1
|
Middha P, Kachuri L, Nierenberg JL, Graff RE, Cavazos TB, Hoffmann TJ, Zhang J, Alexeeff S, Habel L, Corley DA, Van Den Eeden S, Kushi LH, Ziv E, Sakoda LC, Witte JS. Unraveling the genetic landscape of susceptibility to multiple primary cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.29.24316326. [PMID: 39574869 PMCID: PMC11581075 DOI: 10.1101/2024.10.29.24316326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
With advances in cancer screening and treatment, there is a growing population of cancer survivors who may develop subsequent primary cancers. While hereditary cancer syndromes account for only a portion of multiple cancer cases, we sought to explore the role of common genetic variation in susceptibility to multiple primary tumors. We conducted a cross-ancestry genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) of 10,983 individuals with multiple primary cancers, 84,475 individuals with single cancer, and 420,944 cancer-free controls from two large-scale studies. Our GWAS identified six lead variants across five genomic regions that were significantly associated (P<5×10-8) with the risk of developing multiple primary tumors (overall and invasive) relative to cancer-free controls (at 3q26, 8q24, 10q24, 11q13.3, and 17p13). We also found one variant significantly associated with multiple cancers when comparing to single cancer cases (at 22q13.1). Multi-tissue TWAS detected associations with genes involved in telomere maintenance in two of these regions (ACTRT3 in 3q26 and SLK and STN1 in 10q24) and the development of multiple cancers. Additionally, the TWAS also identified several novel genes associated with multiple cancers, including two immune-related genes, IRF4 and TNFRSF6B. Telomere maintenance and immune dysregulation emerge as central, common pathways influencing susceptibility to multiple cancers. These findings underscore the importance of exploring shared mechanisms in carcinogenesis, offering insights for targeted prevention and intervention strategies.
Collapse
Affiliation(s)
- Pooja Middha
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jovia L Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Taylor B Cavazos
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Jie Zhang
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Stacey Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Laurel Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Douglas A Corley
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Stephen Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhao J, Cato LD, Arora UP, Bao EL, Bryant SC, Williams N, Jia Y, Goldman SR, Nangalia J, Erb MA, Vos SM, Armstrong SA, Sankaran VG. Inherited blood cancer predisposition through altered transcription elongation. Cell 2024; 187:642-658.e19. [PMID: 38218188 PMCID: PMC10872907 DOI: 10.1016/j.cell.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024]
Abstract
Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.
Collapse
Affiliation(s)
- Jiawei Zhao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Uma P Arora
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas Williams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yuemeng Jia
- Harvard Stem Cell Institute, Cambridge, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Seth R Goldman
- Nascent Transcriptomics Core, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
4
|
Marrero RJ, Lamba JK. Current Landscape of Genome-Wide Association Studies in Acute Myeloid Leukemia: A Review. Cancers (Basel) 2023; 15:3583. [PMID: 37509244 PMCID: PMC10377605 DOI: 10.3390/cancers15143583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic disease that arises from chromosomal and genetic aberrations in myeloid precursor cells. AML is one of the most common types of acute leukemia in adults; however, it is relatively rare overall, comprising about 1% of all cancers. In the last decade or so, numerous genome-wide association studies (GWAS) have been conducted to screen between hundreds of thousands and millions of variants across many human genomes to discover genetic polymorphisms associated with a particular disease or phenotype. In oncology, GWAS has been performed in almost every commonly occurring cancer. Despite the increasing number of studies published regarding other malignancies, there is a paucity of GWAS studies for AML. In this review article, we will summarize the current status of GWAS in AML.
Collapse
Affiliation(s)
- Richard J. Marrero
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Olsen KS, Jadi O, Dexheimer S, Bortone DS, Vensko SP, Bennett S, Tang H, Diiorio M, Saran T, Dingfelder D, Zhu Q, Wang Y, Haiman CA, Pooler L, Sheng X, Webb A, Pasquini MC, McCarthy PL, Spellman SR, Weimer E, Hahn T, Sucheston-Campbell L, Armistead PM, Vincent BG. Shared graft-versus-leukemia minor histocompatibility antigens in DISCOVeRY-BMT. Blood Adv 2023; 7:1635-1649. [PMID: 36477467 PMCID: PMC10182302 DOI: 10.1182/bloodadvances.2022008863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
T-cell responses to minor histocompatibility antigens (mHAs) mediate graft-versus-leukemia (GVL) effects and graft-versus-host disease (GVHD) in allogeneic hematopoietic cell transplantation. Therapies that boost T-cell responses improve allogeneic hematopoietic cell transplant (alloHCT) efficacy but are limited by concurrent increases in the incidence and severity of GVHD. mHAs with expression restricted to hematopoietic tissue (GVL mHAs) are attractive targets for driving GVL without causing GVHD. Prior work to identify mHAs has focused on a small set of mHAs or population-level single-nucleotide polymorphism-association studies. We report the discovery of a large set of novel GVL mHAs based on predicted immunogenicity, tissue expression, and degree of sharing among donor-recipient pairs (DRPs) in the DISCOVeRY-BMT data set of 3231 alloHCT DRPs. The total number of predicted mHAs varied by HLA allele, and the total number and number of each class of mHA significantly differed by recipient genomic ancestry group. From the pool of predicted mHAs, we identified the smallest sets of GVL mHAs needed to cover 100% of DRPs with a given HLA allele. We used mass spectrometry to search for high-population frequency mHAs for 3 common HLA alleles. We validated 24 predicted novel GVL mHAs that are found cumulatively within 98.8%, 60.7%, and 78.9% of DRPs within DISCOVeRY-BMT that express HLA-A∗02:01, HLA-B∗35:01, and HLA-C∗07:02, respectively. We confirmed the immunogenicity of an example novel mHA via T-cell coculture with peptide-pulsed dendritic cells. This work demonstrates that the identification of shared mHAs is a feasible and promising technique for expanding mHA-targeting immunotherapeutics.
Collapse
Affiliation(s)
- Kelly S. Olsen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Othmane Jadi
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sarah Dexheimer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Dante S. Bortone
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Steven P. Vensko
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sarah Bennett
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Hancong Tang
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Marisa Diiorio
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tanvi Saran
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David Dingfelder
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yiwen Wang
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA
| | - Christopher A. Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Loreall Pooler
- The Center for Genetic Epidemiology, University of South California, Los Angeles, CA
| | - Xin Sheng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Marcelo C. Pasquini
- Center for International Blood and Marrow Transplant Research and Medical College of Wisconsin, Milwaukee, WI
| | - Philip L. McCarthy
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Stephen R. Spellman
- National Marrow Donor Program, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Eric Weimer
- Department of Pathology & Laboratory Medicine, UNC School of Medicine, Chapel Hill, NC
| | - Theresa Hahn
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Lara Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH
- College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Computational Medicine Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
Tuerxun N, Wang J, Zhao F, Qin YT, Wang H, Chen R, Hao JP. Bioinformatics analysis deciphering the transcriptomic signatures associated with signalling pathways and prognosis in the myelodysplastic syndromes. Hematology 2022; 27:214-231. [PMID: 35134316 DOI: 10.1080/16078454.2022.2029256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Several studies scatteredly identified the myelodysplastic syndromes' transcriptomic profiles (MDS). However, the exploration of transcriptional signatures, key signalling pathways, and their association with prognosis and diagnosis in the integrated multiple datasets remains lacking. METHODS We integrated the GSE4619, GSE19429, GSE30195, and GSE58831 microarray datasets of CD34 + cells for identifying the differentially expressed genes (DEGs) in the MDS. The series of bioinformatics methods are applied to identify the key hub genes, gene clusters, prognostic hub genes, and genes associated with diagnostic efficacy. Finally, we validated the expression differences of hub genes in the GSE114922 dataset. RESULTS We explored the DEGs related to gene ontology enrichment and KEGG pathways. We identified significant hub genes, including 168 upregulated hub genes (such as STAT1, IFIH1, EPRS, GRB2, RAC2, MAPK14, CASP1, and SPI1) and 52 downregulated hub genes (such as CREBBP, HIF1A, PIK3CA, EZH2, PIK3R1, MDM2, IRF4, CXCR4, PCNA, and CD19) in the MDS. In addition, we identified six significant molecular complex detection (MCODE)-derived upregulated gene clusters and one downregulated gene cluster, respectively. Moreover, we found that the higher expression level of MX2, GBP2, PXN, IFI44, FDXR, PLCB2, ASS1, ERCC4, PML, and RRAGD and the lower expression level of CD19, PAX5, TCF3, LEF1, NUSAP1, and TIMELESS hub genes are significantly correlated with shorter survival times of MDS patients. Furthermore, the area value under the ROC curve (AUC) of PXN, FDXR, PLCB2, PML, CD19, PAX5, and LEF1 prognostic genes are more than 0.80, indicating that these genes could be effectively used for the diagnostic efficacy of MDS patients. CONCLUSIONS Identifying key hub genes and their association with the prognosis and diagnostic efficacy may provide substantial clues for the treatment and diagnosis of MDS patients.
Collapse
Affiliation(s)
- Niluopaer Tuerxun
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Fang Zhao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yu-Ting Qin
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Huan Wang
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
7
|
Yang LR, Lin ZY, Hao QG, Li TT, Zhu Y, Teng ZW, Zhang J. The prognosis biomarkers based on m6A-related lncRNAs for myeloid leukemia patients. Cancer Cell Int 2022; 22:10. [PMID: 34996458 PMCID: PMC8739709 DOI: 10.1186/s12935-021-02428-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) are two common malignant disorders in leukemia. Although potent drugs are emerging, CML and AML may still relapse after the drug treatment is stopped. N6-methyladenosine (m6A) and lncRNAs play certain roles in the occurrence and development of tumors, but m6A-modified LncRNAs in ML remain to be further investigated. Methods In this study, we extracted and analyzed the TCGA gene expression profile of 151 ML patients and the clinical data. On this basis, we then evaluated the immune infiltration capacity of ML and LASSO-penalized Cox analysis was applied to construct the prognostic model based on m6A related lncRNAs to verify the prognostic risk in clinical features of ML. Quantitative reverse transcription PCR was used to detect the expression level of LncRNA in in ML cell lines K562, MOLM13 and acute monocytic leukemia cell line THP-1. Results We found 70 m6A-related lncRNAs that were related to prognosis, and speculated that the content of stromal cells and immune cells would correlate with the survival of patients with ML. Next, Prognostic risk model of m6A-related lncRNAs was validated to have excellent consistency in clinical features of ML. Finally, we verified the expression levels of CRNDE, CHROMR and NARF-IT1 in ML cell lines K562, MOLM13 and acute monocytic leukemia cell line THP-1, which were significant. Conclusions The research provides clues for the prognosis prediction of ML patients by using the m6A-related lncRNAs model we have created, and clarifies the accuracy and authenticity of it. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02428-3.
Collapse
Affiliation(s)
- Li-Rong Yang
- Department of Oncology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Road, Chengdu, 610031, Sichuan, China
| | - Zhu-Ying Lin
- Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Qing-Gang Hao
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650000, China
| | - Tian-Tian Li
- Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Yun Zhu
- The Sixth Affiliated Hospital of Kunming Medical University, The People's Hospital of Yuxi City, Yunnan, 653100, Yuxi, China
| | - Zhao-Wei Teng
- Yunnan Key Laboratory of Digital Orthopedics, Department of Orthopedic, The First People's Hospital of Yunnan Province, Kunming, 650000, Yunnan, China.
| | - Jun Zhang
- Department of Oncology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Road, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
8
|
Hahn T, Wang J, Preus LM, Karaesmen E, Rizvi A, Clay-Gilmour AI, Zhu Q, Wang Y, Yan L, Liu S, Stram DO, Pooler L, Sheng X, Haiman CA, Berg DVD, Webb A, Brock G, Spellman SR, Onel K, McCarthy PL, Pasquini MC, Sucheston-Campbell LE. Novel genetic variants associated with mortality after unrelated donor allogeneic hematopoietic cell transplantation. EClinicalMedicine 2021; 40:101093. [PMID: 34746714 PMCID: PMC8548922 DOI: 10.1016/j.eclinm.2021.101093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Identification of non-human leukocyte antigen (HLA) genetic risk factors could improve survival after allogeneic blood or marrow transplant (BMT) through matching at additional loci or individualizing risk prediction. We hypothesized that non-HLA loci contributed significantly to 1-year overall survival (OS), disease related mortality (DRM) or transplant related mortality (TRM) after unrelated donor (URD)BMT. METHODS We performed a genome-wide association study (GWAS) in 2,887 acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and acute lymphoblastic leukemia (ALL) patients and their ≥8/8 HLA-matched URDs comprising two independent cohorts treated from 2000-2011. FINDINGS Using meta-analyses of both cohorts, genome-wide significant associations (p < 5 × 10-8) were identified in: recipient genomes with OS at MBNL1 (rs9990017, HR = 1.4, 95% CI 1.24-1.56, p = 3.3 × 10-8) and donor-recipient genotype mismatch with OS at LINC02774 (rs10927108, HR = 1.34, 95% CI 1.21-1.48, p = 2.0 × 10-8); donor genomes with DRM at PCNX4 (rs79076914, HR = 1.7, 95% CI 1.41-2.05, p = 3.15 × 10-8), LINC01194 (rs79498125, HR = 1.86, 95% CI 1.49-2.31, p = 2.84 × 10-8), ARID5B (rs2167710, HR = 1.5, 95% CI 1.31-1.73, p = 6.9 × 10-9) and CT49 (rs32250, HR = 1.44, 95% CI1.26-1.64, p = 2.6 × 10-8); recipient genomes at PILRB with TRM (rs141591562, HR = 2.33, 95% CI 1.74-3.12, p = 1.26 × 10-8) and donor-recipient genotype mismatch between EPGN and MTHF2DL with TRM (rs75868097, HR = 2.66, 95% CI 1.92-3.58, p = 4.6 × 10-9). Results publicly available at https://fuma.ctglab.nl/browse. INTERPRETATION These data provide the first evidence that non-HLA common genetic variation at novel loci with biochemical function significantly impacts 1-year URD-BMT survival. Our findings have implications for donor selection, could guide treatment strategies and provide individualized risk prediction after future validation and functional studies. FUNDING This project was funded by grants from the National Institutes of Health, USA.
Collapse
Affiliation(s)
- Theresa Hahn
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Junke Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Leah M. Preus
- Department of Epidemiology and Environmental Health, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ezgi Karaesmen
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Abbas Rizvi
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alyssa I. Clay-Gilmour
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yiwen Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Daniel O. Stram
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loreall Pooler
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Sheng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher A. Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Van Den Berg
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Kenan Onel
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip L. McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marcelo C. Pasquini
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lara E. Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|