1
|
Xu QQ, Yu DD, Fan XD, Cui HR, Dai QQ, Zhong XY, Zhang XY, Zhao C, You LZ, Shang HC. Chinese Medicine for Treatment of COVID-19: A Review of Potential Pharmacological Components and Mechanisms. Chin J Integr Med 2025; 31:83-95. [PMID: 38958885 DOI: 10.1007/s11655-024-3909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 07/04/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.
Collapse
Affiliation(s)
- Qian-Qian Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Dong-Dong Yu
- The Geriatrics Center, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Xiao-Dan Fan
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qian-Qian Dai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiao-Ying Zhong
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Xin-Yi Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chen Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
2
|
Reyes Ballista JM, Hoover AJ, Noble JT, Acciani MD, Miazgowicz KL, Harrison SA, Tabscott GAL, Duncan A, Barnes DN, Jimenez AR, Brindley MA. Chikungunya virus release is reduced by TIM-1 receptors through binding of envelope phosphatidylserine. J Virol 2024; 98:e0077524. [PMID: 39007616 PMCID: PMC11334481 DOI: 10.1128/jvi.00775-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM-1 has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production. IMPORTANCE Chikungunya virus (CHIKV) is an enveloped alphavirus transmitted by the bites of infectious mosquitoes. Infection with CHIKV results in the development of fever, joint pain, and arthralgia that can become chronic and last for months after infection. Prevention of this disease is still highly focused on vector control strategies. In December 2023, a new live attenuated vaccine against CHIKV was approved by the FDA. We aimed to study the cellular factors involved in CHIKV release, to better understand CHIKV's ability to efficiently infect and spread among a wide variety of cell lines. We found that TIM-1 receptors can significantly abrogate CHIKV's ability to efficiently exit infected cells. This information can be beneficial for maximizing viral particle production in laboratory settings and during vaccine manufacturing.
Collapse
Affiliation(s)
- Judith M. Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ashley J. Hoover
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Joseph T. Noble
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Sarah A. Harrison
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Grace Andrea L. Tabscott
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Avery Duncan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Don N. Barnes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Venu V, Roth C, Adikari SH, Small EM, Starkenburg SR, Sanbonmatsu KY, Steadman CR. Multi-omics analysis reveals the dynamic interplay between Vero host chromatin structure and function during vaccinia virus infection. Commun Biol 2024; 7:721. [PMID: 38862613 PMCID: PMC11166932 DOI: 10.1038/s42003-024-06389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
The genome folds into complex configurations and structures thought to profoundly impact its function. The intricacies of this dynamic structure-function relationship are not well understood particularly in the context of viral infection. To unravel this interplay, here we provide a comprehensive investigation of simultaneous host chromatin structural (via Hi-C and ATAC-seq) and functional changes (via RNA-seq) in response to vaccinia virus infection. Over time, infection significantly impacts global and local chromatin structure by increasing long-range intra-chromosomal interactions and B compartmentalization and by decreasing chromatin accessibility and inter-chromosomal interactions. Local accessibility changes are independent of broad-scale chromatin compartment exchange (~12% of the genome), underscoring potential independent mechanisms for global and local chromatin reorganization. While infection structurally condenses the host genome, there is nearly equal bidirectional differential gene expression. Despite global weakening of intra-TAD interactions, functional changes including downregulated immunity genes are associated with alterations in local accessibility and loop domain restructuring. Therefore, chromatin accessibility and local structure profiling provide impactful predictions for host responses and may improve development of efficacious anti-viral counter measures including the optimization of vaccine design.
Collapse
Affiliation(s)
- Vrinda Venu
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Cullen Roth
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Samantha H Adikari
- Biochemistry & Biotechnology Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Eric M Small
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shawn R Starkenburg
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Christina R Steadman
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
4
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
5
|
Shishkova K, Sirakova B, Shishkov S, Stoilova E, Mladenov H, Sirakov I. A Comparative Analysis of Molecular Biological Methods for the Detection of SARS-CoV-2 and Testing the In Vitro Infectivity of the Virus. Microorganisms 2024; 12:180. [PMID: 38258006 PMCID: PMC10819592 DOI: 10.3390/microorganisms12010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The virus discovered in 2019 in the city of Wuhan, China, which was later identified as SARS-CoV-2 and which spread to the level of a pandemic, put diagnostic methods to the test. Early in the pandemic, we developed a nested PCR assay for the detection of SARS-CoV-2, which we validated and applied to detect the virus in feline samples. The present study describes the application of the nested PCR test in parallel with LAMP for the detection of the virus in 427 nasopharyngeal and oropharyngeal human samples taken between October 2020 and January 2022. Of the swabs tested, there were 43 positives, accounting for 10.1% of all samples tested, with the negatives numbering 382, i.e., 89.5%, and there were 2 (0.4%) invalid ones. The nPCR results confirmed those obtained by using LAMP, with results concordant in both methods. Nasal swabs tested using nPCR confirmed the results of oropharyngeal and nasopharyngeal swab samples tested using LAMP and nPCR. The focus of the discussion is on the two techniques: the actual practical application of the laboratory-developed assays and the diagnostic value of nasal samples. The nPCR used is a reliable and sensitive technique for the detection of SARS-CoV-2 in nasopharyngeal, oropharyngeal, and nasal swab samples. However, it has some disadvantages related to the duration of the entire process, as well as a risk of contamination. Experiments were performed to demonstrate the infectivity of the virus from the positive isolates in vitro. A discrepancy was reported between direct and indirect methods of testing the virus and accounting for its ability to cause infection in vitro.
Collapse
Affiliation(s)
- Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (K.S.); (S.S.); (E.S.)
| | - Bilyana Sirakova
- Faculty of Dental Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
- “AIPPMPDM”, Ltd., 2800 Sandanski, Bulgaria
| | - Stoyan Shishkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (K.S.); (S.S.); (E.S.)
| | - Eliya Stoilova
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (K.S.); (S.S.); (E.S.)
| | | | - Ivo Sirakov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
6
|
Baid K, Chiok KR, Banerjee A. Median Tissue Culture Infectious Dose 50 (TCID 50) Assay to Determine Infectivity of Cytopathic Viruses. Methods Mol Biol 2024; 2813:117-123. [PMID: 38888774 DOI: 10.1007/978-1-0716-3890-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The emergence of zoonotic viruses like severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have significantly impacted global health and economy. The discovery of other viruses in wildlife reservoir species present a threat for future emergence in humans and animals. Therefore, assays that are less reliant on virus-specific information, such as neutralization assays, are crucial to rapidly develop diagnostics, understand virus replication and pathogenicity, and assess the efficacy of therapeutics against newly emerging viruses. Here, we describe the discontinuous median tissue culture infectious dose 50 (TCID50) assay to quantitatively determine the titer of any virus that can produce a visible cytopathic effect in infected cells.
Collapse
Affiliation(s)
- Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kim R Chiok
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Rosa RB, Ferreira de Castro E, Vieira da Silva M, Paiva Ferreira DC, Jardim ACG, Santos IA, Marinho MDS, Ferreira França FB, Pena LJ. In vitro and in vivo models for monkeypox. iScience 2023; 26:105702. [PMID: 36471873 PMCID: PMC9712139 DOI: 10.1016/j.isci.2022.105702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The emergence and rapid spread outside of monkeypox virus (MPXV) to non-endemic areas has led to another global health emergency in the midst of the COVID-19 pandemic. The scientific community has sought to rapidly develop in vitro and in vivo models that could be applied in research with MPXV. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures. In vitro models are considered cost-effective and can be done in highly controlled conditions; however, they do not always resemble physiological conditions. In this way, several in vivo models are being characterized to meet the growing demand for new studies related to MPXV. In this review, we summarize the main MPXV models that have already been developed and discuss how they can contribute to advance the understanding of its pathogenesis, replication, and transmission, as well as identifying antivirals to treat infected patients.
Collapse
Affiliation(s)
- Rafael Borges Rosa
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Emilene Ferreira de Castro
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Murilo Vieira da Silva
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | | | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-302, Brazil
| | | | | | - Lindomar José Pena
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
| |
Collapse
|