1
|
Yang JH, Oh Y, Moon SH, Lee GH, Kim JY, Shin YK, Tark D, Cho HS. Suspected Human-to-Cat Spillover of SARS-CoV-2 Omicron Variant in South Korea. Viruses 2024; 16:1113. [PMID: 39066274 PMCID: PMC11281702 DOI: 10.3390/v16071113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This retrospective study reports the isolation and characterization of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) from a household cat in South Korea. The cat, which was presented with respiratory symptoms, was identified during a retrospective analysis of samples collected between April 2021 and March 2022. Genomic sequencing revealed that the isolated virus belonged to the Omicron variant (BA.1), coinciding with its global emergence in early 2022. This case study provides evidence for the potential of direct human-to-cat transmission of the Omicron variant in South Korea during its period of widespread circulation. Our findings underscore the importance of continuous monitoring of SARS-CoV-2 in both human and animal populations to track viral evolution and potential spillover events.
Collapse
Affiliation(s)
- Ju-Hee Yang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 545431, Republic of Korea; (J.-H.Y.); (G.-H.L.)
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Sung-Hyun Moon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Gun-Hee Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 545431, Republic of Korea; (J.-H.Y.); (G.-H.L.)
| | - Jae-Young Kim
- Tae Neung Animal Hospital, Seoul 02033, Republic of Korea;
| | - Yeon-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea;
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 545431, Republic of Korea; (J.-H.Y.); (G.-H.L.)
| | - Ho-Seong Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
2
|
Yang Z, Cai X, Ye Q, Zhao Y, Li X, Zhang S, Zhang L. High-Throughput Screening for the Potential Inhibitors of SARS-CoV-2 with Essential Dynamic Behavior. Curr Drug Targets 2023; 24:532-545. [PMID: 36876836 DOI: 10.2174/1389450124666230306141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
Global health security has been challenged by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. Due to the lengthy process of generating vaccinations, it is vital to reposition currently available drugs in order to relieve anti-epidemic tensions and accelerate the development of therapies for Coronavirus Disease 2019 (COVID-19), the public threat caused by SARS-CoV-2. High throughput screening techniques have established their roles in the evaluation of already available medications and the search for novel potential agents with desirable chemical space and more cost-effectiveness. Here, we present the architectural aspects of highthroughput screening for SARS-CoV-2 inhibitors, especially three generations of virtual screening methodologies with structural dynamics: ligand-based screening, receptor-based screening, and machine learning (ML)-based scoring functions (SFs). By outlining the benefits and drawbacks, we hope that researchers will be motivated to adopt these methods in the development of novel anti- SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xinhui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
3
|
Zhao Y, Deng S, Bai Y, Guo J, Kai G, Huang X, Jia X. Promising natural products against SARS-CoV-2: Structure, function, and clinical trials. Phytother Res 2022; 36:3833-3858. [PMID: 35932157 PMCID: PMC9538226 DOI: 10.1002/ptr.7580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
The corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) poses a severe threat to human health and still spreads globally. Due to the high mutation ratio and breakthrough infection rate of the virus, vaccines and anti-COVID-19 drugs require continual improvements. Drug screening research has shown that some natural active products can target the critical proteins of SARS-CoV-2, including 3CLpro, ACE2, FURIN, and RdRp, which could produce great inhibitory effects on SARS-COV-2. In addition, some natural products have displayed activities of immunomodulation, antiinflammatory, and antihepatic failure in COVID-19 clinical trials, which may relate to their non-monomeric structures. However, further evaluation and high-quality assessments, including safety verification tests, drug interaction tests, and clinical trials, are needed to substantiate natural products' multi-target and multi-pathway effects on COVID-19. Here, we review the literature on several promising active natural products that may act as vaccine immune enhancers or provide targeted anti-COVID-19 drugs. The structures, mechanisms of action, and research progress of these natural products are analyzed, to hopefully provide effective ideas for the development of targeted drugs that possess better structure, potency, and safety.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Shanshan Deng
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Yujiao Bai
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Guoyin Kai
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinhe Huang
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Xu Jia
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| |
Collapse
|
4
|
Rutherford C, Kafle P, Soos C, Epp T, Bradford L, Jenkins E. Investigating SARS-CoV-2 Susceptibility in Animal Species: A Scoping Review. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221107786. [PMID: 35782319 PMCID: PMC9247998 DOI: 10.1177/11786302221107786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In the early stages of response to the SARS-CoV-2 pandemic, it was imperative for researchers to rapidly determine what animal species may be susceptible to the virus, under low knowledge and high uncertainty conditions. In this scoping review, the animal species being evaluated for SARS-CoV-2 susceptibility, the methods used to evaluate susceptibility, and comparing the evaluations between different studies were conducted. Using the PRISMA-ScR methodology, publications and reports from peer-reviewed and gray literature sources were collected from databases, Google Scholar, the World Organization for Animal Health (OIE), snowballing, and recommendations from experts. Inclusion and relevance criteria were applied, and information was subsequently extracted, categorized, summarized, and analyzed. Ninety seven sources (publications and reports) were identified which investigated 649 animal species from eight different classes: Mammalia, Aves, Actinopterygii, Reptilia, Amphibia, Insecta, Chondrichthyes, and Coelacanthimorpha. Sources used four different methods to evaluate susceptibility, in silico, in vitro, in vivo, and epidemiological analysis. Along with the different methods, how each source described "susceptibility" and evaluated the susceptibility of different animal species to SARS-CoV-2 varied, with conflicting susceptibility evaluations evident between different sources. Early in the pandemic, in silico methods were used the most to predict animal species susceptibility to SARS-CoV-2 and helped guide more costly and intensive studies using in vivo or epidemiological analyses. However, the limitations of all methods must be recognized, and evaluations made by in silico and in vitro should be re-evaluated when more information becomes available, such as demonstrated susceptibility through in vivo and epidemiological analysis.
Collapse
Affiliation(s)
- Connor Rutherford
- School of Public Health, University of
Saskatchewan, Saskatoon, SK, Canada
| | - Pratap Kafle
- Department of Veterinary Microbiology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
- Department of Veterinary Biomedical
Sciences, Long Island University Post Campus, Brookville, NY, USA
| | - Catherine Soos
- Ecotoxicology and Wildlife Health
Division, Science & Technology Branch, Environment and Climate Change Canada,
Saskatoon, SK, Canada
- Department of Veterinary Pathology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
| | - Tasha Epp
- Department of Large Animal Clinical
Sciences, Western College of Veterinary Medicine, University of Saskatchewan,
Saskatoon, SK, Canada
| | - Lori Bradford
- Ron and Jane Graham School of
Professional Development, College of Engineering, and School of Environment and
Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Emily Jenkins
- Department of Veterinary Microbiology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
| |
Collapse
|
5
|
Wang J, Ge W, Peng X, Yuan L, He S, Fu X. Investigating the active compounds and mechanism of HuaShi XuanFei formula for prevention and treatment of COVID-19 based on network pharmacology and molecular docking analysis. Mol Divers 2022; 26:1175-1190. [PMID: 34105049 PMCID: PMC8187140 DOI: 10.1007/s11030-021-10244-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023]
Abstract
Traditional Chinese medicine (TCM) has exerted positive effects in controlling the COVID-19 pandemic. HuaShi XuanFei Formula (HSXFF) was developed to treat patients with mild and general COVID-19 in Zhejiang Province, China. The present study seeks to explore its potentially active compounds and pharmacological mechanisms against COVID-19 based on network pharmacology, molecular docking, and molecular dynamics (MD) simulation. All components of HSXFF were harvested from the pharmacology database of the TCMSP system. COVID-19-related targets were retrieved from using OMIM and GeneCards databases. The herb-compound-targets network was constructed by Cytoscape. The target protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to discover the potential key target genes and mechanism. The main active compounds of HSXFF were docked with 3C-like (3CL) protease hydrolase and angiotensin-converting enzyme 2 (ACE2). The MD simulation confirmed the binding stability of docking results. The herbs-targets network mainly contained 52 compounds and 70 corresponding targets, including key targets such as RELA, TNF, TP53, IL6, MAPK1, CXCL8, IL-1β, and MAPK14. The GO and KEGG indicated that HSXFF may be mainly acting on the IL-17 signaling pathway, TNF signaling pathway, NF-κB signaling pathway, etc. The molecular docking results indicated that isovitexin and procyanidin B1 showed the highest affinity with 3CL and ACE2, respectively, which were confirmed by MD simulation. These findings suggested HSXFF exerted therapeutic effects involving "multi-compounds and multi-targets." It might be working through directly inhibiting the virus, improving immune function, and reducing the inflammatory in response to anti-COVID-19. In summary, the present study would provide a valuable direction for further research of HSXFF.
Collapse
Affiliation(s)
- Juan Wang
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, People's Republic of China
| | - Wen Ge
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, People's Republic of China
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Zhejiang Province, Ningbo, 315100, People's Republic of China.
| | - Lixia Yuan
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, People's Republic of China
| | - Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, People's Republic of China
| |
Collapse
|
6
|
Krüger N, Rocha C, Runft S, Krüger J, Färber I, Armando F, Leitzen E, Brogden G, Gerold G, Pöhlmann S, Hoffmann M, Baumgärtner W. The Upper Respiratory Tract of Felids Is Highly Susceptible to SARS-CoV-2 Infection. Int J Mol Sci 2021; 22:10636. [PMID: 34638978 PMCID: PMC8508926 DOI: 10.3390/ijms221910636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.
Collapse
Affiliation(s)
- Nadine Krüger
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Johannes Krüger
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Iris Färber
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Graham Brogden
- Department of Biochemistry, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, 30625 Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, 30625 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
- Faculty of Biology and Psychology, Georg-August-University, 37073 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
- Faculty of Biology and Psychology, Georg-August-University, 37073 Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| |
Collapse
|
7
|
Wang Z, Zhou M, Fu Z, Zhao L. The Pathogenic Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Possible Mechanisms for Immune Evasion? Front Immunol 2021; 12:693579. [PMID: 34335604 PMCID: PMC8317057 DOI: 10.3389/fimmu.2021.693579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a newly emerging, highly transmitted and pathogenic coronavirus that has caused global public health events and economic crises. As of March 4, 2021, more than 100 million people have been infected, more than 2 million deaths have been reported worldwide, and the numbers are continuing to rise. To date, a specific drug for this lethal virus has not been developed to date, and very little is currently known about the immune evasion mechanisms of SARS-CoV-2. The aim of this review was to summarize and sort dozens of published studies on PubMed to explore the pathogenic features of SARS-CoV-2, as well as the possible immune escape mechanisms of this virus.
Collapse
Affiliation(s)
- Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Ekstrand K, Flanagan AJ, Lin IE, Vejseli B, Cole A, Lally AP, Morris RL, Morgan KN. Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals (Basel) 2021; 11:2044. [PMID: 34359172 PMCID: PMC8300090 DOI: 10.3390/ani11072044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The accelerated pace of research into Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) necessitates periodic summaries of current research. The present paper reviews virus susceptibilities in species with frequent human contact, and factors that are best predictors of virus susceptibility. Species reviewed were those in contact with humans through entertainment, pet, or agricultural trades, and for whom reports (either anecdotal or published) exist regarding the SARS-CoV-2 virus and/or the resulting disease state COVID-19. Available literature was searched using an artificial intelligence (AI)-assisted engine, as well as via common databases, such as Web of Science and Medline. The present review focuses on susceptibility and transmissibility of SARS-CoV-2, and polymorphisms in transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) that contribute to species differences. Dogs and pigs appear to have low susceptibility, while ferrets, mink, some hamster species, cats, and nonhuman primates (particularly Old World species) have high susceptibility. Precautions may therefore be warranted in interactions with such species, and more selectivity practiced when choosing appropriate species to serve as models for research.
Collapse
Affiliation(s)
| | - Amanda J. Flanagan
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Ilyan E. Lin
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Brendon Vejseli
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Allicyn Cole
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Anna P. Lally
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Robert L. Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Kathleen N. Morgan
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| |
Collapse
|