1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Flick KM, Demirci H, Demirci FY. Epigenetics of Conjunctival Melanoma: Current Knowledge and Future Directions. Cancers (Basel) 2024; 16:3687. [PMID: 39518125 PMCID: PMC11544918 DOI: 10.3390/cancers16213687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The purpose of this article is to provide a literature review of the epigenetic understanding of conjunctival melanoma (CM), with a primary focus on current gaps in knowledge and future directions in research. CM is a rare aggressive cancer that predominantly affects older adults. Local recurrences and distant metastases commonly occur in CM patients; however, their prediction and management remain challenging. Hence, there is currently an unmet need for useful biomarkers and more effective treatments to improve the clinical outcomes of these patients. Like other cancers, CM occurrence and prognosis are believed to be influenced by multiple genetic and epigenetic factors that contribute to tumor development/progression/recurrence/spread, immune evasion, and primary/acquired resistance to therapies. Epigenetic alterations may involve changes in chromatin conformation/accessibility, post-translational histone modifications or the use of histone variants, changes in DNA methylation, alterations in levels/functions of short (small) or long non-coding RNAs (ncRNAs), or RNA modifications. While recent years have witnessed a rapid increase in available epigenetic technologies and epigenetic modulation-based treatment options, which has enabled the development/implementation of various epi-drugs in the cancer field, the epigenetic understanding of CM remains limited due to a relatively small number of epigenetic studies published to date. These studies primarily investigated DNA methylation, ncRNA (e.g., miRNA or circRNA) expression, or RNA methylation. While these initial epigenetic investigations have revealed some potential biomarkers and/or therapeutic targets, they had various limitations, and their findings warrant replication in independent and larger studies/samples. In summary, an in-depth understanding of CM epigenetics remains largely incomplete but essential for advancing our molecular knowledge and improving clinical management/outcomes of this aggressive disease.
Collapse
Affiliation(s)
- Kaylea M. Flick
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - F. Yesim Demirci
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
6
|
Kim JM, Kim WR, Park EG, Lee DH, Lee YJ, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs. Int J Mol Sci 2024; 25:6190. [PMID: 38892378 PMCID: PMC11172830 DOI: 10.3390/ijms25116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Mably JD, Wang DZ. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol 2024; 21:326-345. [PMID: 37985696 PMCID: PMC11031336 DOI: 10.1038/s41569-023-00952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
The surge in reports describing non-coding RNAs (ncRNAs) has focused attention on their possible biological roles and effects on development and disease. ncRNAs have been touted as previously uncharacterized regulators of gene expression and cellular processes, possibly working to fine-tune these functions. The sheer number of ncRNAs identified has outpaced the capacity to characterize each molecule thoroughly and to reliably establish its clinical relevance; it has, nonetheless, created excitement about their potential as molecular targets for novel therapeutic approaches to treat human disease. In this Review, we focus on one category of ncRNAs - long non-coding RNAs - and their expression, functions and molecular mechanisms in cardiac hypertrophy and heart failure. We further discuss the prospects for this specific class of ncRNAs as novel targets for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- John D Mably
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Ali ES, Yalın AE, Yalın S. Long noncoding RNAs and their possible roles in tumorigenesis and drug resistance in cancer chemotherapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-15. [PMID: 38575568 DOI: 10.1080/15257770.2024.2336210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Cancer is still one of the most important diseases that have a high mortality rate around the world. The management of cancer involves many procedures, which include surgery, radiotherapy, and chemotherapy. Drug resistance in cancer chemotherapy is considered one of the most important problems in clinical oncology. A good understanding of the tumorigenesis process and the mechanisms of developing chemotherapy resistance in cancer cells will help achieve significant advances in cancer treatment protocols. In recent years, there has been an increasing interest in long noncoding RNAs (lncRNAs). LncRNAs are no longer just a transcriptional noise, and many investigations proved their possible roles in regulating mandatory cellular functions. A lot of newly published studies confirmed the implication of lncRNAs in the tumor formation process and the multiple drug resistance in cancer chemotherapy. The main aim of this review is to focus on the lncRNAs' functions in the cell, their possible roles in the tumor formation process, and their roles in the development of chemotherapy resistance in different cancer cells.
Collapse
Affiliation(s)
- Ehsan Sayed Ali
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ali Erdinç Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Serap Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
9
|
Peña-Flores JA, Muela-Campos D, Guzmán-Medrano R, Enríquez-Espinoza D, González-Alvarado K. Functional Relevance of Extracellular Vesicle-Derived Long Non-Coding and Circular RNAs in Cancer Angiogenesis. Noncoding RNA 2024; 10:12. [PMID: 38392967 PMCID: PMC10891584 DOI: 10.3390/ncrna10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are defined as subcellular structures limited by a bilayer lipid membrane that function as important intercellular communication by transporting active biomolecules, such as proteins, amino acids, metabolites, and nucleic acids, including long non-coding RNAs (lncRNAs). These cargos can effectively be delivered to target cells and induce a highly variable response. LncRNAs are functional RNAs composed of at least 200 nucleotides that do not code for proteins. Nowadays, lncRNAs and circRNAs are known to play crucial roles in many biological processes, including a plethora of diseases including cancer. Growing evidence shows an active presence of lnc- and circRNAs in EVs, generating downstream responses that ultimately affect cancer progression by many mechanisms, including angiogenesis. Moreover, many studies have revealed that some tumor cells promote angiogenesis by secreting EVs, which endothelial cells can take up to induce new vessel formation. In this review, we aim to summarize the bioactive roles of EVs with lnc- and circRNAs as cargo and their effect on cancer angiogenesis. Also, we discuss future clinical strategies for cancer treatment based on current knowledge of circ- and lncRNA-EVs.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Doctoral Program in Biomedical and Stomatological Sciences, Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico; (D.M.-C.); (R.G.-M.); (D.E.-E.); (K.G.-A.)
| | | | | | | | | |
Collapse
|
10
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
11
|
Kazemi S, Mirzaei R, Karampoor S, Hosseini-Fard SR, Ahmadyousefi Y, Soltanian AR, Keramat F, Saidijam M, Alikhani MY. Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microb Pathog 2023; 185:106459. [PMID: 37995882 DOI: 10.1016/j.micpath.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.
Collapse
Affiliation(s)
- Sima Kazemi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Iran
| | - Fariba Keramat
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Jafari N, Shahabi Rabori V, Zolfi Gol A, Saberiyan M. Crosstalk of NLRP3 inflammasome and noncoding RNAs in cardiomyopathies. Cell Biochem Funct 2023; 41:1060-1075. [PMID: 37916887 DOI: 10.1002/cbf.3882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Cardiovascular diseases (CVDs) identified as a serious public health problem. Although there is a lot of evidence that inflammatory processes play a significant role in the progression of CVDs, however, the precise mechanism is not fully understood. Nevertheless, recent studies have focused on inflammation and its related agents. Nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) is a type of pattern recognition receptor (PRR) that can recognize pathogen-associated molecular patterns and trigger innate immune response. NLRP3 is a component of the NOD-like receptor (NLR) family and have a pivotal role in detecting damage to cardiovascular tissue. It is suggested that activation of NLRP3 inflammasome leads to initiating and propagating the inflammatory response in cardiomyopathy. So, late investigations have highlighted the NLRP3 inflammasome activation in various forms of cardiomyopathy. On the other side, it was shown that noncoding RNAs (ncRNAs), particularly, microRNAs, lncRNAs, and circRNAs possess a regulatory function in the immune system's inflammatory response, implicating their involvement in various inflammatory disorders. In addition, their role in different cardiomyopathies was indicated in recent studies. This review article provides a summary of recent advancements focusing on the function of the NLRP3 inflammasome in common CVDs, especially cardiomyopathy, while also discussing the therapeutic potential of inhibiting the NLRP3 inflammasome regulated by ncRNAs.
Collapse
Affiliation(s)
- Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ali Zolfi Gol
- Department of Pediatrics Cardiology, Shahid Motahari Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
13
|
Zhang T, Yu H, Bai Y, Guo Y. Mutation density analyses on long noncoding RNA reveal comparable patterns to protein-coding RNA and prognostic value. Comput Struct Biotechnol J 2023; 21:4887-4894. [PMID: 37860228 PMCID: PMC10582829 DOI: 10.1016/j.csbj.2023.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Mutations and gene expression are the two most studied genomic features in cancer research. In the last decade, the combined advances in genomic technology and computational algorithms have broadened mutation research with the concept of mutation density and expanded the traditional scope of protein-coding RNA to noncoding RNAs. However, mutation density analysis had yet to be integrated with non-coding RNAs. In this study, we examined long non-coding RNA (lncRNA) mutation density patterns of 57 unique cancer types using 80 cancer cohorts. Our analysis revealed that lncRNAs exhibit mutation density patterns reminiscent to those of protein-coding mRNAs. These patterns include mutation peak and dip around transcription start sites of lncRNA. In many cohorts, these patterns justified statistically significant transcription strand bias, and the transcription strand bias was shared between lncRNAs and mRNAs. We further quantified transcription strand biases with a Log Odds Ratio metric and showed that some of these biases are associated with patient prognosis. The prognostic effect may be exerted due to strong Transcription-coupled repair mechanisms associated with the individual patient. For the first time, our study combined mutational density patterns with lncRNA mutations, and the results demonstrated remarkably comparable patterns between protein-coding mRNA and lncRNA, further illustrating lncRNA's potential roles in cancer research.
Collapse
Affiliation(s)
- Troy Zhang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Hui Yu
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Yongsheng Bai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Yan Guo
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
14
|
Ding P, Zeng M, Yin R. Editorial: Computational methods to analyze RNA data for human diseases. Front Genet 2023; 14:1270334. [PMID: 37674479 PMCID: PMC10478215 DOI: 10.3389/fgene.2023.1270334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Reddy D, Wickman JR, Ajit SK. Epigenetic regulation in opioid induced hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100146. [PMID: 38099284 PMCID: PMC10719581 DOI: 10.1016/j.ynpai.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
About 25 million American adults experience pain daily and one of the most commonly prescribed drugs to treat pain are opioids. Prolonged opioid usage and dose escalations can cause a paradoxical response where patients experience enhanced pain sensitivity. This opioid induced hyperalgesia (OIH) is a major hurdle when treating pain in the clinic because its underlying mechanisms are still not fully understood. OIH is also commonly overlooked and lacks guidelines to prevent its onset. Research on pain disorders and opioid usage have recognized potential epigenetic drivers of disease including DNA methylation, histone modifications, miRNA regulation, but their involvement in OIH has not been well studied. This article discusses epigenetic changes that may contribute to pathogenesis, with an emphasis on miRNA alterations in OIH. There is a crucial gap in knowledge including how multiple epigenetic modulators contribute to OIH. Elucidating the epigenetic changes underlying OIH and the crosstalk among these mechanisms could lead to the development of novel targets for the prevention and treatment of this painful phenomena.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
16
|
Cheng Y, Xu SM, Takenaka K, Lindner G, Curry-Hyde A, Janitz M. A Unique Circular RNA Expression Pattern in the Peripheral Blood of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Gene 2023:147568. [PMID: 37328077 DOI: 10.1016/j.gene.2023.147568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with obscure aetiology. The underdiagnosis rate of ME/CFS is high due to the lack of diagnostic criteria based on objective markers. In recent years, circRNAs have emerged as potential genetic biomarkers for neurological diseases, including Parkinson's disease and Alzheimer's disease, making them likely to have the same prospect of being biomarkers in ME/CFS. However, despite the extensive amount of research that has been performed on the transcriptomes of ME/CFS patients, all of them are solely focused on linear RNAs, and the profiling of circRNAs in ME/CFS has been completely omitted. In this study, we investigated the expression profiles of circRNAs, comparing ME/CFS patients and controls before and after two sessions of cardiopulmonary exercise longitudinally. In patients with ME/CFS, the number of detected circRNAs was higher compared to healthy controls, indicating potential differences in circRNA expression associated with the disease. Additionally, healthy controls showed an increase in the number of circRNAs following exercise testing, while no similar pattern was evident in ME/CFS patients, further highlighting physiological differences between the two groups. A lack of correlation was observed between differentially expressed circRNAs and their corresponding coding genes in terms of expression and function, suggesting the potential of circRNAs as independent biomarkers in ME/CFS. Specifically, 14 circRNAs were highly expressed in ME/CFS patients but absent in controls throughout the exercise study, indicating a unique molecular signature specific to ME/CFS patients and providing potential diagnostic biomarkers for the disease. Significant enrichment of protein and gene regulative pathways were detected in relation to five of these 14 circRNAs based on their predicted miRNA target genes. Overall, this is the first study to describe the circRNA expression profile in peripheral blood of ME/CFS patients, providing valuable insights into the molecular mechanisms underlying the disease.
Collapse
Affiliation(s)
- Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
17
|
Fang K, Deng Y, Yang P, Zhang Y, Luo D, Wang F, Cai Z, Liu Y. Circ_0079530 stimulates THBS2 to promote the malignant progression of non-small cell lung cancer by sponging miR-584-5p. Histol Histopathol 2023; 38:681-693. [PMID: 36382967 DOI: 10.14670/hh-18-545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Circ_0079530 has been confirmed to be a novel potential oncogene in non-small cell lung cancer (NSCLC). This study aims to explore the role and mechanism of circ_0079530 in NSCLC progression. METHODS Levels of circ_0079530, microRNA (miR)-584-5p, thrombospondin-2 (THBS2), PCNA, Bax, E-cadherin, and ki67 were detected by quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. The proliferation of NSCLC cells was measured using cell counting kit 8 (CCK8) assay, colony formation assay, and EdU staining. Cell apoptosis and motility were respectively detected by flow cytometry and transwell assays. Interaction between miR-584-5p and circ_0079530 or THBS2 was predicted by bioinformatics analysis and confirmed via luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was used to analyze the role of circ_0079530 in tumor growth in vivo. RESULTS Circ_0079530 was highly expressed in NSCLC tissues and cell lines. Circ_0079530 overexpression facilitated proliferation, migration, and invasion whereas it restrained the apoptosis of NSCLC cells. Circ_0079530 silence showed the opposite effects on the above malignant biological behaviors. Mechanistic analysis showed that circ_0079530 functioned as a sponge of miR-584-5p to relieve the suppressive action of miR-584-5p on its target THBS2. Additionally, circ_0079530 knockdown impeded the growth of xenografts in vivo. CONCLUSION Circ_0079530 promoted NSCLC progression by regulating the miR-584-5p/THBS2 axis, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Kun Fang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yibin Deng
- Department of Pediatric, Sichuan Science City Hospital, Mianyang, PR China
| | - Ping Yang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yurong Zhang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Dan Luo
- Department of Gynaecology and Obstetrics (Science and Education Department), Sichuan Science City Hospital, Mianyang, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Zhilong Cai
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yang Liu
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China.
| |
Collapse
|
18
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
19
|
Transcriptome RNA Sequencing Reveals That Circular RNAs Are Abundantly Expressed in Embryonic Breast Muscle of Duck. Vet Sci 2023; 10:vetsci10020075. [PMID: 36851380 PMCID: PMC10004440 DOI: 10.3390/vetsci10020075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Circular RNAs are widespread in various species and have important roles in myogenesis. However, the circular RNAs involved in breast muscle development in ducks have not yet been studied. Here, to identify circular RNAs during duck skeletal muscle development, three pectorales from Shan Ma ducks at E13 and E19, which represent undifferentiated and differentiated myoblasts, respectively, were collected and subjected to RNA sequencing. A total of 16,622 circular RNAs were identified, of which approximately 80% were exonic circular RNAs and 260 were markedly differentially expressed between E19 and E13. The parental genes of the differentially expressed circular RNAs were significantly enriched in muscle-related biological processes. Moreover, we found that the overexpression of circGAS2-2 promoted cell cycle progression and increased the proliferation viability of duck primary myoblasts; conversely, knockdown of circGAS2-2 retarded the cell cycle and reduced the proliferation viability of myoblasts. Taken together, our results demonstrate that circular RNAs are widespread and variously expressed during the development of duck skeletal muscle and that circGAS2-2 is involved in the regulation of myogenesis.
Collapse
|
20
|
Furtado CLM, da Silva Santos R, Sales SLA, Teixeira LPR, Pessoa CDÓ. Long Non-coding RNAs and CRISPR-Cas Edition in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:41-58. [PMID: 37486515 DOI: 10.1007/978-3-031-33325-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are one of the most abundant and heterogeneous transcripts with key roles in chromatin remodeling and gene regulation at the transcriptional and post-transcriptional levels. Due to their role in cell growth and differentiation, lncRNAs have emerged as an important biomarker in cancer diagnosis, prognosis, and targeted treatment. Recent studies have focused on elucidating lncRNA function during malignant transformation, tumor progression and drug resistance. The advent of the CRISPR system has made it possible to precisely edit complex genomic loci such as lncRNAs. Thus, we summarized the advances in CRISPR-Cas approaches for functional studies of lncRNAs including gene knockout, knockdown, overexpression and RNA targeting in tumorigenesis and drug resistance. Additionally, we highlighted the perspectives and potential applications of CRISPR approaches to treat cancer, as an emerging and promising target therapy.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- University of Fortaleza, Experimental Biology Center, Fortaleza, Ceara, Brazil.
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceara, Fortaleza, Brazil.
| | - Renan da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | | | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
21
|
Cheng T, Huang F, Zhang Y, Zhou Z. Circ_0004491 stimulates guanine nucleotide-binding protein alpha subunit to inhibit the malignant progression of oral squamous cell carcinoma by sponging miR-2278. J Dent Sci 2023; 18:237-247. [PMID: 36643221 PMCID: PMC9831788 DOI: 10.1016/j.jds.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Circular RNA origin recognition complex subunit 4 (circORC4; ID: hsa_circ_0004491) have been confirmed to be a novel potential biomarker of oral squamous cell carcinoma (OSCC). This study aimed to explore the molecular mechanism of circ_0004491 in OSCC progression. Materials and methods Levels of circ_0004491, microRNA (miR)-2278, guanine nucleotide-binding protein alpha subunit (GNAS), Bax, Bcl-2, E-cadherin and ki-67 were detected by quantitative real-time PCR, western blotting and immunohistochemistry. The proliferation of OSCC cells was measured using colony formation assay and EdU staining. Cell apoptosis and motility were detected by flow cytometry and transwell assays respectively. Interaction between miR-2278 and circ_0004491 or GNAS was predicted by bioinformatics analysis and confirmed via luciferase reporter assay and RNA immunoprecipitation assay. Xenograft tumor model was used to analyze the role of circ_0004491 in tumor growth in vivo. Results Circ_0004491 was downregulated in OSCC tissues and cell lines. Circ_0004491 overexpression suppressed the proliferation, migration and invasion whereas facilitated the apoptosis of OSCC cells. Circ_0004491 acted as a molecular sponge for miR-2278, and circ_0004491 overexpression-mediated effect was partly reversed by miR-2278 mimic in OSCC cells. MiR-2278 interacted with the 3'UTR of GNAS. Circ_0004491 contributed to GNAS level by sponging miR-2278 in OSCC cells. GNAS knockdown restored miR-2278 inhibitor-mediated effect in OSCC cells. Circ_0004491 overexpression repressed xenograft tumor growth in vivo. Conclusion Circ_0004491 can repress OSCC progression by regulation of miR-2278/GNAS axis, providing a possible circRNA-targeted therapy for OSCC.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Stomatology, Hanyang Hospital Affiliated to Medical College of Wuhan University of Science and Technology, Wuhan, China,Corresponding author. Department of StomatologyHanyang Hospital Affiliated to Medical College of Wuhan University of Science and Technology, No. 53, Ink Lake Road, Hanyang District, Wuhan, 430050, China.
| | - Feifei Huang
- Department of Respiratory Medicine, Dongxihu District People’s Hospital of Wuhan City in Hubei Province, Wuhan, China
| | - Yin Zhang
- Department of Stomatology, Hanyang Hospital Affiliated to Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Zhen Zhou
- Department of Stomatology, Hanyang Hospital Affiliated to Medical College of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Scharbaai-Vázquez R, J. López Font F, A. Zayas Rodríguez F. Persistence in Chlamydia. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chlamydia spp. are important causes of acute and persistent/chronic infections. All Chlamydia spp. display a unique biphasic developmental cycle alternating between an infectious elementary body (EB) and a replicative form, the reticulate body (RB), followed by the multiplication of RBs by binary fission and progressive differentiation back into EBs. During its intracellular life, Chlamydia employs multiple mechanisms to ensure its persistence inside the host. These include evasion of diverse innate immune responses, modulation of host cell structure and endocytosis, inhibition of apoptosis, activation of pro-signaling pathways, and conversion to enlarged, non-replicative but viable “aberrant bodies” (ABs). Early research described several systems for Chlamydial persistence with a significant number of variables that make a direct comparison of results difficult. Now, emerging tools for genetic manipulations in Chlamydia and advances in global microarray, transcriptomics, and proteomics have opened new and exciting opportunities to understand the persistent state of Chlamydia and link the immune and molecular events of persistence with the pathogenesis of recurrent and chronic Chlamydial infections. This chapter reviews our current understanding and advances in the molecular biology of Chlamydia persistence.
Collapse
|
23
|
Vignali V, Hines PA, Cruz AG, Ziętek B, Herold R. Health horizons: Future trends and technologies from the European Medicines Agency's horizon scanning collaborations. Front Med (Lausanne) 2022; 9:1064003. [PMID: 36569125 PMCID: PMC9772004 DOI: 10.3389/fmed.2022.1064003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
In medicines development, the progress in science and technology is accelerating. Awareness of these developments and their associated challenges and opportunities is essential for medicines regulators and others to translate them into benefits for society. In this context, the European Medicines Agency uses horizon scanning to shine a light on early signals of relevant innovation and technological trends with impact on medicinal products. This article provides the results of systematic horizon scanning exercises conducted by the Agency, in collaboration with the World Health Organization (WHO) and the European Commission's Joint Research Centre's (DG JRC). These collaborative exercises aim to inform policy-makers of new trends and increase preparedness in responding to them. A subset of 25 technological trends, divided into three clusters were selected and reviewed from the perspective of medicines regulators. For each of these trends, the expected impact and challenges for their adoption are discussed, along with recommendations for developers, regulators and policy makers.
Collapse
Affiliation(s)
- Valentina Vignali
- European Medicines Agency, Amsterdam, Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, Groningen, Netherlands
| | - Philip A. Hines
- European Medicines Agency, Amsterdam, Netherlands
- Faculty of Health Medicines and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | | | - Ralf Herold
- European Medicines Agency, Amsterdam, Netherlands
| |
Collapse
|
24
|
Saranya I, Akshaya R, Selvamurugan N. Regulation of Wnt signaling by non-coding RNAs during osteoblast differentiation. Differentiation 2022; 128:57-66. [DOI: 10.1016/j.diff.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
25
|
Liu Z, Spiegelman VS, Wang H. Distinct noncoding RNAs and RNA binding proteins associated with high-risk pediatric and adult acute myeloid leukemias detected by regulatory network analysis. Cancer Rep (Hoboken) 2022; 5:e1592. [PMID: 34862757 PMCID: PMC9575484 DOI: 10.1002/cnr2.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease in both children and adults. Although it is well-known that adult and pediatric AMLs are genetically distinct diseases, the driver genes for high-risk pediatric and adult AMLs are still not fully understood. Particularly, the interactions between RNA binding proteins (RBPs) and noncoding RNAs (ncRNAs) for high-risk AMLs have not been explored. AIM To identify RBPs and noncoding RNAs (ncRNAs) that are the master regulators of high-risk AML. METHODS In this manuscript, we identify over 400 upregulated genes in high-risk adult and pediatric AMLs respectively with the expression profiles of TCGA and TARGET cohorts. There are less than 5% genes commonly upregulated in both cohorts, highlighting the genetic differences in adult and childhood AMLs. A novel distance correlation test is proposed for gene regulatory network construction. We build RBP-based regulatory networks with upregulated genes in high-risk adult and pediatric AMLs, separately. RESULTS We discover that three RBPs, three snoRNAs, and two circRNAs function together and regulate over 100 upregulated RNA targets in adult AML, whereas two RBPs are associated with 17 long noncoding RNAs (lncRNAs), and all together regulate over 90 upregulated RNA targets in pediatric AML. Of which, two RBPs, MLLT3 and RBPMS, and their circRNA targets, PTK2 and NRIP1, are associated with the overall survival (OS) in adult AML (p ≤ 0.01), whereas two different RBPs, MSI2 and DNMT3B, and 13 (out of 17) associated lncRNAs are prognostically significant in pediatric AML. CONCLUSIONS Both RBPs and ncRNAs are known to be the major regulators of transcriptional processes. The RBP-ncRNA pairs identified from the regulatory networks will allow better understanding of molecular mechanisms underlying high-risk adult and pediatric AMLs, and assist in the development of novel RBPs and ncRNAs based therapeutic strategies.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Department of Public Health SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Division of Pediatric Hematology and Oncology, Department of PediatricsPenn State College of MedicineHersheyPennsylvaniaUSA
| | | | - Hong‐Gang Wang
- Division of Pediatric Hematology and Oncology, Department of PediatricsPenn State College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
26
|
Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int J Mol Sci 2022; 23:ijms231710131. [PMID: 36077528 PMCID: PMC9455963 DOI: 10.3390/ijms231710131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The success of checkpoint blockade therapy against cancer has unequivocally shown that cancer cells can be effectively recognized by the immune system and eliminated. However, the identity of the cancer antigens that elicit protective immunity remains to be fully explored. Over the last decade, most of the focus has been on somatic mutations derived from non-synonymous single-nucleotide variants (SNVs) and small insertion/deletion mutations (indels) that accumulate during cancer progression. Mutated peptides can be presented on MHC molecules and give rise to novel antigens or neoantigens, which have been shown to induce potent anti-tumor immune responses. A limitation with SNV-neoantigens is that they are patient-specific and their accurate prediction is critical for the development of effective immunotherapies. In addition, cancer types with low mutation burden may not display sufficient high-quality [SNV/small indels] neoantigens to alone stimulate effective T cell responses. Accumulating evidence suggests the existence of alternative sources of cancer neoantigens, such as gene fusions, alternative splicing variants, post-translational modifications, and transposable elements, which may be attractive novel targets for immunotherapy. In this review, we describe the recent technological advances in the identification of these novel sources of neoantigens, the experimental evidence for their presentation on MHC molecules and their immunogenicity, as well as the current clinical development stage of immunotherapy targeting these neoantigens.
Collapse
|
27
|
Tanuj GN, Khan O, Malla WA, Rajak KK, Chandrashekar S, Kumar A, Dhara S, Gupta PK, Mishra BP, Dutt T, Gandham R, Sajjanar B. Integrated analysis of long-noncoding RNA and circular RNA expression in Peste-des-Petits-Ruminants Virus (PPRV) infected marmoset B lymphocyte (B95a) cells. Microb Pathog 2022; 170:105702. [DOI: 10.1016/j.micpath.2022.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
|
28
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
29
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
30
|
Kretschmer M, Gapp K. Deciphering the RNA universe in sperm in its role as a vertical information carrier. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac011. [PMID: 35633894 PMCID: PMC9134061 DOI: 10.1093/eep/dvac011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 05/21/2023]
Abstract
The inheritance of neurophysiologic and neuropsychologic complex diseases can only partly be explained by the Mendelian concept of genetic inheritance. Previous research showed that both psychological disorders like post-traumatic stress disorder and metabolic diseases are more prevalent in the progeny of affected parents. This could suggest an epigenetic mode of transmission. Human studies give first insight into the scope of intergenerational influence of stressors but are limited in exploring the underlying mechanisms. Animal models have elucidated the mechanistic underpinnings of epigenetic transmission. In this review, we summarize progress on the mechanisms of paternal intergenerational transmission by means of sperm RNA in mouse models. We discuss relevant details for the modelling of RNA-mediated transmission, point towards currently unanswered questions and propose experimental considerations for tackling these questions.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Department of Health Sciences and Technology, ETH Zurich, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Neuroscience Centre Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Katharina Gapp
- Department of Health Sciences and Technology, ETH Zurich, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Neuroscience Centre Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
31
|
Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells 2022; 11:cells11050777. [PMID: 35269399 PMCID: PMC8908994 DOI: 10.3390/cells11050777] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Heart failure is a major global health concern. Noncoding RNAs (ncRNAs) are involved in physiological processes and in the pathogenesis of various diseases, including heart failure. ncRNAs have emerged as critical components of transcriptional regulatory pathways that govern cardiac development, stress response, signaling, and remodeling in cardiac pathology. Recently, studies of ncRNAs in cardiovascular disease have achieved significant development. Here, we discuss the roles of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) that modulate the cardiac hypertrophy and heart failure.
Collapse
|
32
|
Tan Y, Xu F, Xu L, Cui J. Long non‑coding RNA LINC01748 exerts carcinogenic effects in non‑small cell lung cancer cell lines by regulating the microRNA‑520a‑5p/HMGA1 axis. Int J Mol Med 2022; 49:22. [PMID: 34970695 PMCID: PMC8722766 DOI: 10.3892/ijmm.2021.5077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/22/2021] [Indexed: 12/09/2022] Open
Abstract
The important functions of long non‑coding RNAs in the malignancy of non‑small cell lung cancer (NSCLC) has been increasingly highlighted. However, whether LINC01748 functions in a crucial regulatory role still requires further research. The aim of the present study was to investigate the biological roles of LINC01748 in NSCLC. Furthermore, different experiments were utilized to investigate the mechanism of action of LINC01748 in 2 NSCLC cell lines. Reverse transcription‑quantitative PCR was used to measure mRNA expression levels. Cell Counting Kit‑8 assay, flow cytometry analysis and Transwell and Matrigel assays were also used to analyze, cell viability, apoptosis, and migration and invasion, respectively. A tumor xenograft model was used for in vivo experiments. RNA immunoprecipitation experiments, luciferase reporter assays and rescue experiments were used to investigate the mechanisms involved. Data from The Cancer Genome Atlas dataset and patients recruited into the present study showed that LINC01748 was overexpressed in NSCLC. Patients with high LINC01748 mRNA expression level had shorter overall survival rate compared with that in patients with low LINC01748 mRNA expression level. Then, knockdown of LINC01748 mRNA expression level reduced cell proliferation, migration and invasion, but increased cell apoptosis in vitro. Knockdown of LINC01748 also reduced tumor growth in vivo. Mechanistically, LINC01748 could act as a competing endogenous (ce)RNA to sponge microRNA(miR)‑520a‑5p, to increase the expression level of the target gene, high mobility group AT‑hook 1 (HMGA1) in the NSCLC cell lines. Furthermore, rescue experiments illustrated that the functions exerted by LINC01748 knockdown were negated by miR‑520a‑5p inhibition or HMGA1 overexpression. In summary, LINC01748 acted as a ceRNA by sponging miR‑520a‑5p, leading to HMGA1 overexpression, thus increasing the aggressiveness of the NSCLC cells. Accordingly, targeting the LINC01748/miR‑520a‑5p/HMGA1 pathway may benefit NSCLC therapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis/genetics
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HMGA1a Protein/genetics
- HMGA1a Protein/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Prognosis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Yinling Tan
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Fengxia Xu
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Lingling Xu
- Department of Oncology, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Jianying Cui
- Department of Respiratory, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
33
|
Naz F, Tariq I, Ali S, Somaida A, Preis E, Bakowsky U. The Role of Long Non-Coding RNAs (lncRNAs) in Female Oriented Cancers. Cancers (Basel) 2021; 13:6102. [PMID: 34885213 PMCID: PMC8656502 DOI: 10.3390/cancers13236102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in molecular biology have discovered the mysterious role of long non-coding RNAs (lncRNAs) as potential biomarkers for cancer diagnosis and targets for advanced cancer therapy. Studies have shown that lncRNAs take part in the incidence and development of cancers in humans. However, previously they were considered as mere RNA noise or transcription byproducts lacking any biological function. In this article, we present a summary of the progress on ascertaining the biological functions of five lncRNAs (HOTAIR, NEAT1, H19, MALAT1, and MEG3) in female-oriented cancers, including breast and gynecological cancers, with the perspective of carcinogenesis, cancer proliferation, and metastasis. We provide the current state of knowledge from the past five years of the literature to discuss the clinical importance of such lncRNAs as therapeutic targets or early diagnostic biomarkers. We reviewed the consequences, either oncogenic or tumor-suppressing features, of their aberrant expression in female-oriented cancers. We tried to explain the established mechanism by which they regulate cancer proliferation and metastasis by competing with miRNAs and other mechanisms involved via regulating genes and signaling pathways. In addition, we revealed the association between stated lncRNAs and chemo-resistance or radio-resistance and their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Imran Tariq
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
- Angström Laboratory, Department of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Ahmed Somaida
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| |
Collapse
|
34
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
35
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Parra-Medina R, López-Kleine L, Ramírez-Clavijo S, Payán-Gómez C. Coexpression network analysis identified lncRNAs-mRNAs with potential relevance in African ancestry prostate cancer. Future Sci OA 2021; 7:FSO749. [PMID: 34737889 PMCID: PMC8558852 DOI: 10.2144/fsoa-2021-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
AIM This study aims to investigate similarities and differences using lncRNA and mRNA coexpression network analysis in African ancestry (AA) and European ancestry (EA) among prostate cancer (PCa) patients. METHODS We performed weighted gene coexpression network analysis of the expression from 49 of AA and 49 of EA to identify lncRNAs-mRNAs. RESULTS 27 lncRNAs and 36 mRNAs were highly expressed in patients of AA. Two mRNAs and their antisense lncRNAs were expressed. Additionally, seven mRNAs were DE or coexpressed and had an impact on survival. CONCLUSION We present a list of lncRNAs and mRNAs that were DE and coexpressed when comparing patients of AA and EA, and these data are a resource for future studies to understand the role of lncRNAs.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Pathology, Research Institute, Fundación Univeristaria de Ciencias de la Salud, Bogotá, Colombia
- Deparment of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - César Payán-Gómez
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
37
|
Ghorbani F, Abolghasemi R, Haghighi M, Etemadi N, Wang S, Karimi M, Soorni A. Global identification of long non-coding RNAs involved in the induction of spinach flowering. BMC Genomics 2021; 22:704. [PMID: 34587906 PMCID: PMC8482690 DOI: 10.1186/s12864-021-07989-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Spinach is a beneficial annual vegetable species and sensitive to the bolting or early flowering, which causes a large reduction in quality and productivity. Indeed, bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although some key flowering responsive genes have been identified in spinach, non-coding RNA molecules like long non-coding RNAs (lncRNAs) were not investigated yet. Herein, we used bioinformatic approaches to analyze the transcriptome datasets from two different accessions Viroflay and Kashan at two vegetative and reproductive stages to reveal novel lncRNAs and the construction of the lncRNA-mRNA co-expression network. Additionally, correlations among gene expression modules and phenotypic traits were investigated; day to flowering was chosen as our interesting trait. Results In the present study, we identified a total of 1141 lncRNAs, of which 111 were differentially expressed between vegetative and reproductive stages. The GO and KEGG analyses carried out on the cis target gene of lncRNAs showed that the lncRNAs play an important role in the regulation of flowering spinach. Network analysis pinpointed several well-known flowering-related genes such as ELF, COL1, FLT, and FPF1 and also some putative TFs like MYB, WRKY, GATA, and MADS-box that are important regulators of flowering in spinach and could be potential targets for lncRNAs. Conclusions This study is the first report on identifying bolting and flowering-related lncRNAs based on transcriptome sequencing in spinach, which provides a useful resource for future functional genomics studies, genes expression researches, evaluating genes regulatory networks and molecular breeding programs in the regulation of the genetic mechanisms related to bolting in spinach. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07989-1.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Reza Abolghasemi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shui Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Marzieh Karimi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.,Department of Plant Breeding and Biotechnology, College of Agriculture, University of Shahrekord, Shahrekord, Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| |
Collapse
|
38
|
Ghafouri-Fard S, Safari M, Taheri M, Samadian M. Expression of Linear and Circular lncRNAs in Alzheimer's Disease. J Mol Neurosci 2021; 72:187-200. [PMID: 34415549 DOI: 10.1007/s12031-021-01900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder of the elderly described by progressive cognitive debility. Recent studies have displayed the significance of linear and circular long non-coding RNAs (lncRNAs) in the pathobiology of Alzheimer's disease. These studies have reported the downregulation of MALAT1, while the upregulation of NEAT1, RP11-543N12.1, SOX21-AS1, BDNF-AS, BACE1-AS, ANRIL, XIST, and some other linear lncRNAs in clinical samples are obtained from these patients or animal models of Alzheimer's disease. A number of circRNAs such as ciRS-7, ciRS-7, circNF1-419, circHDAC9, circ_0000950,and circAβ-a have been shown to partake in the pathogenesis of this disorder. In the present manuscript, we provide a review of the impact of linear and circular lncRNAs in the pathobiology of Alzheimer's disease and their potential application as markers for this neurodegenerative condition.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:678593. [PMID: 35047931 PMCID: PMC8757885 DOI: 10.3389/fmedt.2021.678593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and it is responsible for around 200,000 deaths each year worldwide. The standard therapy for GBM treatment includes surgical resection followed by temozolomide-based chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment modalities for GBM treatment are urgently needed. Mounting evidence indicates that non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been identified in GBM cell lines and GBM tumor samples. Some of them have been proposed as diagnostic and prognostic markers, and as targets for GBM treatment. Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides but for therapies designed for brain-related conditions, is the presence of the blood-brain barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable agents. Although some NPs have been derivatized at their surface to cross the BBB, optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently unavailable. In this review, we describe first the current treatments for GBM therapy. Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs) for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB, and the strategies to overcome this barrier. Finally, we categorize the critical points where research should be the focus in order to design optimal NPs for drug delivery into the brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the clinical setting.
Collapse
Affiliation(s)
- Rohit K. Sharma
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Carlos Calderon
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Pablo E. Vivas-Mejia
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
40
|
Bamunuarachchi G, Pushparaj S, Liu L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol 2021; 18:767-784. [PMID: 33404285 PMCID: PMC8078518 DOI: 10.1080/15476286.2021.1872170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/20/2023] Open
Abstract
Influenza virus infection through seasonal epidemics and occasional pandemics has been a major public health concern for decades. Incomplete protection from vaccination and increased antiviral resistance due to frequent mutations of influenza viruses have led to a continuous need for new therapeutic options. The functional significance of host protein and influenza virus interactions has been established, but relatively less is known about the interaction of host noncoding RNAs, including microRNAs and long noncoding RNAs, with influenza viruses. In this review, we summarize host noncoding RNA profiles during influenza virus infection and the regulation of influenza virus infection by host noncoding RNAs. Influenza viral non-coding RNAs are briefly discussed. Increased understanding of the molecular regulation of influenza viral replication will be beneficial in identifying potential therapeutic targets against the influenza virus.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| |
Collapse
|
41
|
Jin W, Zhao Y, Zhai B, Li Y, Fan S, Yuan P, Sun G, Jiang R, Wang Y, Liu X, Tian Y, Kang X, Li G. Characteristics and expression profiles of circRNAs during abdominal adipose tissue development in Chinese Gushi chickens. PLoS One 2021; 16:e0249288. [PMID: 33857153 PMCID: PMC8049301 DOI: 10.1371/journal.pone.0249288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in adipogenesis. However, studies on circRNA expression profiles associated with the development of abdominal adipose tissue are lacking in chickens. In this study, 12 cDNA libraries were constructed from the abdominal adipose tissue of Chinese domestic Gushi chickens at 6, 14, 22, and 30 weeks. A total of 1,766 circRNAs were identified by Illumina HiSeq 2500 sequencing. These circRNAs were primarily distributed on chr1 through chr10 and sex chromosomes, and 84.95% of the circRNAs were from gene exons. Bioinformatic analysis showed that each circRNA has 35 miRNA binding sites on average, and 62.71% have internal ribosome entry site (IRES) elements. Meanwhile, these circRNAs were primarily concentrated in TPM < 0.1 and TPM > 60, and their numbers accounted for 18.90% and 80.51%, respectively, exhibiting specific expression patterns in chicken abdominal adipose tissue. In addition, 275 differentially expressed (DE) circRNAs were identified by comparison analysis. Functional enrichment analysis showed that the parental genes of DE circRNAs were primarily involved in biological processes and pathways related to lipid metabolism, such as regulation of fat cell differentiation, fatty acid homeostasis, and triglyceride homeostasis, as well as fatty acid biosynthesis, fatty acid metabolism, and glycerolipid metabolism. Furthermore, ceRNA regulatory networks related to abdominal adipose development were constructed. The results of this study indicated that circRNAs can regulate lipid metabolism, adipocyte proliferation and differentiation, and cell junctions during abdominal adipose tissue development in chickens through complex ceRNA networks between circRNAs, miRNAs, genes, and pathways. The results of this study may help to expand the number of known circRNAs in abdominal adipose tissue and provide a valuable resource for further research on the function of circRNAs in chicken abdominal adipose tissue.
Collapse
Affiliation(s)
- Wenjiao Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan Province, P.R. China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yanbin Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail:
| |
Collapse
|
42
|
Lou Z, Zhou R, Su Y, Liu C, Ruan W, Jeon CO, Han X, Lin C, Jia B. Minor and major circRNAs in virus and host genomes. J Microbiol 2021; 59:324-331. [DOI: 10.1007/s12275-021-1021-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
|
43
|
Taliansky M, Samarskaya V, Zavriev SK, Fesenko I, Kalinina NO, Love AJ. RNA-Based Technologies for Engineering Plant Virus Resistance. PLANTS 2021; 10:plants10010082. [PMID: 33401751 PMCID: PMC7824052 DOI: 10.3390/plants10010082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
In recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses. Additionally, we describe how RNA guided CRISPR-CAS gene-editing systems have been deployed to inhibit plant virus infections, and we provide a comparative analysis of RNAi approaches and CRISPR-Cas technology. The two main strategies for engineering virus resistance are also discussed, including direct targeting of viral DNA or RNA, or inactivation of plant host susceptibility genes. We also elaborate on the challenges that need to be overcome before such technologies can be broadly exploited for crop protection against viruses.
Collapse
Affiliation(s)
- Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: (M.T.); (A.J.L.)
| | - Viktoria Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: (M.T.); (A.J.L.)
| |
Collapse
|
44
|
Pinkney HR, Wright BM, Diermeier SD. The lncRNA Toolkit: Databases and In Silico Tools for lncRNA Analysis. Noncoding RNA 2020; 6:E49. [PMID: 33339309 PMCID: PMC7768357 DOI: 10.3390/ncrna6040049] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a rapidly expanding field of research, with many new transcripts identified each year. However, only a small subset of lncRNAs has been characterized functionally thus far. To aid investigating the mechanisms of action by which new lncRNAs act, bioinformatic tools and databases are invaluable. Here, we review a selection of computational tools and databases for the in silico analysis of lncRNAs, including tissue-specific expression, protein coding potential, subcellular localization, structural conformation, and interaction partners. The assembled lncRNA toolkit is aimed primarily at experimental researchers as a useful starting point to guide wet-lab experiments, mainly containing multi-functional, user-friendly interfaces. With more and more new lncRNA analysis tools available, it will be essential to provide continuous updates and maintain the availability of key software in the future.
Collapse
Affiliation(s)
| | | | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (B.M.W.)
| |
Collapse
|
45
|
Cao Q, Yang W, Ji X, Wang W. Long Non-coding RNA ST8SIA6-AS1 Promotes Lung Adenocarcinoma Progression Through Sponging miR-125a-3p. Front Genet 2020; 11:597795. [PMID: 33363573 PMCID: PMC7753099 DOI: 10.3389/fgene.2020.597795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that long non-coding RNA (lncRNA) plays a critical role in human disease progression. Recently, a novel lncRNA ST8SIA6-AS1 was shown as an important driver in various cancer types. Nevertheless, its contribution to lung adenocarcinoma (LUAD) remains undocumented. Herein, we found that ST8SIA6-AS1 was frequently overexpressed in LUAD cell lines, tissues, and plasma. Depletion of ST8SIA6-AS1 significantly inhibited LUAD cell proliferation and invasion in vitro and tumor growth in vivo. In term of mechanism, ST8SIA6-AS1 was transcriptionally repressed by tumor suppressor p53, and ST8SIA6-AS1 was mainly located in the cytoplasm and could abundantly sponge miR-125a-3p to increase nicotinamide N-methyltransferase (NNMT) expression, thereby facilitating LUAD malignant progression. Clinically, high ST8SIA6-AS1 was positively correlated with larger tumor size, lymph node metastasis, and later TNM stage. Moreover, ST8SIA6-AS1 was identified as an excellent indicator for MM diagnosis and prognosis. Collectively, our data demonstrate that ST8SIA6-AS1 is a carcinogenic lncRNA in LUAD, and targeting the axis of ST8SIA6-AS1/miR-125a-3p/NNMT may be a promising treatment for LUAD patients.
Collapse
Affiliation(s)
- Qifeng Cao
- Department of Respiratory Medicine, Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenling, China
| | - Weiqin Yang
- Department of Gastroenterology, Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenling, China
| | - Xili Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Wei Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|