1
|
Knight A, Sugin S, Jurisicova A. Searching for the 'X' factor: investigating the genetics of primary ovarian insufficiency. J Ovarian Res 2024; 17:238. [PMID: 39609914 PMCID: PMC11603650 DOI: 10.1186/s13048-024-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Primary ovarian insufficiency (POI) is the cessation of ovarian function before the age of 40. The causes of POI are heterogeneous, but substantial evidence exists to support a genetic basis of POI, particularly in the critical involvement of genes on the X chromosome. Recent studies have revealed novel candidate genes through the identification of copy number variations associated with POI. This review summarizes the genes located on the X chromosome with variants shown to be associated with POI in humans and/or in mice. Additionally, we present evidence to support the potential involvement of these candidate genes in the etiology of POI. We conducted a literature search in PubMed to identify case studies and screenings for the genetic causes of POI. We then performed systematic searches for the proposed candidate genes to investigate their potential reproductive roles. Of the X-linked candidate genes investigated, 10 were found to have variants associated with cases of POI in humans. An additional 10 genes were found to play a supportive role in POI. Other genes were not implicated in any cases of POI but were associated with various roles in reproduction. In the majority of cases where variants were identified through whole-exome sequencing, rather than targeted screening of candidate genes, more than one genetic variant was identified. Overall, this review supports past findings that the X chromosome plays a critical role in ovarian function, as demonstrated by a link between POI and various disruptions to genes on the X chromosome. Current genetic screening for POI, which includes only FMR1, is inadequate to capture the majority of cases with a genetic origin. An expanded genetic testing may improve health outcomes for individuals with POI as it could lead to better early interventions and education about these health risks.
Collapse
Affiliation(s)
- Anya Knight
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sara Sugin
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada
| | - Andrea Jurisicova
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada.
| |
Collapse
|
2
|
Lee CR, Kim MJ, Park SH, Kim S, Kim SY, Koh SJ, Lee S, Choi M, Chae JH, Park SG, Moon J. Recurrent fever of unknown origin and unexplained bacteremia in a patient with a novel 4.5 Mb microdeletion in Xp11.23-p11.22. Sci Rep 2024; 14:17801. [PMID: 39090138 PMCID: PMC11294525 DOI: 10.1038/s41598-024-65341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Fever of unknown origin (FUO) remains a formidable diagnostic challenge in the field of medicine. Numerous studies suggest an association between FUO and genetic factors, including chromosomal abnormalities. Here, we report a female patient with a 4.5 Mb Xp microdeletion, who presented with recurrent FUO, bacteremia, colitis, and hematochezia. To elucidate the underlying pathogenic mechanism, we employed a comprehensive approach involving single cell RNA sequencing, T cell receptor sequencing, and flow cytometry to evaluate CD4 T cells. Analysis of peripheral blood mononuclear cells revealed augmented Th1, Th2, and Th17 cell populations, and elevated levels of proinflammatory cytokines in serum. Notably, the patient exhibited impaired Treg cell function, possibly related to deletion of genes encoding FOPX3 and WAS. Single cell analysis revealed specific expansion of cytotoxic CD4 T lymphocytes, characterized by upregulation of various signature genes associated with cytotoxicity. Moreover, interferon-stimulated genes were upregulated in the CD4 T effector memory cluster. Further genetic analysis confirmed maternal inheritance of the Xp microdeletion. The patient and her mother exhibited X chromosome-skewed inactivation, a potential protective mechanism against extensive X chromosome deletions; however, the mother exhibited complete skewing and the patient exhibited incomplete skewing (85:15), which may have contributed to emergence of immunological symptoms. In summary, this case report describes an exceptional instance of FUO stemming from an incompletely inactivated X chromosome microdeletion, thereby increasing our understanding of the genetics underpinning FUO.
Collapse
Affiliation(s)
- Cho-Rong Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang-Heon Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung-Gyoo Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Neurology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Thomas L, Cuisset L, Papon JF, Tamalet A, Pin I, Abou Taam R, Faucon C, Montantin G, Tissier S, Duquesnoy P, Dastot-Le Moal F, Copin B, Carion N, Louis B, Chantot-Bastaraud S, Siffroi JP, Mitri R, Coste A, Escudier E, Thouvenin G, Amselem S, Legendre M. Skewed X-chromosome inactivation drives the proportion of DNAAF6-defective airway motile cilia and variable expressivity in primary ciliary dyskinesia. J Med Genet 2024; 61:595-604. [PMID: 38408845 DOI: 10.1136/jmg-2023-109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a rare airway disorder caused by defective motile cilia. Only male patients have been reported with pathogenic mutations in X-linked DNAAF6, which result in the absence of ciliary dynein arms, whereas their heterozygous mothers are supposedly healthy. Our objective was to assess the possible clinical and ciliary consequences of X-chromosome inactivation (XCI) in these mothers. METHODS XCI patterns of six mothers of male patients with DNAAF6-related PCD were determined by DNA-methylation studies and compared with their clinical phenotype (6/6 mothers), as well as their ciliary phenotype (4/6 mothers), as assessed by immunofluorescence and high-speed videomicroscopy analyses. The mutated X chromosome was tracked to assess the percentage of cells with a normal inactivated DNAAF6 allele. RESULTS The mothers' phenotypes ranged from absence of symptoms to mild/moderate or severe airway phenotypes, closely reflecting their XCI pattern. Analyses of the symptomatic mothers' airway ciliated cells revealed the coexistence of normal cells and cells with immotile cilia lacking dynein arms, whose ratio closely mirrored their XCI pattern. CONCLUSION This study highlights the importance of searching for heterozygous pathogenic DNAAF6 mutations in all female relatives of male PCD patients with a DNAAF6 defect, as well as in females consulting for mild chronic respiratory symptoms. Our results also demonstrate that about one-third-ranging from 20% to 50%-normal ciliated airway cells sufficed to avoid severe PCD, a result paving the way for gene therapy.
Collapse
Affiliation(s)
- Lucie Thomas
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
| | - Laurence Cuisset
- Service de Médecine Génomique, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Hôpital Cochin, Paris, F-75014, France
| | - Jean-Francois Papon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, F-94270, France
- Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Inserm U955, CNRS ERL7240, Hôpital Henri-Mondor, Créteil, F-94010, France
| | - Aline Tamalet
- Département de Pneumologie Pédiatrique, Centre National de Référence des Maladies Respiratoires Rares RespiRare, AP-HP, Sorbonne Université, Hôpital Armand-Trousseau Hospital, Paris, F-75012, France
| | - Isabelle Pin
- Pédiatrie, CHU Grenoble Alpes, Grenoble, F-38500, France
| | - Rola Abou Taam
- Service de Pneumologie et Allergologie Pédiatriques, AP-HP, Hôpital Necker-Enfants Malades, Paris, F-75015, France
| | - Catherine Faucon
- Service d'Anatomopathologie, Laboratoire de Microscopie Electronique, Centre Hospitalier Intercommunal de Créteil, Créteil, F-94000, France
| | - Guy Montantin
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Sylvie Tissier
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Philippe Duquesnoy
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
| | | | - Bruno Copin
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Nathalie Carion
- Service de Médecine Génomique, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Hôpital Cochin, Paris, F-75014, France
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Inserm U955, CNRS ERL7240, Hôpital Henri-Mondor, Créteil, F-94010, France
| | - Sandra Chantot-Bastaraud
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique chromosomique, AP-HP, Hôpital Trousseau, Paris, F-75012, France
| | - Jean-Pierre Siffroi
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique chromosomique, AP-HP, Hôpital Trousseau, Paris, F-75012, France
| | - Rana Mitri
- Service d'Anatomopathologie, Laboratoire de Microscopie Electronique, Centre Hospitalier Intercommunal de Créteil, Créteil, F-94000, France
| | - André Coste
- Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Inserm U955, CNRS ERL7240, Hôpital Henri-Mondor, Créteil, F-94010, France
- Service d'ORL et de Chirurgie Cervico-Faciale, AP-HP, Hôpital Henri-Mondor, Centre Hospitalier Intercommunal de Créteil, Créteil, F-94000, France
| | - Estelle Escudier
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Guillaume Thouvenin
- Département de Pneumologie Pédiatrique, Centre National de Référence des Maladies Respiratoires Rares RespiRare, AP-HP, Sorbonne Université, Hôpital Armand-Trousseau Hospital, Paris, F-75012, France
| | - Serge Amselem
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Marie Legendre
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| |
Collapse
|
4
|
Song QH, Zhao KX, Huang S, Chen T, He L. Escape from X-chromosome inactivation and sex differences in Alzheimer's disease. Rev Neurosci 2024; 35:341-354. [PMID: 38157427 DOI: 10.1515/revneuro-2023-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Sex differences exist in the onset and progression of Alzheimer's disease. Globally, women have a higher prevalence, while men with Alzheimer's disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer's disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer's disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer's disease. Also, we discuss their possible role in driving the sex differences in Alzheimer's disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.
Collapse
Affiliation(s)
- Qing-Hua Song
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Ke-Xuan Zhao
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Shuai Huang
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
5
|
Fadra N, Schultz-Rogers LE, Chanana P, Cousin MA, Macke EL, Ferrer A, Pinto E Vairo F, Olson RJ, Oliver GR, Mulvihill LA, Jenkinson G, Klee EW. Identification of skewed X chromosome inactivation using exome and transcriptome sequencing in patients with suspected rare genetic disease. BMC Genomics 2024; 25:371. [PMID: 38627676 PMCID: PMC11020449 DOI: 10.1186/s12864-024-10240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.
Collapse
Affiliation(s)
- Numrah Fadra
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Laura E Schultz-Rogers
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Pritha Chanana
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Margot A Cousin
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erica L Macke
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alejandro Ferrer
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Filippo Pinto E Vairo
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rory J Olson
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gavin R Oliver
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lindsay A Mulvihill
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Garrett Jenkinson
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Politi C, Grillone K, Nocera D, Colao E, Bellisario ML, Loddo S, Catino G, Novelli A, Perrotti N, Rodolfo I, Malatesta P. Non-Invasive Prenatal Test Analysis Opens a Pandora's Box: Identification of Very Rare Cases of SRY-Positive Healthy Females, Segregating for Three Generations Thanks to Preferential Inactivation of the XqYp Translocated Chromosome. Genes (Basel) 2024; 15:103. [PMID: 38254992 PMCID: PMC10815901 DOI: 10.3390/genes15010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The translocation of the testis-determining factor, the SRY gene, from the Y to the X chromosome is a rare event that causes abnormalities in gonadal development. In all cases of males and females carrying this translocation, disorder of sex development is reported. In our study, we described a peculiar pedigree with the first evidence of four healthy females from three generations who are carriers of the newly identified t(X;Y)(q28;p11.2)(SRY+) translocation with no evidence of ambiguous genitalia or other SRY-dependent alterations. Our study was a consequence of a Non-Invasive Prenatal Test (NIPT) showing a sexual chromosomal abnormality (XXY) followed by a chorionic villus analysis suggesting a normal karyotype 46,XX and t(X;Y) translocation detected by FISH. Here, we (i) demonstrated the inheritance of the translocation in the maternal lineage via karyotyping and FISH analysis; (ii) characterised the structural rearrangement via chromosomal microarray; and (iii) demonstrated, via Click-iT® EdU Imaging assay, that there was an absolute preferential inactivation of the der(X) chromosome responsible for the lack of SRY expression. Overall, our study provides valuable genetic and molecular information that may lead personal and medical decisions.
Collapse
Affiliation(s)
- Cristina Politi
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
| | - Katia Grillone
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
| | - Donatella Nocera
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
| | - Emma Colao
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
| | - Michelle Li Bellisario
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
| | - Sara Loddo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (S.L.); (G.C.); (A.N.)
| | - Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (S.L.); (G.C.); (A.N.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (S.L.); (G.C.); (A.N.)
| | - Nicola Perrotti
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
- Department of Human Health, University Magna Graecia of Catanzaro, Campus S. Venuta, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Iuliano Rodolfo
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
- Department of Human Health, University Magna Graecia of Catanzaro, Campus S. Venuta, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Paola Malatesta
- Medical Genetics, Renato Dulbecco University Hospital, Viale T. Campanella 115, 88100 Catanzaro, Italy; (C.P.); (K.G.); (D.N.); (E.C.); (M.L.B.); (N.P.); (P.M.)
| |
Collapse
|
7
|
Sheykhi-Sabzehpoush M, Ghasemian M, Khojasteh Pour F, Mighani M, Moghanibashi M, Mohammad Jafari R, Zabel M, Dzięgiel P, Farzaneh M, Kempisty B. Emerging roles of long non-coding RNA FTX in human disorders. Clin Transl Oncol 2023; 25:2812-2831. [PMID: 37095425 DOI: 10.1007/s12094-023-03163-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells.
Collapse
Affiliation(s)
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046, Zielona Góra, Poland
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical, University, Wrocław, Poland.
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland.
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Mykins M, Layo-Carris D, Dunn LR, Skinner DW, McBryar AH, Perez S, Shultz TR, Willems A, Lau BYB, Hong T, Krishnan K. Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome. J Neurosci Res 2023; 101:1236-1258. [PMID: 37026482 PMCID: PMC10332853 DOI: 10.1002/jnr.25190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Rett syndrome is characterized by an early period of typical development and then, regression of learned motor and speech skills in girls. Loss of MECP2 protein is thought to cause Rett syndrome phenotypes. The specific underlying mechanisms from typical developmental trajectory to regression features throughout life are unclear. Lack of established timelines to study the molecular, cellular, and behavioral features of regression in female mouse models is a major contributing factor. Due to random X-chromosome inactivation, female patients with Rett syndrome and female mouse models for Rett syndrome (Mecp2Heterozygous , Het) express a functional copy of wild-type MECP2 protein in approximately half of all cells. As MECP2 expression is regulated during early postnatal development and experience, we characterized the expression of wild-type MECP2 in the primary somatosensory cortex of female Het mice. Here, we report increased MECP2 levels in non-parvalbumin-positive neurons of 6-week-old adolescent Het relative to age-matched wild-type controls, while also displaying typical levels of perineuronal net expression in the barrel field subregion of the primary somatosensory cortex, mild tactile sensory perception deficits, and efficient pup retrieval behavior. In contrast, 12-week-old adult Het express MECP2 at levels similar to age-matched wild-type mice, show increased perineuronal net expression in the cortex, and display significant tactile sensory perception deficits. Thus, we have identified a set of behavioral metrics and the cellular substrates to study regression during a specific time in the female Het mouse model, which coincides with changes in wild-type MECP2 expression. We speculate that the precocious increase in MECP2 expression within specific cell types of adolescent Het may provide compensatory benefits at the behavioral level, while the inability to further increase MECP2 levels leads to regressive behavioral phenotypes over time.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dana Layo-Carris
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Logan Reid Dunn
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - David Wilson Skinner
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alexandra Hart McBryar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah Perez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Trinity Rose Shultz
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew Willems
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Billy You Bun Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Juchniewicz P, Kloska A, Portalska K, Jakóbkiewicz-Banecka J, Węgrzyn G, Liss J, Głodek P, Tukaj S, Piotrowska E. X-chromosome inactivation patterns depend on age and tissue but not conception method in humans. Chromosome Res 2023; 31:4. [PMID: 36695960 PMCID: PMC9877087 DOI: 10.1007/s10577-023-09717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes, randomly silencing the maternal or paternal X chromosome in each cell of 46,XX females. Skewed XCI toward one parental X has been observed in association with ageing and in some female carriers of X-linked diseases. To address the problem of non-random XCI, we quantified the XCI skew in different biological samples of naturally conceived females of different age groups and girls conceived after in vitro fertilization (IVF). Generally, XCI skew differed between saliva, blood, and buccal swabs, while saliva and blood had the most similar XCI patterns in individual females. XCI skew increased with age in saliva, but not in other tissues. We showed no significant differences in the XCI patterns in tissues of naturally conceived and IVF females. The gene expression profile of the placenta and umbilical cord blood was determined depending on the XCI pattern. The increased XCI skewing in the placental tissue was associated with the differential expression of several genes out of 40 considered herein. Notably, skewed XCI patterns (> 80:20) were identified with significantly increased expression levels of four genes: CD44, KDM6A, PHLDA2, and ZRSR2. The differences in gene expression patterns between samples with random and non-random XCI may shed new light on factors contributing to the XCI pattern outcome and indicate new paths in future research on the phenomenon of XCI skewing.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Karolina Portalska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Liss
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland ,Research and Development Center, INVICTA, Sopot, Poland
| | - Piotr Głodek
- Research and Development Center, INVICTA, Sopot, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
10
|
Wu Q, Kong H, Shen Y, Chen J. Molecular cytogenetic characterization of a de novo derivative chromosome X with an unbalanced t(X;9) translocation in a fetus and literature review. Mol Cytogenet 2022; 15:24. [PMID: 35761368 PMCID: PMC9235249 DOI: 10.1186/s13039-022-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Partial trisomy 9p is one of the most frequent autosome anomalies in newborn infants featured by craniofacial dysmorphism, intellectual disability and psychomotor growth. Female patients carrying monosomy Xq usually show mild symptoms due to skewed X-chromosome inactivation (XCI). Unbalanced translocation between chromosome X and chromosome 9 is rare in prenatal diagnosis. The skewed inactivation of abnormal X would spread into the extra segment of chromosome 9 presented in the der(X) leading to mild phenotypes. We reported on a fetus with high risk of trisomy 9p(13.32 Mb 9p23-p24.3 duplication)suggested by noninvasive prenatal testing (NIPT), the fetus was normal by ultrasonography. G-banding with trypsin-giemsa (GTG), copy number variations sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were carried out to delineate the nature of rearrangement. Final karyotype of the fetus was identified as 46,X,der(X)t(X;9)(q27;p23)dn. An unbalanced X-autosome translocation with a deletion of Xqter-q27.2 and a duplication of 9pter-p23 led to mild phenotypes with no obvious alteration by prenatal ultrasonography, or obvious pathological alterations after pregnancy termination.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Central Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Hui Kong
- Department of Central Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Yanyan Shen
- Department of Central Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Jing Chen
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
11
|
Zhao Y, Li J, Dai L, Ma Y, Bai Y, Guo H. X Chromosome Inactivation Pattern and Pregnancy Outcome of Female Carriers of Pathogenic Heterozygous X-Linked Deletions. Front Genet 2021; 12:782629. [PMID: 34976017 PMCID: PMC8719196 DOI: 10.3389/fgene.2021.782629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Prenatal risk assessment of carriers of heterozygous X-linked deletion is a big challenge due to the phenotypic modification induced by X chromosome inactivation (XCI). Herein, we described four Chinese pedigrees with maternal-inherited X-deletions above 1 Mb. The pathogenic evaluation revealed that all X-deletions are harmful to heterozygous carriers; however, the asymptomatic pregnant female carriers in these families tremendously complicate the prognostic assessment of the unborn heterozygous embryos. In this study, we detected the XCI pattern of 11 female carriers of heterozygous X-linked deletions and 4 non-carrier females in these families and performed the first prenatal XCI pattern analysis in a fetal female carrier of heterozygous PCDH19-deletion to make risk prediction. In an adult female who lost one copy of the terminal of X chromosome short arm (Xp), a region enriching a large number of XCI escapees, the expression level of representative XCI escape genes was also detected. Pregnancy outcomes of all families were followed up or retrospected. Our research provides clinical evidence that X-deletions above 1 Mb are indeed associated with extremely skewed XCI. The favorable skewed XCI in combination with potential compensatory upregulation of XCI escapees would protect some but not all female carriers with pathogenic X-deletion from severe clinical consequences, mainly depending on the specific genetic contents involved in the deletion region. For PCDH19-disorder, the XCI pattern is considered as the decisive factor of phenotype expression, of which prenatal XCI assay using uncultured amniocytes could be a practicable way for risk prediction of this disease. These results provide valuable information about the usage of XCI assay in the prenatal risk assessment of heterozygous X-linked deletions.
Collapse
Affiliation(s)
- Yuanyin Zhao
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jia Li
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yongyi Ma
- Department of Gynaecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Gynaecology and Obstetrics, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Hong Guo,
| |
Collapse
|
12
|
Sun Y, Yang Y, Luo Y, Chen M, Wang L, Huang Y, Yang Y, Dong M. Lack of MECP2 gene transcription on the duplicated alleles of two related asymptomatic females with Xq28 duplications and opposite X-chromosome inactivation skewing. Hum Mutat 2021; 42:1429-1442. [PMID: 34273908 DOI: 10.1002/humu.24262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022]
Abstract
Xq28 duplication syndrome (MIM# 300815) is a severe neurodevelopmental disorder in males due to MeCP2 overexpression. Most females with MECP2 duplication are asymptomatic carriers, but there are phenotypic heterogeneities. Skewed X-chromosome inactivation (XCI) can protect females from exhibiting clinical phenotypes. Herein we reported two asymptomatic females (mother and grandmother) with interstitial Xq28 duplication. AR and RP2 assays showed that both had extremely skewed XCI, the Xq28 duplicated chromosome was inactivated in the mother, but was surprisingly activated in the grandmother. Interestingly, by combining RNA sequencing and whole-exome sequencing, we confirmed that XIST only expressed in the Xq28 duplication chromosomes of the two females, indicating that the Xq28 duplication chromosomes were inactive. Meanwhile, MECP2 and most XCI genes in the duplicated X-chromosomes were not transcriptionally expressed or upregulated, precluding major clinical phenotypes in the two females, especially the grandmother. We showed that XCI status detected using RNA sequencing was more relevant for establishing the clinical phenotype of MECP2 duplication in females. It suggested that there were other factors maintaining the XCI status in addition to DNA methylation, a possible additional inhibition mechanism occurred at the transcriptional level in the unmethylated X-chromosome, counter balancing the MECP2 duplication's detrimental phenotype effects.
Collapse
Affiliation(s)
- Yixi Sun
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yali Yang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuqin Luo
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Chen
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liya Wang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yingzhi Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanmei Yang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Minyue Dong
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Kawashima S, Hattori A, Suzuki E, Matsubara K, Toki M, Kosaki R, Hasegawa Y, Nakabayashi K, Fukami M, Kagami M. Methylation status of genes escaping from X-chromosome inactivation in patients with X-chromosome rearrangements. Clin Epigenetics 2021; 13:134. [PMID: 34193245 PMCID: PMC8244138 DOI: 10.1186/s13148-021-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X-chromosome inactivation (XCI) is a mechanism in which one of two X chromosomes in females is randomly inactivated in order to compensate for imbalance of gene dosage between sexes. However, about 15% of genes on the inactivated X chromosome (Xi) escape from XCI. The methylation level of the promoter region of the escape gene is lower than that of the inactivated genes. Dxz4 and/or Firre have critical roles for forming the three-dimensional (3D) structure of Xi. In mice, disrupting the 3D structure of Xi by deleting both Dxz4 and Firre genes led to changing of the escape genes list. To estimate the impact for escape genes by X-chromosome rearrangements, including DXZ4 and FIRRE, we examined the methylation status of escape gene promoters in patients with various X-chromosome rearrangements. RESULTS To detect the breakpoints, we first performed array-based comparative genomic hybridization and whole-genome sequencing in four patients with X-chromosome rearrangements. Subsequently, we conducted array-based methylation analysis and reduced representation bisulfite sequencing in the four patients with X-chromosome rearrangements and controls. Of genes reported as escape genes by gene expression analysis using human hybrid cells in a previous study, 32 genes showed hypomethylation of the promoter region in both male controls and female controls. Three patients with X-chromosome rearrangements had no escape genes with abnormal methylation of the promoter region. One of four patients with the most complicated rearrangements exhibited abnormal methylation in three escape genes. Furthermore, in the patient with the deletion of the FIRRE gene and the duplication of DXZ4, most escape genes remained hypomethylated. CONCLUSION X-chromosome rearrangements are unlikely to affect the methylation status of the promoter regions of escape genes, except for a specific case with highly complex rearrangements, including the deletion of the FIRRE gene and the duplication of DXZ4.
Collapse
Affiliation(s)
- Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Machiko Toki
- Department of Pediatrics, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka, Kanagawa, 254-0065, Japan.,Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
14
|
Migliore L, Nicolì V, Stoccoro A. Gender Specific Differences in Disease Susceptibility: The Role of Epigenetics. Biomedicines 2021; 9:652. [PMID: 34200989 PMCID: PMC8228628 DOI: 10.3390/biomedicines9060652] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
Many complex traits or diseases, such as infectious and autoimmune diseases, cancer, xenobiotics exposure, neurodevelopmental and neurodegenerative diseases, as well as the outcome of vaccination, show a differential susceptibility between males and females. In general, the female immune system responds more efficiently to pathogens. However, this can lead to over-reactive immune responses, which may explain the higher presence of autoimmune diseases in women, but also potentially the more adverse effects of vaccination in females compared with in males. Many clinical and epidemiological studies reported, for the SARS-CoV-2 infection, a gender-biased differential response; however, the majority of reports dealt with a comparable morbidity, with males, however, showing higher COVID-19 adverse outcomes. Although gender differences in immune responses have been studied predominantly within the context of sex hormone effects, some other mechanisms have been invoked: cellular mosaicism, skewed X chromosome inactivation, genes escaping X chromosome inactivation, and miRNAs encoded on the X chromosome. The hormonal hypothesis as well as other mechanisms will be examined and discussed in the light of the most recent epigenetic findings in the field, as the concept that epigenetics is the unifying mechanism in explaining gender-specific differences is increasingly emerging.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
- Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| |
Collapse
|
15
|
Favilla BP, Meloni VA, Perez AB, Moretti-Ferreira D, de Souza DH, Bellucco FT, Melaragno MI. Spread of X-chromosome inactivation into autosomal regions in patients with unbalanced X-autosome translocations and its phenotypic effects. Am J Med Genet A 2021; 185:2295-2305. [PMID: 33913603 DOI: 10.1002/ajmg.a.62228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Patients with unbalanced X-autosome translocations are rare and usually present a skewed X-chromosome inactivation (XCI) pattern, with the derivative chromosome being preferentially inactivated, and with a possible spread of XCI into the autosomal regions attached to it, which can inactivate autosomal genes and affect the patients' phenotype. We describe three patients carrying different unbalanced X-autosome translocations, confirmed by G-banding karyotype and array techniques. We analyzed their XCI pattern and inactivation spread into autosomal regions, through HUMARA, ZDHHC15 gene assay and the novel 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, and identified an extremely skewed XCI pattern toward the derivative chromosomes for all the patients, and a variable pattern of late-replication on the autosomal regions of the derivative chromosomes. All patients showed phenotypical overlap with patients presenting deletions of the autosomal late-replicating regions, suggesting that the inactivation of autosomal segments may be responsible for their phenotype. Our data highlight the importance of the XCI spread into autosomal regions for establishing the clinical picture in patients carrying unbalanced X-autosome translocations, and the incorporation of EdU as a novel and precise tool to evaluate the inactivation status in such patients.
Collapse
Affiliation(s)
- Bianca Pereira Favilla
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Beatriz Perez
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danilo Moretti-Ferreira
- Department of Chemical and Biological Sciences, Biosciences Institute, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Deise Helena de Souza
- Department of Chemical and Biological Sciences, Biosciences Institute, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | - Maria Isabel Melaragno
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Kouvidi E, Zachaki S, Selenti N, Veltra D, Evmorfopoulou T, Tsoutsou E, Tzifa G, Sofocleous C, Gagos S, Mavrou A. Detection of a novel unbalanced X;21 translocation in a girl with Turner syndrome phenotype. Gynecol Endocrinol 2021; 37:377-381. [PMID: 33356667 DOI: 10.1080/09513590.2020.1865907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To describe a novel unbalanced X;21 translocation resulting in a derivative pseudodicentric chromosome X;21 lacking the critical region for ovarian development and function, in a 16-year-old girl referred for cytogenetic analysis due to primary amenorrhea and Turner-like features. METHODS Cytogenetic analysis of the proband and her parents was performed on peripheral blood lymphocytes by GTG banding. Molecular cytogenetic FISH analysis was performed on metaphase preparations, using X chromosome centromeric probe and telomeric and pancentromeric peptide nucleic acid (PNA) analog probes. The HUMARA assay as well as methylation studies for PCSK1N and FMR-1 loci were performed. RESULTS Cytogenetic analysis revealed a de novo unbalanced X;21 translocation, described as 45,X,der(X)t(X;21)(q22.2;p11.2),-21. FISH analysis showed that the derivative X chromosome carried both the X and 21 centromeres, as well as, the Xp and 21q telomeres. The karyotype was thus reevaluated as 45,X,psu dic(21;X)(21qter→21p13::Xq22.2→Xpter),-21. X inactivation studies revealed that the derivative chromosome was of paternal origin and confirmed the selective inactivation of the derivative X segment of the pseudodicentric chromosome. CONCLUSIONS Primary amenorrhea and other Turner-like characteristics of the proband are apparently due to the loss of the Xq22.2→Xqter critical region which contains critical genes for the ovarian development and function. The chromosome X segment of the derivative pseudodicentric chromosome is selectively inactivated, but inactivation does not seem to spread onto the translocated chromosome 21, accounting probably for the lack of severe clinical consequences which would result from monosomy 21.
Collapse
Affiliation(s)
- Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Sophia Zachaki
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Nikoletta Selenti
- Department of Medical Genetics, School of Medicine, University of Athens, «Aghia Sophia» Childrens' Hospital, Athens, Greece
| | - Danai Veltra
- Department of Medical Genetics, School of Medicine, University of Athens, «Aghia Sophia» Childrens' Hospital, Athens, Greece
| | - Theodora Evmorfopoulou
- Center for Clinical, Experimental Surgery & Translational Research, Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens Greece (BRFAA), Athens, Greece
| | - Eirini Tsoutsou
- Department of Medical Genetics, School of Medicine, University of Athens, «Aghia Sophia» Childrens' Hospital, Athens, Greece
| | | | - Christalena Sofocleous
- Department of Medical Genetics, School of Medicine, University of Athens, «Aghia Sophia» Childrens' Hospital, Athens, Greece
| | - Sarantis Gagos
- Center for Clinical, Experimental Surgery & Translational Research, Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens Greece (BRFAA), Athens, Greece
| | - Ariadni Mavrou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| |
Collapse
|
17
|
Yamamoto-Shimojima K, Osawa M, Saito MK, Yamamoto T. Induced pluripotent stem cells established from a female patient with Xq22 deletion confirm that BEX2 escapes from X-chromosome inactivation. Congenit Anom (Kyoto) 2021; 61:63-67. [PMID: 33244819 DOI: 10.1111/cga.12403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
Large deletions in Xq22 are responsible for neurodevelopmental disorders, including severe intellectual disability and behavioral abnormalities. Although the deletion regions contain PLP1, the gene related to Pelizaeus-Merzbacher disease (PMD), patients with Xq22 deletions show no clinical features of PMD such as paraplegia and white matter abnormalities. This could be due to skewed X-chromosome inactivation (XCI) occurring predominantly in the affected allele. Isogenic pairs of wild type and mutant induced pluripotent stem cells (iPSCs) were established from the patient. In the iPSC line in which the wild type allele was inactivated, PLP1 was not expressed, but biallelic expression of BEX2 was identified. This suggests that BEX2 escaped from XCI and haploinsufficiency of BEX2 may be related to the phenotype of Xq22 deletions.
Collapse
Affiliation(s)
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical genetics, Tokyo, Japan
| |
Collapse
|
18
|
Tian D, Zhao Y, Zhu R, Li Q, Liu X. Systematic review of CMTX1 patients with episodic neurological dysfunction. Ann Clin Transl Neurol 2020; 8:213-223. [PMID: 33314704 PMCID: PMC7818278 DOI: 10.1002/acn3.51271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth type 1 (CMTX1) is an inherited peripheral neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene, which encodes the connexin32 protein. A small number of patients with GJB1 mutations present with episodic neurological dysfunction and reversible white matter lesions, which has not been adequately reported. Here, we aim to enable clinicians to further understand this particular situation through systematically reviewing all published relevant cases. METHODS We conducted a comprehensive search of the PubMed electronic database for medical literature relevant to CMTX1 patients with episodic neurological dysfunction and then fully analyzed the general information, clinical manifestations, and characteristics of magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and nerve conduction study (NCS). RESULTS We identified 47 cases of CMTX1 associated with episodic central nervous system (CNS) dysfunction from 38 publications. CMTX1 patients experienced episodic CNS deficits at a young age, ranging from infancy to 26 years, and 45 (95.7%) of them were male. The CNS symptoms manifested as facial, lingual, or limb weakness in 44 (93.6%), dysarthria or dysphagia in 39 (83.0%), facial or limb numbness in 15 (31.9%), and ataxia in 10 (21.3%) patients. The duration of episodic symptoms ranged from 3 minutes to 6 months. Thirty (63.8%) CMTX1 cases have reported obvious predisposing factors, among which the most common factors were infection or fever (27.7%), travel to high altitude (12.8%), and intensive exercise (8.5%). As for brain MRI, most abnormal signals were found in bilateral deep white matter (88.9%) and corpus callosum (80.0%). In addition, most of the NCS results were abnormal, including prolonged latency, reduced amplitude, and slowed conduction velocity. The motor nerve conduction velocity (MNCV) of median nerve was the most detectable and valuable, ranging from 25 to 45 m/s. INTERPRETATION We have reported the most comprehensive summary of the demographic and clinical profile from 47 CMTX1 patients with episodic CNS deficits and provided new insight into the phenotype spectrum of CMTX1. We hope that our study can help clinicians make early diagnosis and implement the best prevention and treatment strategies for CMTX1 patients with episodic CNS deficits.
Collapse
Affiliation(s)
- Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qu Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Understanding the Landscape of X-linked Variants Causing Intellectual Disability in Females Through Extreme X Chromosome Inactivation Skewing. Mol Neurobiol 2020; 57:3671-3684. [DOI: 10.1007/s12035-020-01981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
|