diseases.
Collapse
|
18
|
Kan S, Duan M, Liu Y, Wang C, Xie J. Role of Mitochondria in Physiology of Chondrocytes and Diseases of Osteoarthritis and Rheumatoid Arthritis. Cartilage 2021; 13:1102S-1121S. [PMID: 34894777 PMCID: PMC8804744 DOI: 10.1177/19476035211063858] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Mitochondria are recognized to be one of the most important organelles in chondrocytes for their role in triphosphate (ATP) generation through aerobic phosphorylation. Mitochondria also participate in many intracellular processes involving modulating reactive oxygen species (ROS), responding to instantaneous hypoxia stress, regulating cytoplasmic transport of calcium ion, and directing mitophagy to maintain the homeostasis of individual chondrocytes. DESIGNS To summarize the specific role of mitochondria in chondrocytes, we screened related papers in PubMed database and the search strategy is ((mitochondria) AND (chondrocyte)) AND (English [Language]). The articles published in the past 5 years were included and 130 papers were studied. RESULTS In recent years, the integrity of mitochondrial structure has been regarded as a prerequisite for normal chondrocyte survival and defect in mitochondrial function has been found in cartilage-related diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, the understanding of mitochondria in cartilage is still largely limited. The mechanism on how the changes in mitochondrial structure and function directly lead to the occurrence and development of cartilage-related diseases remains to be elusive. CONCLUSION This review aims to summarize the role of mitochondria in chondrocytes under the physiological and pathological changes from ATP generation, calcium homeostasis, redox regulation, mitophagy modulation, mitochondria biogenesis to immune response activation. The enhanced understanding of molecular mechanisms in mitochondria might offer some new cues for cartilage remodeling and pathological intervention.
Collapse
Affiliation(s)
- Shiyi Kan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunli Wang
- “111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China,“111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China,Lab of Bone & Joint Disease, State
Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan
University, Chengdu, China,Jing Xie, Lab of Bone & Joint Disease,
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,
Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
19
|
Gvozdjáková A, Sumbalová Z, Kucharská J, Szamosová M, Čápová L, Rausová Z, Vančová O, Mojto V, Langsjoen P, Palacka P. Platelet mitochondrial respiration and coenzyme Q10 could be used as new diagnostic strategy for mitochondrial dysfunction in rheumatoid diseases. PLoS One 2021; 16:e0256135. [PMID: 34582480 PMCID: PMC8478238 DOI: 10.1371/journal.pone.0256135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic inflammatory autoimunne disorder affecting both small and large synovial joints, leading to their destruction. Platelet biomarkers are involved in inflammation in RA patients. Increased circulating platelet counts in RA patients may contribute to platelet hyperactivity and thrombosis. In this pilot study we evaluated platelet mitochondrial bioenergy function, CoQ10 levels and oxidative stress in RA patients. Methods Twenty-one RA patients and 19 healthy volunteers participated in the study. High resolution respirometry (HRR) was used for analysis of platelet mitochondrial bioenergetics. CoQ10 was determined by HPLC method; TBARS were detected spectrophotometrically. Results Slight dysfunction in platelet mitochondrial respiration and reduced platelet CoQ10 levels were observed in RA patients compared with normal controls. Conclusions The observed decrease in platelet CoQ10 levels may lead to platelet mitochondrial dysfunction in RA diseases. Determination of platelet mitochondrial function and platelet CoQ10 levels could be used as new diagnostic strategies for mitochondrial bioenergetics in rheumatoid diseases.
Collapse
Affiliation(s)
- Anna Gvozdjáková
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Sumbalová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Monika Szamosová
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubica Čápová
- Department of Rheumatology, University Hospital in Bratislava, Bratislava, Slovakia
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Oľga Vančová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Viliam Mojto
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Langsjoen
- Private Cardiology Practice, Tyler, TX, United States of America
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
20
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
21
|
Fajardo RG, Fariña FO, Rey AM, Rego-Pérez I, Blanco FJ, García JLF. Relationship Between the Dynamics of Telomere Loss in Peripheral Blood Leukocytes From Knee Osteoarthritis Patients and Mitochondrial DNA Haplogroups. J Rheumatol 2021; 48:1603-1607. [PMID: 33649061 DOI: 10.3899/jrheum.201316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To evaluate the evolution of telomere length from peripheral blood leukocytes (PBLs) in subjects from the Osteoarthritis Initiative (OAI) cohort in relation to the incidence of osteoarthritis (OA), and to explore its possible interactive influence with the mitochondrial DNA (mtDNA) haplogroup. METHODS Dynamics of telomere sequence loss were quantified in PBLs from initially healthy individuals (without symptoms or radiological signs), 78 carrying the mtDNA cluster HV, and 47 with cluster JT, from the OAI, during a 72-month follow-up period. The incidence of knee OA during this period (n = 39) was radiographically established when Kellgren-Lawrence (KL) score increased from < 2 at recruitment, to ≥ 2 at the end of 72 months of follow-up. Multivariate analysis using binary logistic regression was performed to assess PBL telomere loss and mtDNA haplogroups as associated risk factors of incidence of knee OA. RESULTS Carriers of cluster HV showed knee OA incidence twice that of the JT carriers (n = 30 vs 9). The rate of PBL telomere loss was higher in cluster HV carriers and in individuals with incident knee OA. Multivariate analysis showed that the dynamics of PBL telomere shortening can be a consistent risk marker of knee OA incidence. Subjects with nonincident knee OA showed a slower telomere loss than those with incident knee OA; the difference was more significant in carriers of cluster JT than in HV. CONCLUSION An increased rate of telomere loss in PBLs may reflect a systemic accelerated senescence phenotype that could be potentiated by the mitochondrial function, increasing the susceptibility of developing knee OA.
Collapse
Affiliation(s)
- Rebeca Guillén Fajardo
- R. Guillén Fajardo, PhD student, F. Otero Fariña, PhD student, J.L. Fernández García, MD, PhD, INIBIC-Hospital Universitario A Coruña (CHUAC), Genetics Unit, and Centro Oncológico de Galicia, Laboratory of Genetics and Radiobiology
| | - Fátima Otero Fariña
- R. Guillén Fajardo, PhD student, F. Otero Fariña, PhD student, J.L. Fernández García, MD, PhD, INIBIC-Hospital Universitario A Coruña (CHUAC), Genetics Unit, and Centro Oncológico de Galicia, Laboratory of Genetics and Radiobiology
| | | | - Ignacio Rego-Pérez
- I. Rego-Pérez, PhD, INIBIC-Hospital Universitario A Coruña (CHUAC), Rheumatology Division
| | - Francisco J Blanco
- F.J. Blanco, MD, PhD, INIBIC-Hospital Universitario A Coruña (CHUAC), Rheumatology Division, and Universidad de A Coruña, Department of Physiotherapy, Medicine and Biomedical Sciences, Strategic Group CICA-INIBIC, Rheumatology and Health Group, A Coruña, Spain.
| | - José Luis Fernández García
- R. Guillén Fajardo, PhD student, F. Otero Fariña, PhD student, J.L. Fernández García, MD, PhD, INIBIC-Hospital Universitario A Coruña (CHUAC), Genetics Unit, and Centro Oncológico de Galicia, Laboratory of Genetics and Radiobiology
| |
Collapse
|
22
|
Siaton BC, Hogans BH, Hochberg MC. Precision medicine in osteoarthritis: not yet ready for prime time. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1842731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bernadette C. Siaton
- Department of Medicine, University of Maryland School of Medicine
- Geriatric Research Education and Clinical Center, VA Maryland Health Care System
| | - Beth H. Hogans
- Geriatric Research Education and Clinical Center, VA Maryland Health Care System
- Department of Neurology, The Johns Hopkins School of Medicine
| | - Marc C. Hochberg
- Department of Medicine, University of Maryland School of Medicine
- Medical Care Clinical Center, VA Maryland Health Care System
| |
Collapse
|
23
|
Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matišić V, Vrdoljak T, Hudetz D, Hajsok H, Borić I. Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel) 2020; 11:E854. [PMID: 32722615 PMCID: PMC7464436 DOI: 10.3390/genes11080854] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- School of Medicine, Faculty of Dental Medicine and Health, University “Josip Juraj Strossmayer”, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nursing, University North, 48 000 Varaždin, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Hana Hajsok
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
24
|
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
|