1
|
Ebert S, Böhm V, Büttner JK, Brune W, Brinkmann MM, Holtappels R, Reddehase MJ, Lemmermann NAW. Cytomegalovirus inhibitors of programmed cell death restrict antigen cross-presentation in the priming of antiviral CD8 T cells. PLoS Pathog 2024; 20:e1012173. [PMID: 39146364 PMCID: PMC11349235 DOI: 10.1371/journal.ppat.1012173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/27/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
CD8 T cells are the predominant effector cells of adaptive immunity in preventing cytomegalovirus (CMV) multiple-organ disease caused by cytopathogenic tissue infection. The mechanism by which CMV-specific, naïve CD8 T cells become primed and clonally expand is of fundamental importance for our understanding of CMV immune control. For CD8 T-cell priming, two pathways have been identified: direct antigen presentation by infected professional antigen-presenting cells (pAPCs) and antigen cross-presentation by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Studies in mouse models using murine CMV (mCMV) and precluding either pathway genetically or experimentally have shown that, in principle, both pathways can congruently generate the mouse MHC/H-2 class-I-determined epitope-specificity repertoire of the CD8 T-cell response. Recent studies, however, have shown that direct antigen presentation is the canonical pathway when both are accessible. This raised the question of why antigen cross-presentation is ineffective even under conditions of high virus replication thought to provide high amounts of antigenic material for feeding cross-presenting pAPCs. As delivery of antigenic material for cross-presentation is associated with programmed cell death, and as CMVs encode inhibitors of different cell death pathways, we pursued the idea that these inhibitors restrict antigen delivery and thus CD8 T-cell priming by cross-presentation. To test this hypothesis, we compared the CD8 T-cell responses to recombinant mCMVs lacking expression of the apoptosis-inhibiting protein M36 or the necroptosis-inhibiting protein M45 with responses to wild-type mCMV and revertant viruses expressing the respective cell death inhibitors. The data reveal that increased programmed cell death improves CD8 T-cell priming in mice capable of antigen cross-presentation but not in a mutant mouse strain unable to cross-present. These findings strongly support the conclusion that CMV cell death inhibitors restrict the priming of CD8 T cells by antigen cross-presentation.
Collapse
Affiliation(s)
- Stefan Ebert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Verena Böhm
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia K. Büttner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Holtappels R, Büttner JK, Freitag K, Reddehase MJ, Lemmermann NA. Modulation of cytomegalovirus immune evasion identifies direct antigen presentation as the predominant mode of CD8 T-cell priming during immune reconstitution after hematopoietic cell transplantation. Front Immunol 2024; 15:1355153. [PMID: 38426094 PMCID: PMC10902149 DOI: 10.3389/fimmu.2024.1355153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Cytomegalovirus (CMV) infection is the most critical infectious complication in recipients of hematopoietic cell transplantation (HCT) in the period between a therapeutic hematoablative treatment and the hematopoietic reconstitution of the immune system. Clinical investigation as well as the mouse model of experimental HCT have consistently shown that timely reconstitution of antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients. Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with random specificities among which CMV-specific cells need to be primed by presentation of viral antigen for antigen-specific clonal expansion and generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming two pathways are discussed: "direct antigen presentation" by infected professional antigen-presenting cells (pAPCs) and "antigen cross-presentation" by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Current view in CMV immunology favors the cross-priming hypothesis with the argument that viral immune evasion proteins, known to interfere with the MHC class-I pathway of direct antigen presentation by infected cells, would inhibit the CD8 T-cell response. While the mode of antigen presentation in the mouse model of CMV infection has been studied in the immunocompetent host under genetic or experimental conditions excluding either pathway of antigen presentation, we are not aware of any study addressing the medically relevant question of how newly generated naïve CD8 T cells become primed in the phase of lympho-hematopoietic reconstitution after HCT. Here we used the well-established mouse model of experimental HCT and infection with murine CMV (mCMV) and pursued the recently described approach of up- or down-modulating direct antigen presentation by using recombinant viruses lacking or overexpressing the central immune evasion protein m152 of mCMV, respectively. Our data reveal that the magnitude of the CD8 T-cell response directly reflects the level of direct antigen presentation.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Büttner JK, Becker S, Fink A, Brinkmann MM, Holtappels R, Reddehase MJ, Lemmermann NA. Direct antigen presentation is the canonical pathway of cytomegalovirus CD8 T-cell priming regulated by balanced immune evasion ensuring a strong antiviral response. Front Immunol 2023; 14:1272166. [PMID: 38149242 PMCID: PMC10749961 DOI: 10.3389/fimmu.2023.1272166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
CD8 T cells are important antiviral effectors in the adaptive immune response to cytomegaloviruses (CMV). Naïve CD8 T cells can be primed by professional antigen-presenting cells (pAPCs) alternatively by "direct antigen presentation" or "antigen cross-presentation". In the case of direct antigen presentation, viral proteins are expressed in infected pAPCs and enter the classical MHC class-I (MHC-I) pathway of antigen processing and presentation of antigenic peptides. In the alternative pathway of antigen cross-presentation, viral antigenic material derived from infected cells of principally any cell type is taken up by uninfected pAPCs and eventually also fed into the MHC class-I pathway. A fundamental difference, which can be used to distinguish between these two mechanisms, is the fact that viral immune evasion proteins that interfere with the cell surface trafficking of peptide-loaded MHC-I (pMHC-I) complexes are absent in cross-presenting uninfected pAPCs. Murine cytomegalovirus (mCMV) models designed to disrupt either of the two presentation pathways revealed that both are possible in principle and can substitute each other. Overall, however, the majority of evidence has led to current opinion favoring cross-presentation as the canonical pathway. To study priming in the normal host genetically competent in both antigen presentation pathways, we took the novel approach of enhancing or inhibiting direct antigen presentation by using recombinant viruses lacking or overexpressing a key mCMV immune evasion protein. Against any prediction, the strongest CD8 T-cell response was elicited under the condition of intermediate direct antigen presentation, as it exists for wild-type virus, whereas the extremes of enhanced or inhibited direct antigen presentation resulted in an identical and weaker response. Our findings are explained by direct antigen presentation combined with a negative feedback regulation exerted by the newly primed antiviral effector CD8 T cells. This insight sheds a completely new light on the acquisition of viral immune evasion genes during virus-host co-evolution.
Collapse
Affiliation(s)
- Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sara Becker
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annette Fink
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
5
|
Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat Immunol 2022; 23:1536-1550. [PMID: 36271147 PMCID: PMC9896965 DOI: 10.1038/s41590-022-01324-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.
Collapse
|
6
|
Eltahir M, Laurén I, Lord M, Chourlia A, Dahllund L, Olsson A, Saleh A, Ytterberg AJ, Lindqvist A, Andersson O, Persson H, Mangsbo SM. An Adaptable Antibody‐Based Platform for Flexible Synthetic Peptide Delivery Built on Agonistic CD40 Antibodies. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamed Eltahir
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Ida Laurén
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Martin Lord
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Aikaterini Chourlia
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| | - Leif Dahllund
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Anders Olsson
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Aljona Saleh
- Department of Pharmacy SciLifeLab Drug Discovery and Development Platform Uppsala University Husargatan 3 Box 580 Uppsala 751 24 Sweden
| | - A. Jimmy Ytterberg
- Department of Pharmacy SciLifeLab Drug Discovery and Development Platform Uppsala University Husargatan 3 Box 580 Uppsala 751 24 Sweden
| | - Annika Lindqvist
- Department of Pharmacy SciLifeLab Drug Discovery and Development Platform Uppsala University Husargatan 3 Box 580 Uppsala 751 24 Sweden
| | - Oskar Andersson
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Helena Persson
- SciLifeLab Drug Discovery and Development Science for Life Laboratory – Stockholm Tomtebodavägen 23A Solna 171 65 Sweden
- School of Engineering Sciences in Chemistry Biotechnology and Health Royal Institute of Technology (KTH) Tomtebodavägen 23A Solna 65 Sweden
| | - Sara M Mangsbo
- Department of Pharmacy Science for Life Laboratory Uppsala University Husargatan 3 Box 580 751 24 Uppsala Sweden
| |
Collapse
|
7
|
Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol 2022; 19:3-13. [PMID: 34480145 PMCID: PMC8752832 DOI: 10.1038/s41423-021-00741-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical success of immune checkpoint therapy (ICT) has produced explosive growth in tumor immunology research because ICT was discovered through basic studies of immune regulation. Much of the current translational efforts are aimed at enhancing ICT by identifying therapeutic targets that synergize with CTLA4 or PD1/PD-L1 blockade and are solidly developed on the basis of currently accepted principles. Expanding these principles through continuous basic research may help broaden translational efforts. With this mindset, we focused this review on three threads of basic research directly relating to mechanisms underlying ICT. Specifically, this review covers three aspects of dendritic cell (DC) biology connected with antitumor immune responses but are not specifically oriented toward therapeutic use. First, we review recent advances in the development of the cDC1 subset of DCs, identifying important features distinguishing these cells from other types of DCs. Second, we review the antigen-processing pathway called cross-presentation, which was discovered in the mid-1970s and remains an enigma. This pathway serves an essential in vivo function unique to cDC1s and may be both a physiologic bottleneck and therapeutic target. Finally, we review the longstanding field of helper cells and the related area of DC licensing, in which CD4 T cells influence the strength or quality of CD8 T cell responses. Each topic is connected with ICT in some manner but is also a fundamental aspect of cell-mediated immunity directed toward intracellular pathogens.
Collapse
Affiliation(s)
- Theresa L. Murphy
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110 USA
| | - Kenneth M. Murphy
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
8
|
How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021; 135:2217-2242. [PMID: 34623425 DOI: 10.1042/cs20210577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Collapse
|
9
|
Molina MS, Stokes J, Hoffman EA, Eremija J, Zeng Y, Simpson RJ, Katsanis E. Bendamustine Conditioning Skews Murine Host DCs Toward Pre-cDC1s and Reduces GvHD Independently of Batf3. Front Immunol 2020; 11:1410. [PMID: 32765499 PMCID: PMC7378358 DOI: 10.3389/fimmu.2020.01410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Graft-versus-host disease (GvHD) remains the second leading cause of death in allogeneic hematopoietic stem cell transplantation recipients, highlighting the need for improved preventative strategies. Our laboratory has previously demonstrated in an experimental bone marrow transplantation (BMT) model that bendamustine combined with total body irradiation (BEN+TBI) is a safer alternative to cyclophosphamide with TBI (CY+TBI). The biological mechanisms of action of BEN have not been fully elucidated and likely involve multiple cell populations. Host dendritic cells (DCs) can prime naïve donor T-cells immediately following transplantation, making host DCs critical for the initiation phase of GvHD. We hypothesized that BEN+TBI conditioning favorably alters host DC composition to reduce GvHD. We demonstrate that host DCs treated with BEN+TBI induce less allogeneic T-cell proliferation than those conditioned with CY+TBI. We further show that BEN+TBI conditioning results in greater total numbers of all host DC subsets but with a more favorable composition compared to CY+TBI with significantly larger proportions of type 1 conventional DCs (cDC1), a highly regulatory DC subset capable of suppressing GvHD. Our studies using recipient Batf3 KO mice indicate that CD8α+ cDC1s are largely dispensable for the reduced GvHD following BEN+TBI conditioning. We found a higher frequency of host pre-cDC1s with BEN+TBI conditioning in both wild-type (WT) and Batf3 KO mice, which was inversely associated with GvHD. Additionally, we observed that BEN treatment results in greater expression of Flt3 receptor (CD135) on host DCs compared to CY, potentially contributing to the skewing of host DCs toward cDC1s. Further, BEN+TBI conditioning results in host cDCs with greater expression of PIR-B, an inhibitory receptor capable of preventing lethal GvHD. We conclude that BEN+TBI is a safer alternative to CY+TBI, resulting in a greater frequency of host pre-cDC1s and limiting GvHD.
Collapse
Affiliation(s)
- Megan S. Molina
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Emely A. Hoffman
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Jelena Eremija
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Yi Zeng
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Pathology, University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Nutritional Science, University of Arizona, Tucson, AZ, United States
| | - Emmanuel Katsanis
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Pathology, University of Arizona, Tucson, AZ, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
MacNabb BW, Kline DE, Albright AR, Chen X, Leventhal DS, Savage PA, Kline J. Negligible Role for Deletion Mediated by cDC1 in CD8 + T Cell Tolerance. THE JOURNAL OF IMMUNOLOGY 2019; 202:2628-2635. [PMID: 30902900 DOI: 10.4049/jimmunol.1801621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
Abstract
Deletion of CD8+ T cells by dendritic cells (DCs) is recognized as a critical mechanism of immune tolerance to self-antigens. Although DC-mediated peripheral deletion of autoreactive CD8+ T cells has been demonstrated using T cells reactive to model Ags, its role in shaping the naturally occurring polyclonal CD8+ T cell repertoire has not been defined. Using Batf3-/- mice lacking cross-presenting CD8α+ and CD103+ DCs (also known as type 1 conventional [cDC1]), we demonstrate that peripheral deletion of CD8+ T cells reactive to a model tissue Ag is dependent on cDC1. However, endogenous CD8+ T cells from the periphery of Batf3-/- mice do not exhibit heightened self-reactivity, and deep TCR sequencing of CD8+ T cells from Batf3-/- and Batf3+/+ mice reveals that cDC1 have a minimal impact on shaping the peripheral CD8+ T cell repertoire. Thus, although evident in reductionist systems, deletion of polyclonal self-specific CD8+ T cells by cDC1 plays a negligible role in enforcing tolerance to natural self-ligands.
Collapse
Affiliation(s)
| | - Douglas E Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Annie R Albright
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Daniel S Leventhal
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637; and
| | - Peter A Savage
- Committee on Immunology, University of Chicago, Chicago, IL 60637.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637; and.,Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Justin Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637; .,Department of Medicine, University of Chicago, Chicago, IL 60637.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637; and
| |
Collapse
|
11
|
Hain T, Melchior F, Kamenjarin N, Muth S, Weslati H, Clausen BE, Mahnke K, Silva-Vilches C, Schütze K, Sohl J, Radsak MP, Bündgen G, Bopp T, Danckwardt S, Schild H, Probst HC. Dermal CD207-Negative Migratory Dendritic Cells Are Fully Competent to Prime Protective, Skin Homing Cytotoxic T-Lymphocyte Responses. J Invest Dermatol 2019; 139:422-429. [DOI: 10.1016/j.jid.2018.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
|
12
|
Theisen DJ, Ferris ST, Briseño CG, Kretzer N, Iwata A, Murphy KM, Murphy TL. Batf3-Dependent Genes Control Tumor Rejection Induced by Dendritic Cells Independently of Cross-Presentation. Cancer Immunol Res 2019; 7:29-39. [PMID: 30482745 DOI: 10.1158/2326-6066.cir-18-0138] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/12/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
The BATF3-dependent cDC1 lineage of conventional dendritic cells (cDC) is required for rejection of immunogenic sarcomas and for rejection of progressive sarcomas during checkpoint blockade therapy. One unique function of the cDC1 lineage is the efficient cross-presentation of tumor-derived neoantigens to CD8+ T cells, but it is not clear that this is the only unique function of cDC1 required for tumor rejection. We previously showed that BATF3 functions during cDC1 lineage commitment to maintain IRF8 expression in the specified cDC1 progenitor. However, since cDC1 progenitors do not develop into mature cDC1s in Batf3 -/- mice, it is still unclear whether BATF3 has additional functions in mature cDC1 cells. A transgenic Irf8-Venus reporter allele increases IRF8 protein concentration sufficiently to allow autonomous cDC1 development in spleens of Batf3 -/- mice. These restored Batf3 -/- cDC1s are transcriptionally similar to control wild-type cDC1s but have reduced expression of a restricted set of cDC1-specific genes. Restored Batf3 -/- cDC1s are able to cross-present cell-associated antigens both in vitro and in vivo However, Batf3 -/- cDC1 exhibit altered characteristics in vivo and are unable to mediate tumor rejection. These results show that BATF3, in addition to regulating Irf8 expression to stabilize cDC1 lineage commitment, also controls expression of a small set of genes required for cDC1-mediated tumor rejection. These BATF3-regulated genes may be useful targets in immunotherapies aimed at promoting tumor rejection.
Collapse
Affiliation(s)
- Derek J Theisen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Nicole Kretzer
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| |
Collapse
|
13
|
Theisen DJ, Davidson JT, Briseño CG, Gargaro M, Lauron EJ, Wang Q, Desai P, Durai V, Bagadia P, Brickner JR, Beatty WL, Virgin HW, Gillanders WE, Mosammaparast N, Diamond MS, Sibley LD, Yokoyama W, Schreiber RD, Murphy TL, Murphy KM. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 2018; 362:694-699. [PMID: 30409884 PMCID: PMC6655551 DOI: 10.1126/science.aat5030] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8+ T cells by Batf3-dependent CD8α+/XCR1+ classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain-containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to Batf3 -/- mice, Wdfy4 -/- mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against Toxoplasma gondii infection. However, similar to Batf3 -/- mice, Wdfy4 -/- mice failed to prime virus-specific CD8+ T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.
Collapse
Affiliation(s)
- Derek J Theisen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesse T Davidson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elvin J Lauron
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pritesh Desai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Vir Biotechnology, San Francisco, CA, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses. Front Immunol 2018; 9:433. [PMID: 29559974 PMCID: PMC5845630 DOI: 10.3389/fimmu.2018.00433] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs) were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV)], miR-H1 [herpes simplex virus 1 (HSV1)], and miR-UL-70-3p [human cytomegalovirus (HCMV)] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK). Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ) and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre)-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of E. coli challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in immune subversion. Our findings reveal that oral disease associated v-miRs can dysregulate functions of key host cells that shape oral mucosal immunity thus exacerbating disease severity and progression.
Collapse
Affiliation(s)
- Afsar R. Naqvi
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Jennifer Shango
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alexandra Seal
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Salvador Nares
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Effective Priming of Herpes Simplex Virus-Specific CD8 + T Cells In Vivo Does Not Require Infected Dendritic Cells. J Virol 2018; 92:JVI.01508-17. [PMID: 29142130 DOI: 10.1128/jvi.01508-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022] Open
Abstract
Resolution of virus infections depends on the priming of virus-specific CD8+ T cells by dendritic cells (DC). While this process requires major histocompatibility complex (MHC) class I-restricted antigen presentation by DC, the relative contribution to CD8+ T cell priming by infected DC is less clear. We have addressed this question in the context of a peripheral infection with herpes simplex virus 1 (HSV). Assessing the endogenous, polyclonal HSV-specific CD8+ T cell response, we found that effective in vivo T cell priming depended on the presence of DC subsets specialized in cross-presentation, while Langerhans cells and plasmacytoid DC were dispensable. Utilizing a novel mouse model that allows for the in vivo elimination of infected DC, we also demonstrated in vivo that this requirement for cross-presenting DC was not related to their infection but instead reflected their capacity to cross-present HSV-derived antigen. Taking the results together, this study shows that infected DC are not required for effective CD8+ T cell priming during a peripheral virus infection.IMPORTANCE The ability of some DC to present viral antigen to CD8+ T cells without being infected is thought to enable the host to induce killer T cells even when viruses evade or kill infected DC. However, direct experimental in vivo proof for this notion has remained elusive. The work described in this study characterizes the role that different DC play in the induction of virus-specific killer T cell responses and, critically, introduces a novel mouse model that allows for the selective elimination of infected DC in vivo Our finding that HSV-specific CD8+ T cells can be fully primed in the absence of DC infection shows that cross-presentation by DC is indeed sufficient for effective CD8+ T cell priming during a peripheral virus infection.
Collapse
|
17
|
Gurevich I, Feferman T, Milo I, Tal O, Golani O, Drexler I, Shakhar G. Active dissemination of cellular antigens by DCs facilitates CD8 + T-cell priming in lymph nodes. Eur J Immunol 2017; 47:1802-1818. [PMID: 28872666 DOI: 10.1002/eji.201747042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/03/2017] [Accepted: 08/29/2017] [Indexed: 11/11/2022]
Abstract
Antigen (Ag) specific activation of naïve T cells by migrating dendritic cells (DCs) is a highly efficient process, although the chances for their colocalization in lymph nodes (LNs) appear low. Ag presentation may be delegated from Ag-donor DCs to the abundant resident DCs, but the routes of Ag transfer and how it facilitates T-cell activation remain unclear. We visualized CD8+ T cell-DC interactions to study the sites, routes, and cells mediating Ag transfer in mice. In vitro, Ag transfer from isolated ovalbumin (OVA)+ bone marrow (BM) DCs triggered widespread arrest, Ca2+ flux, and CD69 upregulation in OT-I T cells contacting recipient DCs. Intravital two-photon imaging revealed that survival of Ag-donor DCs in LNs was required for Ag dissemination among resident CD11c+ DCs. Upon interaction with recipient DCs, CD8+ T cells clustered, upregulated CD69, proliferated and differentiated into effectors. Few DCs sufficed for activation, and for efficient Ag dissemination lymphocyte function associated antigen 1 (LFA-1) expression on recipient DCs was essential. Similar findings characterized DCs infected with a replication-deficient OVA-expressing Vaccinia virus known to downregulate MHC-I. Overall, active Ag dissemination from live incoming DCs helped activate CD8+ T cells by increasing the number of effective presenting cells and salvaged T-cell priming when Ag-donor DCs could not present Ag.
Collapse
Affiliation(s)
- Irina Gurevich
- Department of Immunology and Veterinary Services, Weizmann Institute of Science, Rehovot, Israel.,Dermatology Department, School of Medicine, Stanford, California
| | - Tali Feferman
- Department of Immunology and Veterinary Services, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Milo
- Department of Immunology and Veterinary Services, Weizmann Institute of Science, Rehovot, Israel.,Immunology Department, Pasteur Institute, Paris, France
| | - Orna Tal
- Department of Immunology and Veterinary Services, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Veterinary Services, Weizmann Institute of Science, Rehovot, Israel
| | - Ingo Drexler
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Guy Shakhar
- Department of Immunology and Veterinary Services, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Abstract
Dendritic cells (DCs) play critical roles in activating innate immune cells and initiating adaptive immune responses. The functions of DCs were originally obscured by their overlap with other mononuclear phagocytes, but new mouse models have allowed for the selective ablation of subsets of DCs and have helped to identify their non-redundant roles in the immune system. These tools have elucidated the functions of DCs in host defense against pathogens, autoimmunity, and cancer. This review will describe the mouse models generated to interrogate the role of DCs and will discuss how their use has progressively clarified our understanding of the unique functions of DC subsets.
Collapse
Affiliation(s)
- Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol 2017; 35:149-176. [PMID: 28125356 PMCID: PMC5508990 DOI: 10.1146/annurev-immunol-041015-055254] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Elena Merino
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Barry A Kriegsman
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| |
Collapse
|
20
|
Gasteiger G, Ataide M, Kastenmüller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev 2016; 271:200-20. [PMID: 27088916 DOI: 10.1111/imr.12399] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The immune system is a multicentered organ that is characterized by intimate interactions between its cellular components to efficiently ward off invading pathogens. A key constituent of this organ system is the distinct migratory activity of its cellular elements. The lymph node represents a pivotal meeting point of immune cells where adaptive immunity is induced and regulated. Additionally, besides barrier tissues, the lymph node is a critical organ where invading pathogens need to be eliminated in order to prevent systemic distribution of virulent microbes. Here, we explain how the lymph node is structurally and functionally organized to fulfill these two critical functions - pathogen defense and orchestration of adaptive immunity. We will discuss spatio-temporal aspects of cellular immune responses focusing on CD8 T cells and review how and where these cells are activated in the context of viral infections, as well as how viral antigen expression kinetics and different antigen presentation pathways are involved. Finally, we will describe how such responses are regulated and 'helped', and discuss how this relates to intranodal positioning and cellular migration of the various cellular components that are involved in these processes.
Collapse
Affiliation(s)
- Georg Gasteiger
- Institute of Medical Microbiology and Hygiene & FZI Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Marco Ataide
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
21
|
Liu J, Gallo RM, Duffy C, Brutkiewicz RR. A VP22-Null HSV-1 Is Impaired in Inhibiting CD1d-Mediated Antigen Presentation. Viral Immunol 2016; 29:409-16. [PMID: 27327902 DOI: 10.1089/vim.2015.0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD1d-restricted T (natural killer T [NKT]) cells are important for controlling a herpes simplex virus (HSV) infection. One of the mechanisms of immune evasion by HSV is to downregulate CD1d-mediated activation of NKT cells. VP22 is an HSV-1-encoded protein responsible for reorganizing the host cell's cytoskeletal network and viral spreading. We have previously shown that modification of the cytoskeleton can alter CD1d-mediated antigen presentation. In this study, we found that an HSV-1 lacking VP22 (ΔUL49) was impaired in its ability to inhibit CD1d-mediated antigen presentation compared with the wild-type (WT) virus; this was reversed by a repair virus (UL49R) in CD1d-expressing cells. We further demonstrated that CD1d recycling was inhibited by infection with WT and UL49R, but not the ΔUL49 virus. Ectopic expression of VP22 in CD1d-expressing cells complemented the VP22-deficient virus in inhibiting antigen presentation. Moreover, inhibiting viral protein synthesis rescued VP22-dependent inhibition of CD1d antigen presentation. In conclusion, our findings suggest that VP22 is required (but not sufficient) for the inhibition of CD1d-mediated antigen presentation by an HSV-1 infection.
Collapse
Affiliation(s)
- Jianyun Liu
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Richard M Gallo
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Carol Duffy
- 2 Department of Biological Sciences, University of Alabama , Tuscaloosa, Alabama
| | - Randy R Brutkiewicz
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
22
|
Schuren AB, Costa AI, Wiertz EJ. Recent advances in viral evasion of the MHC Class I processing pathway. Curr Opin Immunol 2016; 40:43-50. [PMID: 27065088 DOI: 10.1016/j.coi.2016.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.
Collapse
Affiliation(s)
- Anouk Bc Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana I Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Abstract
CD8 T lymphocytes are a major cell population of the adaptive immune system. A fundamental characteristic of the CD8 T lymphocyte pool is that it is composed of millions of clones; each with a unique T cell receptor capable of recognizing a limited number of peptides displayed at the cell surface bound to the grooves of major histocompatibility complex class I (MHC I) molecules. Naïve CD8 T lymphocytes are normally resting and circulate between the blood and secondary lymphoid organs in search of their cognate peptide–MHC complexes. During viral infections, bone marrow–derived professional antigen-presenting cells (pAPCs) in secondary lymphoid organs display viral peptides on their MHC I molecules. Specific CD8 T lymphocytes that recognize these peptide–MHC adducts become activated (primed), proliferate extensively, and develop into effectors capable of killing infected cells, identified by the presence at their surface of the pertinent viral peptide–MHC complexes. This article describes how the process of priming naïve CD8 T lymphocytes occurs.
Collapse
|
24
|
Abstract
Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.
Collapse
Affiliation(s)
- Elodie Segura
- Institut Curie, Paris Cedex 05, France; INSERM U932, Paris Cedex 05, France.
| | | |
Collapse
|
25
|
Brinkmann MM, Dağ F, Hengel H, Messerle M, Kalinke U, Čičin-Šain L. Cytomegalovirus immune evasion of myeloid lineage cells. Med Microbiol Immunol 2015; 204:367-82. [PMID: 25776081 DOI: 10.1007/s00430-015-0403-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Abstract
Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Hickman HD. Imaging CD8 + T cells during diverse viral infections. INTRAVITAL 2015; 4:e1055425. [PMID: 28243513 PMCID: PMC5226004 DOI: 10.1080/21659087.2015.1055425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Abstract
CD8+ T cells play a critical role in host defense against pathogens and tumors. Much of our current knowledge of the activation and subsequent effector activities of CD8+ T cells has been gained using ex vivo approaches examining the T cell population en masse for surface phenotype, activation status and the production of effector molecules. Thus, the precise behaviors and diversity of individual CD8+ T cells responding to virus infection in vivo have not been extensively explored, leaving many unanswered questions relevant to the rational design of antiviral vaccines and therapeutics. Recently, intravital multiphoton microscopy (MPM) has been used to image CD8+ T cell priming after infection with disparate viral pathogens ranging from small RNA viruses encoding few proteins to DNA viruses producing hundreds of viral proteins (many immunomodulatory). After priming, effector CD8+ T cells have been visualized in virus-infected tissue, both during primary infection and after transitioning to tissue resident memory cells (TRM). Here, I highlight recent advances in our understanding of antiviral CD8+ T cell responses revealed through intravital MPM.
Collapse
Affiliation(s)
- Heather D Hickman
- Laboratory of Viral Diseases; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
27
|
Bedoui S, Greyer M. The role of dendritic cells in immunity against primary herpes simplex virus infections. Front Microbiol 2014; 5:533. [PMID: 25374562 PMCID: PMC4204531 DOI: 10.3389/fmicb.2014.00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/24/2014] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus (HSV) is a DNA virus with tropism for infecting skin and mucosal epithelia during the lytic stages of its complex life cycle. The immune system has evolved a multitude of strategies to respond to primary HSV infections. These include rapid innate immune responses largely driven by pattern recognition systems and protective anti-viral immunity. Dendritic cells (DC) represent a versatile and heterogenic group of antigen presenting cells that are important for pathogen recognition at sites of infection and for priming of protective HSV-specific T cells. Here we will review the current knowledge on the role of DCs in the host immune response to primary HSV infection. We will discuss how DCs integrate viral cues into effective innate immune responses, will dissect how HSV infection of DCs interferes with their capacity to migrate from sites of infection to the draining lymph nodes and will outline how migratory DCs can make antigens available to lymph node resident DCs. The role of distinct DC subsets and their relevant contribution to antigen presentation on MHC class I and MHC class II molecules will be detailed in the context of T cell priming in the lymph node and the elicitation of effector function in infected tissues. An improved understanding of the fundamental mechanisms of how DCs recognize HSV, process and present its antigens to naïve and effector T cells will not only assist in the improvement of vaccine-based preventions of this important viral disease, but also serves as a paradigm to resolve basic immunological principles.
Collapse
Affiliation(s)
- Sammy Bedoui
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| | - Marie Greyer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
28
|
Sicurella M, Nicoli F, Gallerani E, Volpi I, Berto E, Finessi V, Destro F, Manservigi R, Cafaro A, Ensoli B, Caputo A, Gavioli R, Marconi PC. An attenuated herpes simplex virus type 1 (HSV1) encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge. PLoS One 2014; 9:e100844. [PMID: 25033084 PMCID: PMC4102458 DOI: 10.1371/journal.pone.0100844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/30/2014] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesco Nicoli
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Ilaria Volpi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Elena Berto
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Valentina Finessi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Federica Destro
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Roberto Manservigi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Peggy C. Marconi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Briseño CG, Murphy TL, Murphy KM. Complementary diversification of dendritic cells and innate lymphoid cells. Curr Opin Immunol 2014; 29:69-78. [PMID: 24874447 PMCID: PMC5161034 DOI: 10.1016/j.coi.2014.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/29/2014] [Indexed: 01/25/2023]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells conventionally thought to mediate cellular adaptive immune responses. Recent studies have led to the recognition of a non-redundant role for DCs in orchestrating innate immune responses, and in particular, for DC subset-specific interactions with innate lymphoid cells (ILCs). Recently recognized as important effectors of early immune responses, ILCs develop into subsets which mirror the transcriptional and cytokine profile of their T cell subset counterparts. DC diversification into functional subsets provides for modules of pathogen sensing and cytokine production that direct pathogen-appropriate ILC and T cell responses. This review focuses on the recent advances in the understanding of DC development, and their function in orchestrating the innate immune modules.
Collapse
Affiliation(s)
- Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
31
|
Raftery MJ, Wolter E, Fillatreau S, Meisel H, Kaufmann SHE, Schönrich G. NKT Cells Determine Titer and Subtype Profile of Virus-Specific IgG Antibodies during Herpes Simplex Virus Infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:4294-302. [DOI: 10.4049/jimmunol.1300148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Baca Jones C, Filippi C, Sachithanantham S, Rodriguez-Calvo T, Ehrhardt K, von Herrath M. Direct infection of dendritic cells during chronic viral infection suppresses antiviral T cell proliferation and induces IL-10 expression in CD4 T cells. PLoS One 2014; 9:e90855. [PMID: 24613988 PMCID: PMC3948950 DOI: 10.1371/journal.pone.0090855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/04/2014] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of systemic IL-10 have been associated with several chronic viral infections, including HCV, EBV, HCMV and LCMV. In the chronic LCMV infection model, both elevated IL-10 and enhanced infection of dendritic cells (DCs) are important for viral persistence. This report highlights the relationship between enhanced viral tropism for DCs and the induction of IL-10 in CD4 T cells, which we identify as the most frequent IL-10-expressing cell type in chronic LCMV infection. Here we report that infected CD8αneg DCs express elevated IL-10, induce IL-10 expression in LCMV specific CD4 T cells, and suppress LCMV-specific T cell proliferation. DCs exposed in vivo to persistent LCMV retain the capacity to stimulate CD4 T cell proliferation but induce IL-10 production by both polyclonal and LCMV-specific CD4 T cells. Our study delineates the unique effects of direct infection versus viral exposure on DCs. Collectively these data point to enhanced infection of DCs as a key trigger of the IL-10 induction cascade resulting in maintenance of elevated IL-10 expression in CD4 T cells and inhibition of LCMV-specific CD4 and CD8 T cell proliferation.
Collapse
Affiliation(s)
- Carmen Baca Jones
- Type 1 Diabetes Center, Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Christophe Filippi
- Type 1 Diabetes Center, Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Sowbarnika Sachithanantham
- Type 1 Diabetes Center, Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Teresa Rodriguez-Calvo
- Type 1 Diabetes Center, Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Katrin Ehrhardt
- Type 1 Diabetes Center, Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Matthias von Herrath
- Type 1 Diabetes Center, Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Superior induction and maintenance of protective CD8 T cells in mice infected with mouse cytomegalovirus vector expressing RAE-1γ. Proc Natl Acad Sci U S A 2013; 110:16550-5. [PMID: 24052528 DOI: 10.1073/pnas.1310215110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to a unique pattern of CD8 T-cell response induced by cytomegaloviruses (CMVs), live attenuated CMVs are attractive candidates for vaccine vectors for a number of clinically relevant infections and tumors. NKG2D is one of the most important activating NK cell receptors that plays a role in costimulation of CD8 T cells. Here we demonstrate that the expression of CD8 T-cell epitope of Listeria monocytogenes by a recombinant mouse CMV (MCMV) expressing the NKG2D ligand retinoic acid early-inducible protein 1-gamma (RAE-1γ) dramatically enhanced the effectiveness and longevity of epitope-specific CD8 T-cell response and conferred protection against a subsequent challenge infection with Listeria monocytogenes. Unexpectedly, the attenuated growth in vivo of the CMV vector expressing RAE-1γ and its capacity to enhance specific CD8 T-cell response were preserved even in mice lacking NKG2D, implying additional immune function for RAE-1γ beyond engagement of NKG2D. Thus, vectors expressing RAE-1γ represent a promising approach in the development of CD8 T-cell-based vaccines.
Collapse
|
34
|
Abstract
Major histocompatibility complex class I-restricted T-cell immunity is essential to control infection with cytomegalovirus (CMV), a clinically important virus that causes significant disease in immunocompromised individuals. Cross-presentation is considered the primary mode of antigen presentation to generate protective antiviral CD8⁺ T-cell immunity. Herpesviruses, including CMV, encode numerous proteins that interfere with direct antigen presentation, leading to the paradigm that T-cell immunity to these pathogens necessitates cross-presentation. However, the antigen presentation requirements needed to generate a protective T-cell response to CMV remain unknown. Here, we show that a fully functional antiviral CD8⁺ T-cell response can be generated in a system where cross-presentation is shut down by pretreatment with CpG. Notably, in this setting, CD8⁺ T cells demonstrate accelerated control of infection, and organ pathology is limited. These data indicate that protective antiviral T-cell immunity to CMV is generated by direct presentation and can be enhanced by pretreatment with CpG.
Collapse
|
35
|
Ouwendijk WJD, Laing KJ, Verjans GMGM, Koelle DM. T-cell immunity to human alphaherpesviruses. Curr Opin Virol 2013; 3:452-60. [PMID: 23664660 DOI: 10.1016/j.coviro.2013.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/12/2013] [Indexed: 01/23/2023]
Abstract
Human alphaherpesviruses (αHHV) - herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV) - infect mucosal epithelial cells, establish a lifelong latent infection of sensory neurons, and reactivate intermittingly to cause recrudescent disease. Although chronic αHHV infections co-exist with brisk T-cell responses, T-cell immune suppression is associated with worsened recurrent infection. Induction of αHHV-specific T-cell immunity is complex and results in poly-specific CD4 and CD8 T-cell responses in peripheral blood. Specific T-cells are localized to ganglia during the chronic phase of HSV infection and to several infected areas during recurrences, and persist long after viral clearance. These recent advances hold promise in the design of new vaccine candidates.
Collapse
|