1
|
Mirabent-Casals M, Caña-Bozada VH, Morales-Serna FN, Martínez-Brown JM, Medina-Guerrero RM, Hernández-Cornejo R, García-Gasca A. Transcriptomic analysis of immune-related genes in Pacific white snook (Centropomus viridis) gills infected with the monogenean parasite Rhabdosynochus viridisi. Parasitol Int 2025; 104:102981. [PMID: 39426511 DOI: 10.1016/j.parint.2024.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The parasite Rhabdosynochus viridisi (Platyhelminthes: Monogenea) infects the Pacific white snook Centropomus viridis gills and can cause adverse effects in the aquaculture industry. The immune responses of Pacific white snook to monogenean infections are poorly understood. Thus, this study aimed to identify differentially expressed genes (DEGs) in the gills of Pacific white snook juveniles experimentally infected with R. viridisi, emphasizing immune-related genes and pathways activated or suppressed during the infection. RNA sequencing was performed on the gills of uninfected (control) and infected fish. The algorithm Seq2Fun was selected without a reference transcriptome to map the reads to transcripts of fishes available from a database for gene orthologs (EcoOmics) and obtain the counting table. The ExpressAnalyst software was used for differential expression and functional analyses. A total of 20,106 transcripts were found, and 1430 (7 %) were differentially expressed genes (DEGs) between infected and control groups. We identified 860 (60 %) downregulated and 570 (40 %) upregulated genes. Thirteen canonical pathways after the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were overrepresented, and most of the DEGs were downregulated, suggesting the inactivation of these pathways. The functions of most of the DEGs with higher fold change found in this study are poorly understood in fish. Even though the well-known pro-inflammatory cytokines remained unchanged in infected gills of C. viridis, and transforming growth factor β (tgfβ) was downregulated, interleukin-17 ligands il17d and il17a/f1, as well as C-X-C motif chemokine receptor 2 (cxcr2) genes were upregulated, indicating that the infection with R. viridisi promotes Th17-like immunity. Overexpression of plasma B cell activity markers such as immunoglobulin light chain-like genes and the v-set pre-B cell surrogate light chain 3 (vpreb3) was also detected in this study. The possible implications of DEGs related to calcium imbalance, hypoxia adaptation, hemostasis, and immunity are discussed. These results will support future studies to improve the prevention and treatment of monogenean infections in finfish aquaculture.
Collapse
Affiliation(s)
- Marian Mirabent-Casals
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Víctor Hugo Caña-Bozada
- Laboratory of Parasitology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Francisco Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, Mazatlán 82040, Sinaloa, Mexico.
| | - Juan Manuel Martínez-Brown
- Laboratory of Reproduction and Marine Fish Hatchery, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Rosa María Medina-Guerrero
- Laboratory of Parasitology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Rubí Hernández-Cornejo
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Alejandra García-Gasca
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| |
Collapse
|
2
|
Park G, Foster CA, Malone-Perez M, Hasan A, Macias JJ, Frazer JK. Diverse Epithelial Lymphocytes in Zebrafish Revealed Using a Novel Scale Biopsy Method. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1902-1914. [PMID: 39503619 PMCID: PMC11626784 DOI: 10.4049/jimmunol.2300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Zebrafish (Danio rerio) are a compelling model for studying lymphocytes because zebrafish and humans have similar adaptive immune systems, including their lymphocytes. Antibodies that recognize zebrafish proteins are sparse, so many investigators use transgenic, lymphocyte-specific fluorophore-labeled lines. Human and zebrafish lymphocyte types are conserved, but many aspects of zebrafish lymphocyte biology remain uninvestigated, including lymphocytes in peripheral tissues, like epidermis. This study is, to our knowledge, the first study to focus on zebrafish epidermal lymphocytes, using scales. Obtaining zebrafish blood via nonlethal methods is difficult; scales represent a source to longitudinally sample live fish. We developed a novel biopsy technique, collecting scales to analyze epithelial lymphocytes from several transgenic lines. We imaged scales via confocal microscopy and demonstrated multiple lymphocyte types in scales/epidermis, quantifying them flow cytometrically. We profiled gene expression of scale, thymic, and kidney-marrow (analogous to mammalian bone marrow) lymphocytes from the same animals, revealing B- and T-lineage signatures. Single-cell quantitative real-time PCR and RNA sequencing show not only canonical B and T cells but also novel lymphocyte populations not described previously. To validate longitudinal scale biopsies, we serially sampled scales from fish treated with dexamethasone, demonstrating epidermal lymphocyte responses. To analyze cells functionally, we employed a bead-ingestion assay, showing that thymic, marrow, and epidermal lymphocytes have phagocytic activity. In summary, we establish a novel, nonlethal technique to obtain zebrafish lymphocytes, providing the first quantification, expression profiling, and functional data from zebrafish epidermal lymphocytes.
Collapse
Affiliation(s)
- Gilseung Park
- Depts. of Cell Biology, University of Oklahoma Health Sciences Center, OK, USA
| | - Clay A. Foster
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, OK, USA
| | - Megan Malone-Perez
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, OK, USA
| | - Ameera Hasan
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, OK, USA
| | - Jose Juan Macias
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, OK, USA
| | - J. Kimble Frazer
- Depts. of Cell Biology, University of Oklahoma Health Sciences Center, OK, USA
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, OK, USA
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, OK, USA
| |
Collapse
|
3
|
Jenberie S, Sandve SR, To TH, Kent MP, Rimstad E, Jørgensen JB, Jensen I. Transcriptionally distinct B cell profiles in systemic immune tissues and peritoneal cavity of Atlantic salmon ( Salmo salar) infected with salmonid alphavirus subtype 3. Front Immunol 2024; 15:1504836. [PMID: 39691715 PMCID: PMC11649679 DOI: 10.3389/fimmu.2024.1504836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Teleost B cells producing neutralizing antibodies contribute to protection against salmonid alphavirus (SAV) infection, the etiological agent of pancreas disease, thereby reducing mortality and disease severity. Our previous studies show differences in B cell responses between the systemic immune tissues (head kidney (HK) and spleen) and the peritoneal cavity (PerC) after intraperitoneal SAV3 infection in Atlantic salmon (Salmo salar) where the response in PerC dominates at the late time points. By employing the same infection model, we aimed to further characterize these B cells. Immunophenotyping of teleost B cells is challenging due to limited availability of markers; however, RNA-seq opens an opportunity to explore differences in transcriptomic responses of these cells. Our analysis identified 334, 259 and 613 differentially expressed genes (DEGs) in Atlantic salmon IgM+IgD+ B cells from HK, spleen, and PerC, respectively, at 6 weeks post SAV3 infection. Of these, only 34 were common to all the three immune sites. Additionally, out of the top 100 genes with the highest fold change in expression, only four genes were common across B cells from the three sites. Functional enrichment analyses of DEGs using KEGG and GO databases demonstrated differences in enriched innate immune signaling and the cytokine-cytokine interaction pathways in B cells across the sites, with varying numbers of genes involved. Overall, these findings show the presence of transcriptionally distinct B cell subsets with innate immune functions in HK, spleen and PerC of SAV3-infected Atlantic salmon. Further, our data provide new insights into the immunoregulatory role of fish B cells through the differential expression of various cytokine ligands and receptors and will be a useful resource for further studies into B cell immune compartments.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Simen Rød Sandve
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Thu-Hien To
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Peter Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B. Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Mo Z, Lin H, Lai X, Dan P, Wu H, Luo X, Dan X, Li Y. The predominant role of IgM in grouper (Epinephelus coioides) mucosal defense against ectoparasitic protozoan infection. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110023. [PMID: 39547269 DOI: 10.1016/j.fsi.2024.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The skin mucosa of fish is exposed to significant challenges from infectious disease agents due to continuous exposure to the aqueous environment. Interestingly, bony fish have evolved to express a unique IgT, which is absent in terrestrials, that appears to play a predominant role in the mucosal-associated lymphoid tissue of the rainbow trout. Nevertheless, in other IgT-producing fish, it is unclear whether IgM or IgT is primarily responsible for protection against infections of cutaneous tissue. Here, we show that grouper IgM appears quickly within the skin following challenge by the marine parasite, Crytopcaryon irritans. These IgM-class antibodies may arise from local proliferating antibody secreting cells or may infiltrate tissue from the serum in dimer polymer form. Based on details of IgM functional responses, we conclude that grouper IgM plays a predominant role in defense against C. irritans.
Collapse
Affiliation(s)
- Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huajian Lin
- Guangdong Animal Disease Prevention and Control Center (Guangdong Animal Health and Quarantine Institute), Guangzhou, 510665, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Pengbo Dan
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaochun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Hao R, Zhao M, Tayyab M, Lin Z, Zhang Y. The mucosal immunity in crustaceans: Inferences from other species. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109785. [PMID: 39053584 DOI: 10.1016/j.fsi.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Crustaceans such as shrimps and crabs, hold significant ecological significance and substantial economic value within marine ecosystems. However, their susceptibility to disease outbreaks and pathogenic infections has posed major challenges to production in recent decades. As invertebrate, crustaceans primarily rely on their innate immune system for defense, lacking the adaptive immune system found in vertebrates. Mucosal immunity, acting as the frontline defense against a myriad of pathogenic microorganisms, is a crucial aspect of their immune repertoire. This review synthesizes insights from comparative immunology, highlighting parallels between mucosal immunity in vertebrates and innate immune mechanisms in invertebrates. Despite lacking classical adaptive immunity, invertebrates, including crustaceans, exhibit immune memory and rely on inherent "innate immunity factors" to combat invading pathogens. Drawing on parallels from mammalian and piscine systems, this paper meticulously explores the complex role of mucosal immunity in regulating immune responses in crustaceans. Through the extrapolation from well-studied models like mammals and fish, this review infers the potential mechanisms of mucosal immunity in crustaceans and provides insights for research on mucosal immunity in crustaceans.
Collapse
Affiliation(s)
- Ruixue Hao
- Guangdong Provincial Key Laboratory of Marine Biology and Department of Biology, Shantou University, Shantou, 515063, China
| | - Mingming Zhao
- Guangdong Provincial Key Laboratory of Marine Biology and Department of Biology, Shantou University, Shantou, 515063, China
| | - Muhammad Tayyab
- Guangdong Provincial Key Laboratory of Marine Biology and Department of Biology, Shantou University, Shantou, 515063, China
| | - Zhongyang Lin
- Guangdong Provincial Key Laboratory of Marine Biology and Department of Biology, Shantou University, Shantou, 515063, China.
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology and Department of Biology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
6
|
Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024; 32:2219-2233. [PMID: 38926297 PMCID: PMC11300644 DOI: 10.1007/s10787-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Immune-mediated inflammatory disease (IMID) prevalence is estimated at 3-7% for Westernised populations, with annual incidence reported at almost 1 in 100 people globally. More recently, drug discovery approaches have been evolving towards more targeted therapies with an improved long-term safety profile, while the requirement for individualisation of medicine in complex conditions such as IMIDs, is acknowledged. However, existing preclinical models-such as cellular and in vivo mammalian models-are not ideal for modern drug discovery model requirements, such as real-time in vivo visualisation of drug effects, logistically feasible safety assessment over the course of a lifetime, or dynamic assessment of physiological changes during disease development. Zebrafish share high homology with humans in terms of proteins and disease-causing genes, with high conservation of physiological processes at organ, tissue, cellular and molecular level. These and other unique attributes, such as high fecundity, relative transparency and ease of genetic manipulation, positions zebrafish as the next major role player in IMID drug discovery. This review provides a brief overview of the suitability of this organism as model for human inflammatory disease and summarises the range of approaches used in zebrafish-based drug discovery research. Strengths and limitations of zebrafish as model organism, as well as important considerations in research study design, are discussed. Finally, under-utilised avenues for investigation in the IMID context are highlighted.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Group, Department of Medicine, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
7
|
Györkei Á, Johansen FE, Qiao SW. Systematic characterization of immunoglobulin loci and deep sequencing of the expressed repertoire in the Atlantic cod (Gadus morhua). BMC Genomics 2024; 25:663. [PMID: 38961347 PMCID: PMC11223323 DOI: 10.1186/s12864-024-10571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The Atlantic cod is a prolific species in the Atlantic, despite its inconsistent specific antibody response. It presents a peculiar case within vertebrate immunology due to its distinct immune system, characterized by the absence of MHCII antigen presentation pathway, required for T cell-dependent antibody responses. Thorough characterisation of immunoglobulin loci and analysis of the antibody repertoire is necessary to further our understanding of the Atlantic cod's immune response on a molecular level. RESULTS A comprehensive search of the cod genome (gadmor3.0) identified the complete set of IgH genes organized into three sequential translocons on chromosome 2, while IgL genes were located on chromosomes 2 and 5. The Atlantic cod displayed a moderate germline V gene diversity, comprising four V gene families for both IgH and IgL, each with distinct chromosomal locations and organizational structures. 5'RACE sequencing revealed a diverse range of heavy chain CDR3 sequences and relatively limited CDR3 diversity in light chains. The analysis highlighted a differential impact of V-gene germline CDR3 length on receptor CDR3 length between heavy and light chains, underlining different recombination processes. CONCLUSIONS This study reveals that the Atlantic cod, despite its inconsistent antibody response, maintains a level of immunoglobulin diversity comparable to other fish species. The findings suggest that the extensive recent duplications of kappa light chain genes do not result in increased repertoire diversity. This research provides a comprehensive view of the Atlantic cod's immunoglobulin gene organization and repertoire, necessary for future studies of antibody responses at the molecular level.
Collapse
Affiliation(s)
- Ádám Györkei
- Department of Biosciences, Section for Physiology and Cell Biology, University of Oslo, Oslo, Norway
| | - Finn-Eirik Johansen
- Department of Biosciences, Section for Physiology and Cell Biology, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Chovatia RM, Acharya A, Rasal KD, Bedekar MK, Jeena K, Rathinam RB, Dinakaran C, Tripathi G. Ontogeny and tissue specific expression profiles of recombination activating genes (RAGs) during development in Nile tilapia, Oreochromisniloticus. Gene Expr Patterns 2024; 52:119358. [PMID: 38460579 DOI: 10.1016/j.gep.2024.119358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Recombination activating genes (RAGs) mediates the process of rearrangement and somatic recombination (V(D)J) to generate different antibody repertoire. Studies on the expression pattern of adaptive immune genes during ontogenic development are crucial for the formulation of fish immunization strategy. In the present study, Nile tilapia was taken to explore the relative expression profile of RAG genes during their developmental stages. The developmental stages of Nile tilapia, i.e., unfertilized egg, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30 days post-hatch (dph) and kidney, blood, gill, liver and spleen tissues from adult fish were collected and the cDNA synthesis was carried out. Gene specific primers for RAG-1 and RAG-2 of Nile tilapia were designed and their annealing temperature (Tm) was optimized by gradient PCR. Consequently, PCR was performed to confirm the specific amplification of RAG-1 and RAG-2 genes. Quantitative real-time PCR (qRT-PCR) gene expression of RAG-1 and RAG-2 were noticed in all the developmental stages; however, a significant increase was observed after 12 dph and peaked at 24 dph, followed by a gradual decrease until 30 dph. Tissue-specific gene expression profiling revealed that the highest expression of RAG-1 and RAG-2 was observed in the kidney, followed by spleen, gill, liver and blood. The findings of the study explored the suitable timing of lymphoid maturation that could be technically used for the adoption of strategies to improve disease resistance of fish larvae for mitigating larval mortality.
Collapse
Affiliation(s)
| | - Arpit Acharya
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Kiran D Rasal
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Kezhedath Jeena
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - R Bharathi Rathinam
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India; ICAR-Indian Agricultural Research Institute, Jharkhand, India
| | | | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
9
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
10
|
Hasan A, Macias JJ, Wood B, Malone-Perez M, Park G, Foster CA, Frazer JK. Dynamic Changes in Lymphocyte Populations Establish Zebrafish as a Thymic Involution Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1733-1743. [PMID: 38656392 PMCID: PMC11163880 DOI: 10.4049/jimmunol.2300495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, Ags. B cells also reside and develop in the thymus, although their functions are less clear. During "thymic involution," a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ∼1% of human neonatal thymocytes but up to ∼10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. In this article, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- versus postinvolution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells postinvolution. We also performed RNA sequencing on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is, to our knowledge, the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution and establishing the highly genetically manipulatable zebrafish model as a template for involution studies.
Collapse
Affiliation(s)
- Ameera Hasan
- Dept. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose J. Macias
- Dept. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brashé Wood
- Pediatrics, Section of Pediatric Hematology-Oncology, and University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Megan Malone-Perez
- Pediatrics, Section of Pediatric Hematology-Oncology, and University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gilseung Park
- Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Clay A. Foster
- Pediatrics, Section of Pediatric Hematology-Oncology, and University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J. Kimble Frazer
- Dept. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Pediatrics, Section of Pediatric Hematology-Oncology, and University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Jenberie S, van der Wal YA, Jensen I, Jørgensen JB. There and back again? A B cell's tale on responses and spatial distribution in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109479. [PMID: 38467322 DOI: 10.1016/j.fsi.2024.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Teleost B cells are of special interest due to their evolutionary position and involvement in vaccine-induced adaptive immune responses. While recent progress has revealed uneven distribution of B cell subsets across the various immune sites and that B cells are one of the early responders to infection, substantial knowledge gaps persist regarding their immunophenotypic profile, functional mechanisms, and what factors lead them to occupy different immune niches. This review aims to assess the current understanding of B cell diversity, their spatial distribution in various systemic and peripheral immune sites, how B cell responses initiate, the sites where these responses develop, their trafficking, and the locations where long-term B cell responses take place.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway.
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Habte-Tsion HM, Hawkyard M, Sealey WM, Bradshaw D, Meesala KM, Bouchard DA. Effects of Fishmeal Substitution with Mealworm Meals ( Tenebrio molitor and Alphitobius diaperinus) on the Growth, Physiobiochemical Response, Digesta Microbiome, and Immune Genes Expression of Atlantic Salmon ( Salmo salar). AQUACULTURE NUTRITION 2024; 2024:6618117. [PMID: 38221936 PMCID: PMC10787657 DOI: 10.1155/2024/6618117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
A 12-week growth trial was conducted to assess the effects of mealworm meals, as a substitution for fishmeal, on the growth, physiobiochemical responses, digesta microbiome, and immune-related genes expression of Atlantic salmon (Salmo salar). Twenty Atlantic salmon parr (38.5 ± 0.1 g, initial weight) were stocked into each of 16 tanks in a recirculating aquaculture system. A fishmeal-based diet (100% FM) was used as the control treatment and was compared with three test diets where: (1) fishmeal was partially (50%) replaced with defatted mealworm meal, Tenebrio molitor (50% DMM), (2) fishmeal was fully replaced with defatted mealworm meal (100% DMM), and (3) fishmeal was partially replaced with whole lesser mealworm meal, Alphitobius diaperinus (50% WMM). All substitutions were done on a crude protein basis. Each of the four experimental diets was evaluated in quadruplicate tanks as part of randomized design. The results indicated that Atlantic salmon showed high survival (greater or equal to 98.8%), and no significant difference in final growth, feed efficiency, feces stability and condition indices. Hepatosomatic index was lower in fish fed 100% DMM and 50% WMM when compared to fish fed the control diet (100% FM). Whole-body proximate and amino acid compositions were not statistically different between treatments, while essential fatty acids, including linolenic, eicosapentaenoic acid, and homo-a-linolenic, were lower in fish fed 100% DMM. Plasma parameters (total protein, alanine aminotransferase, alkaline phosphatase, and total iron-binding capacity), hepatic peroxide, and antioxidant enzymes were not significantly affected by dietary substitutions, whereas plasma immunoglobulin M showed significantly higher levels in fish fed 50% DMM and 100% DMM when compared to fish fed the control diet (100% FM). The inclusion of mealworm meals significantly impacted the overall microbiome composition but not the richness and evenness of the salmon digesta microbiomes compared to control. The most common genus in all treatments was Pseudomonas, which has been previously shown to have both commensal and pathogenic members. The relative expressions of growth (IGF-I) and protein synthesis (TIPRL) were not significantly different between the treatments, whereas immunoglobulin genes (IgM, IgD, and IgT) were significantly upregulated in fish fed the DMM diets when compared to fish fed the control diet. Overall, this study suggests that the mealworm meals tested could be suitable alternatives to fishmeal in the diet of Atlantic salmon.
Collapse
Affiliation(s)
- H-Michael Habte-Tsion
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Matt Hawkyard
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Wendy M. Sealey
- Bozeman Fish Technology Center, USDA—ARS, Bozeman, MT 59715, USA
| | - David Bradshaw
- Department of Aquaculture and Stock Enhancements, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - Kala-Mallik Meesala
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Deborah A. Bouchard
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
13
|
Zhang J, Ren H, Zhu Q, Kong X, Zhang F, Wang C, Wang Y, Yang G, Zhang F. Comparative analysis of the immune responses of CcIgZ3 in mucosal tissues and the co-expression of CcIgZ3 and PCNA in the gills of common carp (Cyprinus carpio L.) in response to TNP-LPS. BMC Vet Res 2024; 20:15. [PMID: 38184593 PMCID: PMC10770913 DOI: 10.1186/s12917-023-03854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
Fish live in an aquatic environment rich in various microorganisms and pathogens. Fish mucosal-associated lymphoid tissue (MALT) plays a very important role in immune defence. This study was conducted to characterize the immune response mediated by CcIgZ3 in common carp (Cyprinus carpio.) and investigate the proliferating CcIgZ3+ B lymphocytes in gill. We determined the expression of CcIgZ3 in many different tissues of common carp following stimulation by intraperitoneal injection of TNP-LPS (2,4,6-Trinitrophenyl hapten conjugated to lipopolysaccharide) or TNP-KLH (2,4,6-Trinitrophenyl hapten conjugated to Keyhole Limpet Hemocyanin). Compared with TNP-KLH, TNP-LPS can induce greater CcIgZ3 expression in the head kidney, gill and hindgut, especially in the gill. The results indicate that the gill is one of the main sites involved in the immune response mediated by CcIgZ3. To examine the distribution of CcIgZ3+ B lymphocytes, immunohistochemistry (IHC) experiments were performed using a polyclonal antibody against CcIgZ3. The results indicated that CcIgZ3 was detected in the head kidney, hindgut and gill. To further examine whether CcIgZ3+ B lymphocytes proliferate in the gills, proliferating CcIgZ3+ B cells were analysed by immunofluorescence staining using an anti-CcIgZ3 polyclonal antibody and an anti-PCNA monoclonal antibody. CcIgZ3 and PCNA (Proliferating Cell Nuclear Antigen) double-labelled cells in the gills were located within the epithelial cells of the gill filaments of common carp stimulated with TNP-LPS at 3 dps and 7 dps, and relatively more proliferating CcIgZ3+ B cells appeared in the gills of common carp at 7 dps. These data imply that CcIgZ3+ B cells in the gills might be produced by local proliferation following TNP-LPS stimulation. In summary, compared with those in TNP-KLH, CcIgZ3 preferentially affects the gills of common carp following challenge with TNP-LPS. CcIgZ3+ B cells proliferate in the gills to quickly produce the CcIgZ3 antibody. In addition, CcIgZ3+ B cells can be activated to induce a strong immune response very early locally in the gill and produce the antibody CcIgZ3, which helps exert an immune-protective effect. These results suggest that an effective vaccine can be designed to promote production of the mucosal antibody CcIgZ3.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Haoyue Ren
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Qiannan Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Xiangrui Kong
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Feng Zhang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, 250117, China
| | - Chang Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Yimeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Guiwen Yang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China.
| | - Fumiao Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
14
|
Zapata AG. The fish spleen. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109280. [PMID: 38086514 DOI: 10.1016/j.fsi.2023.109280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
In the present study, we review the structure and function of fish spleen with special emphasis on its condition in Elasmobranchs, Teleosts and Lungfish. Apart from the amount of splenic lymphoid tissue, the histological organization of the organ ensures the existence of areas involved in antigen trapping, the ellipsoids, and exhibit numerous melano-macrophages which appear isolated or forming the so-called melano-macrophage centres. An extensive discussion on the functional significance of these centres conclude that they are mere accumulations of macrophages consequence of tissue homeostasis rather than primitive germinal centres, as proposed by some authors.
Collapse
Affiliation(s)
- Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
16
|
Rothschild SC, Lai G, Tombes RM, Clements WK. Constitutively active CaMKII Drives B lineage acute lymphoblastic leukemia/lymphoma in tp53 mutant zebrafish. PLoS Genet 2023; 19:e1011102. [PMID: 38117861 PMCID: PMC10766190 DOI: 10.1371/journal.pgen.1011102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/04/2024] [Accepted: 12/07/2023] [Indexed: 12/22/2023] Open
Abstract
Acute lymphoblastic leukemia/lymphoma (ALL) is the most common pediatric cancer and is a malignancy of T or B lineage lymphoblasts. Dysregulation of intracellular Ca2+ levels has been observed in patients with ALL, leading to improper activation of downstream signaling. Here we describe a new zebrafish model of B ALL, generated by expressing human constitutively active CaMKII (CA-CaMKII) in tp53 mutant lymphocytes. In this model, B cell hyperplasia in the kidney marrow and spleen progresses to overt leukemia/lymphoma, with only 29% of zebrafish surviving the first year of life. Leukemic fish have reduced productive genomic VDJ recombination in addition to reduced expression and improper splicing of ikaros1, a gene often deleted or mutated in patients with B ALL. Inhibiting CaMKII in human pre-B ALL cells induced cell death, further supporting a role for CaMKII in leukemogenesis. This research provides novel insight into the role of Ca2+-directed signaling in lymphoid malignancy and will be useful in understanding disease development and progression.
Collapse
Affiliation(s)
- Sarah C. Rothschild
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Guanhua Lai
- Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Robert M. Tombes
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Wilson K. Clements
- Experimental Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
17
|
Matz H, Dooley H. 450 million years in the making: mapping the evolutionary foundations of germinal centers. Front Immunol 2023; 14:1245704. [PMID: 37638014 PMCID: PMC10450919 DOI: 10.3389/fimmu.2023.1245704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Germinal centers (GCs) are distinct microanatomical structures that form in the secondary lymphoid organs of endothermic vertebrates (i.e., mammals and some birds). Within GCs, B cells undergo a Darwinian selection process to identify clones which can respond to pathogen insult as well as affinity mature the B cell repertoire. The GC response ultimately generates memory B cells and bone marrow plasma cells which facilitate humoral immunological memory, the basis for successful vaccination programs. GCs have not been observed in the secondary lymphoid organs of ectothermic jawed vertebrates (i.e., fishes, reptiles, and amphibians). However, abundant research over the past decades has indicated these organisms can produce antigen specific B cell responses and some degree of affinity maturation. This review examines data demonstrating that the fundamentals of B cell selection may be more conserved across vertebrate phylogeny than previously anticipated. Further, research in both conventional mammalian model systems and comparative models raises the question of what evolutionary benefit GCs provide endotherms if they are seemingly unnecessary for generating the basic functional components of jawed vertebrate humoral adaptive immune responses.
Collapse
|
18
|
Hasan A, Macias JJ, Wood B, Malone-Perez M, Park G, Foster CA, Frazer JK. Dynamic Changes in Lymphocyte Populations Establish Zebrafish as a Thymic Involution Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550519. [PMID: 37546788 PMCID: PMC10402004 DOI: 10.1101/2023.07.25.550519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, antigens. B cells also reside and develop in the thymus, although their functions are less clear. During 'thymic involution,' a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ~1% of human neonatal thymocytes, but up to ~10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. Here, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- vs. post-involution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells post-involution. We also performed RNA sequencing (RNA-seq) on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution, and establishing the highly genetically-manipulatable zebrafish model as a template for involution studies.
Collapse
Affiliation(s)
- Ameera Hasan
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose J. Macias
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brashé Wood
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Megan Malone-Perez
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gilseung Park
- Depts. of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Clay A. Foster
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J. Kimble Frazer
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Depts. of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Pomarici ND, Cacciato R, Kokot J, Fernández-Quintero ML, Liedl KR. Evolution of the Immunoglobulin Isotypes-Variations of Biophysical Properties among Animal Classes. Biomolecules 2023; 13:801. [PMID: 37238671 PMCID: PMC10216798 DOI: 10.3390/biom13050801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The adaptive immune system arose around 500 million years ago in jawed fish, and, since then, it has mediated the immune defense against pathogens in all vertebrates. Antibodies play a central role in the immune reaction, recognizing and attacking external invaders. During the evolutionary process, several immunoglobulin isotypes emerged, each having a characteristic structural organization and dedicated function. In this work, we investigate the evolution of the immunoglobulin isotypes, in order to highlight the relevant features that were preserved over time and the parts that, instead, mutated. The residues that are coupled in the evolution process are often involved in intra- or interdomain interactions, meaning that they are fundamental to maintaining the immunoglobulin fold and to ensuring interactions with other domains. The explosive growth of available sequences allows us to point out the evolutionary conserved residues and compare the biophysical properties among different animal classes and isotypes. Our study offers a general overview of the evolution of immunoglobulin isotypes and advances the knowledge of their characteristic biophysical properties, as a first step in guiding protein design from evolution.
Collapse
Affiliation(s)
| | | | | | - Monica L. Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
20
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunity of the intestinal mucosa in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108572. [PMID: 36717066 DOI: 10.1016/j.fsi.2023.108572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the problem of intestinal mucosa immunity in teleost fish. The immunity of the intestinal mucosa in teleost fish depends on the elements and mechanisms with different organizational/structural and functional properties than in mammals. The organization of the elements of intestinal mucosal immunitya in these animals is associated with the presence of immune cells that fulfil the functions assigned to the induction and effector sites of mucosal immunity in mammals; they are located at various histological sites of the mucosa - in the lamina propria (LP) and in the surface epithelium. The presence of mucosa-associated lymphoid tissue (MALT) has not been demonstrated in teleost fish, and the terminology used in relation to the structure and function of the mucosa immunity components in teleost fish is inadequate. In this article, we review the knowledge of intestinal mucosal immunity in teleost fish, with great potential for knowledge and practical applications especially in the field of epidemiological safety. We discuss the organization and functional properties of the elements that determine this immunity, according to current data and taking into account the tissue definition and terminology adopted by the Society for Mucosal Immunology General Assembly (13th ICMI in Tokyo, 2007).
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
21
|
Yang S, Ma Y, Lou X, Zhou Z, Zhang H, Yi S, Cheng Y, Qian S, Huang M, Fei H. The role of TNF-α in the phagocytosis of largemouth bass (Micropterus salmoides) leukocytes. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108488. [PMID: 36503056 DOI: 10.1016/j.fsi.2022.108488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Phagocytosis is an important innate immune process in which immune cells recognize, ingest and eliminate pathogens. Largemouth bass (Micropterus salmoides) has become an important economic farmed fish in many regions, while few studies has focused on phagocytosis of its leucocytes. In present study, largemouth bass peripheral blood leucocytes were separated using Percoll gradient to establish the phagocytic function. Flow cytometric analysis showed that largemouth bass leukocytes exhibited the phagocytic capacity to fluoresbrite microspheres and Aeromonas hydrophila, where higher phagocytic capacity to A. hydrophila were observed in granulocytes/monocytes than that of lymphocytes. The leukocytes engulfing fluoresbrite microspheres and A. hydrophila were also observed by fluorescence microscopy. Besides, manygenes associated with phagocytosis and TNF-α in leukocytes were up-regulated following A. hydrophila stimulation. Subsequently, the largemouth bass TNF-α was recombinantly expressed to investigate its role in regulating phagocytosis. The results showed that TNF-α in largemouth bass could significantly enhance the phagocytic ability of granulocytes/monocytes to A. hydrophila, but not lymphocytes. Moreover, we also found that TNF-α could not only significantly increase the ROS activity of granulocytes/monocytes, but also had the function of inducing its apoptosis. These results demonstrated that granulocytes/monocytes play more important role in phagocytosis, meanwhile, TNF-α has the function of enhancing the phagocytic ability of granulocytes/monocytes in largemouth bass.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanxin Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaocong Lou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhewei Zhou
- Zhejiang Development &Planning Institute, Hangzhou, 310012, China
| | - Huimin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd, 313000, Huzhou, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
22
|
Wu S, Meng K, Wu Z, Sun R, Han G, Qin D, He Y, Qin C, Deng P, Cao J, Ji W, Zhang L, Xu Z. Expression analysis of Igs and mucosal immune responses upon SVCV infection in common carp (Cyprinus carpio L.). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100048. [PMID: 36419606 PMCID: PMC9680059 DOI: 10.1016/j.fsirep.2021.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
The immunoglobulin (Ig) is a crucial component of adaptive immune system in vertebrates including teleost fish. Here complete cDNA sequence of IgD heavy chain gene from common carp (Cyprinus carpio) was cloned and analyzed. The full-length cDNA of IgD heavy chain gene contained an open reading frame (ORF) of 2460 bp encoding 813 amino acids. According to amino acids sequence, multiple alignment and phylogenetic analysis showed that carp Igs are closely related to those of Cyprinidae fish. Transcriptional expression of IgD as well as IgM, IgZ1 and IgZ2 showed similar expression patterns in different organs, this is, high expression level in systemic immune tissues (ie, head kidney, heart and spleen) and low expression in mucosal tissues (ie, gill, skin and gut). Following viral infection with spring viraemia of carp virus (SVCV), obvious pathological changes in skin, gill and gut mucosa and up-regulated expression of antiviral related genes in skin, gill, gut and spleen were observed, indicating that SVCV successfully infected common carp and activated the systemic and mucosal immune system. Interestingly, IgM showed a significant up-regulation only in systemic tissue (spleen), but not in mucosal tissues (gut, gills and skin), while increased expression of IgZ1 and IgZ2 was found in gut. In contrast, the expression of IgD increased significantly in spleen, gills and skin. These strongly suggest that fish Ig isotypes play different roles in mucosal and systemic immunity during viral infection. Common carp (Cyprinus carpio); Igs; Spring viraemia of carp virus (SVCV)
Collapse
|
23
|
Garcia B, Dong F, Casadei E, Rességuier J, Ma J, Cain KD, Castrillo PA, Xu Z, Salinas I. A Novel Organized Nasopharynx-Associated Lymphoid Tissue in Teleosts That Expresses Molecular Markers Characteristic of Mammalian Germinal Centers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2215-2226. [PMID: 36426979 DOI: 10.4049/jimmunol.2200396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023]
Abstract
Nasal immunity is an ancient and conserved arm of the mucosal immune system in vertebrates. In teleost fish, we previously reported the presence of a nasopharynx-associated lymphoid tissue (NALT) characterized by scattered immune cells located in the trout olfactory lamellae. This diffuse NALT mounts innate and adaptive immune responses to nasal infection or vaccination. In mammals, lymphoid structures such as adenoids and tonsils support affinity maturation of the adaptive immune response in the nasopharyngeal cavity. These structures, known as organized NALT (O-NALT), have not been identified in teleost fish to date, but their evolutionary forerunners exist in sarcopterygian fish. In this study, we report that the rainbow trout nasal cavity is lined with a lymphoepithelium that extends from the most dorsal opening of the nares to the ventral nasal cavity. Within the nasal lymphoepithelium we found lymphocyte aggregates called O-NALT in this study that are composed of ∼ 56% CD4+, 24% IgM+, 16% CD8α+, and 4% IgT+ lymphocytes and that have high constitutive aicda mRNA expression. Intranasal (i.n.) vaccination with live attenuated infectious hematopoietic necrosis virus triggers expansions of B and T cells and aicda expression in response to primary i.n. vaccination. IgM+ B cells undergo proliferation and apoptosis within O-NALT upon prime but not boost i.n. vaccination. Our results suggest that novel mucosal microenvironments such as O-NALT may be involved in the affinity maturation of the adaptive immune response in early vertebrates.
Collapse
Affiliation(s)
- Benjamin Garcia
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| | - Fen Dong
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, China
| | - Elisa Casadei
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| | - Julien Rességuier
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jie Ma
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; and
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; and
| | - Pedro A Castrillo
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM.,Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, China
| | - Irene Salinas
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
24
|
Mu Q, Dong Z, Kong W, Wang X, Yu J, Ji W, Su J, Xu Z. Response of immunoglobulin M in gut mucosal immunity of common carp ( Cyprinus carpio) infected with Aeromonas hydrophila. Front Immunol 2022; 13:1037517. [PMID: 36466906 PMCID: PMC9713697 DOI: 10.3389/fimmu.2022.1037517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin (Ig) M is an important immune effector that protects organisms from a wide variety of pathogens. However, little is known about the immune response of gut mucosal IgM during bacterial invasion. Here, we generated polyclonal antibodies against common carp IgM and developed a model of carp infection with Aeromonas hydrophila via intraperitoneal injection. Our findings indicated that both innate and adaptive immune responses were effectively elicited after A. hydrophila infection. Upon bacterial infection, IgM+ B cells were strongly induced in the gut and head kidney, and bacteria-specific IgM responses were detected in high levels both in the gut mucus and serum. Moreover, our results suggested that IgM responses may vary in different infection strategies. Overall, our findings revealed that the infected common carp exhibited high resistance to this representative enteropathogenic bacterium upon reinfection, suggesting that IgM plays a key role in the defense mechanisms of the gut against bacterial invasion. Significantly, the second injection of A. hydrophila induces strong local mucosal immunity in the gut, which is essential for protection against intestinal pathogens, providing reasonable insights for vaccine preparation.
Collapse
Affiliation(s)
- Qingjiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiaqian Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Han Q, Mo Z, Lai X, Guo W, Hu Y, Chen H, He Z, Dan X, Li Y. Mucosal immunoglobulin response in Epinephelus coioides after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:436-446. [PMID: 35985626 DOI: 10.1016/j.fsi.2022.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The teleost mucosal immune system consists mainly of the skin, gills and gut, which play crucial roles in local immune responses against invading organisms. Immunoglobulins are essential molecules in adaptive immunity that perform crucial biological functions. In our study, a mucosal immunity model was constructed in Epinephelus coioides groupers after Cryptocaryon irritans infection, according to previous experience. Total IgM and IgT in the groupers increased in the serum and mucus in the immune group, whereas only pathogen-specific IgM were detected existence. More critically, pathogen-specific IgM was detected in the head kidney, gill and skin supernatants, thus suggesting that the systematic immune and mucosal immune system secreted immunoglobulins. Furthermore, an early response in the skin was observed, on the basis of the detection of pathogen-specific IgM in the skin supernatant. In conclusion, this research characterized the grouper IgM and IgT in mucosal immune responses to pathogens in the gills and skin, thus providing a theoretical basis for future studies on vaccines against C. irritans.
Collapse
Affiliation(s)
- Qing Han
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhichang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Haugland GT, Rønneseth A, Gundersen L, Lunde HS, Nordland K, Wergeland HI. Neutrophils in Atlantic salmon (Salmo salar L.) are MHC class II+ and secret IL-12p40 upon bacterial exposure. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Bunnoy A, Na-Nakorn U, Srisapoome P. Mystifying Molecular Structure, Expression and Repertoire Diversity of IgM Heavy Chain Genes (Ighμ) in Clarias Catfish and Hybrids: Two Novel Transcripts in Vertebrates. Front Immunol 2022; 13:884434. [PMID: 35784299 PMCID: PMC9247300 DOI: 10.3389/fimmu.2022.884434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Two novel immunoglobulin heavy chain (Ighμ) transcripts encoding membrane-bound forms of IgM (mIgM) were discovered in bighead catfish, Clarias macrocephalus. The first transcript contains four constant and two transmembrane domains [Cμ1-Cμ2-Cμ3-Cμ4-TM1-TM2] that have never been reported in teleosts, and the second transcript is an unusual mIgM that has never been identified in any vertebrate [Cμ1-(Cδ2-Cδ3-Cδ4-Cδ5)-Cμ2-Cμ3-TM1-TM2]. Fluorescence in situ hybridization (FISH) in bighead catfish, North African catfish (C. gariepinus) and hybrid catfish revealed a single copy of Ighμ in individual parent catfish, while two gene copies were found in diploid hybrid catfish. Intensive sequence analysis demonstrated multiple distinct structural variabilities in the VH domain in Clarias, and hybrid catfish were defined and used to generate diversity with various mechanisms. Expression analysis of Ighμ in Aeromonas hydrophila infection of the head kidney, peripheral blood leukocytes and spleen revealed significantly higher levels in North African catfish and hybrid catfish than in bighead catfish.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- *Correspondence: Prapansak Srisapoome,
| |
Collapse
|
28
|
An Update on the Evolutionary History of Bregs. Genes (Basel) 2022; 13:genes13050890. [PMID: 35627275 PMCID: PMC9141580 DOI: 10.3390/genes13050890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
The relationship between the evolutionary history and the differentiation of Bregs is still not clear. Bregs were demonstrated to possess a regulatory effect on B cells. Various subsets of Bregs have been identified including T2-MZP, MZ, B10, IL10-producing plasma cells, IL10 producing plasmablasts, immature IL10 producing B cells, TIM1, and Br1. It is known that B cells have evolved during fish emergence. However, the origin of Bregs is still not known. Three main models have been previously proposed to describe the origin of Bregs, the first known as single–single (SS) suggests that each type of Bregs subpopulation has emerged from a single pre-Breg type. The second model (single–multi) (SM) assumes that a single Bregs gave rise to multiple types of Bregs that in turn differentiated to other Breg subpopulations. In the third model (multi–multi) (MM), it is hypothesized that Bregs arise from the nearest B cell phenotype. The link between the differentiation of cells and the evolution of novel types of cells is known to follow one of three evolutionary patterns (i.e., homology, convergence, or concerted evolution). Another aspect that controls differentiation and evolution processes is the principle of optimization of energy, which suggests that an organism will always use the choice that requires less energy expenditure for survival. In this review, we investigate the evolution of Breg subsets. We studied the feasibility of Breg origination models based on evolution and energy constraints. In conclusion, our review indicates that Bregs are likely to have evolved under a combination of SM–MM models. This combination ensured successful survival in harsh conditions by following the least costly differentiation pathway, as well as adapting to changing environmental conditions.
Collapse
|
29
|
Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. BIOLOGY 2022; 11:747. [PMID: 35625475 PMCID: PMC9138301 DOI: 10.3390/biology11050747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers.
Collapse
Affiliation(s)
- Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; ; Tel.: +34-913-944-979
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
30
|
Wu J, Nie Y, Ma Y, Hao L, Liu Z, Li Y. Analysis of phagocytosis by mIgM + lymphocytes depending on monoclonal antibodies against IgM of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 123:399-408. [PMID: 35314332 DOI: 10.1016/j.fsi.2022.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The phagocytic actives of B cells in fish have been proven in recent years. In this study, five positive hybridomas secreting monoclonal antibodies (MAbs) against largemouth bass IgM were produced. Indirect immunofluorescence assay (IFA) demonstrated that five MAbs could specifically recognize membrane-bound IgM (mIgM) molecule of largemouth bass. Indirect ELISA and Western blotting analysis showed that all the five MAbs had no cross-reactions with the other two teleost IgMs. Flow cytometry analysis (FCM) revealed that the percentages of largemouth bass mIgM+ lymphocytes in head kidney, peripheral blood and spleen were 51.66 ± 0.608%, 16.5 ± 1.235% and 42.92 ± 1.091%, respectively. In addition, the phagocytosis rates of mIgM + lymphocytes ingesting Nocardia seriolae from head kidney, peripheral blood and spleen were calculated to be 5.413 ± 0.274%, 16.6 ± 0.289% and 26.3 ± 0.296%, respectively. The qPCR results of sorted cells indicated that most inflammatory cytokines (IFNγ, IL-1β, IL-2, IL-12β, IL-34, IL-10), chemokine (CXCL12), chemokines receptors (CXCR2, CXCR4) and genes (FcγRⅠa, NCF1, CFL, ARP2/3, CD45, Syk, MARCKS) related to FcγR-mediated phagocytic signaling pathway in phagocytic mIgM+ lymphocytes were up-regulated significantly (P < 0.05). Taken together, the results suggested that the MAb (MM06H) produced in this paper could be used as a tool to study mIgM+ lymphocytes of largemouth bass, and FcγR may participate in the phagocytosis of mIgM+ lymphocytes, which is helpful to further study the role of mIgM+ lymphocytes in innate immunity.
Collapse
Affiliation(s)
- Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yifan Nie
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering Department of Aquaculture, Guangzhou, 510225, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Cui M, Wang Z, Yang Y, Liu R, Wu M, Li Y, Zhang Q, Xu D. Comparative Transcriptomic Analysis Reveals the Regulated Expression Profiles in Oreochromis niloticus in Response to Coinfection of Streptococcus agalactiae and Streptococcus iniae. Front Genet 2022; 13:782957. [PMID: 35309129 PMCID: PMC8927537 DOI: 10.3389/fgene.2022.782957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Tilapia (Oreochromis sp.) is one of the important economical fishes in the world. Streptococcosis is commonly found in tilapia, causing severe and devastating effects in tilapia cultures. Streptococcus agalactiae and Streptococcus iniae are the predominant pathogens causing tilapia streptococcosis. To understand the molecular mechanisms underlying differential streptococcal infection patterns, Nile tilapias (Oreochromis niloticus) were infected by 1 × 107 CFU/mL S. agalactiae, 1 × 107 CFU/mL S. iniae, and 1 × 107 CFU/mL S. agalactiae and S. iniae (1:1), respectively, and transcriptome analysis was conducted to the intestine samples of Nile tilapia (Oreochromis niloticus) at 6, 12, 24 h, and 7 days post-infection. A total of 6,185 genes that differentially expressed among groups were identified. Eight differentially expressed genes (DEGs) including E3 ubiquitin-protein ligase TRIM39-like, C-X-C motif chemokine 10-like(CXCL 10), C-C motif chemokine 19-like, interleukin-1 beta-like, IgM heavy chain VH region, partial, IgG Fc-binding protein, proteasome subunit beta type-8 (PSMB8), and ATP synthase F(0) complex subunit B1, mitochondrial that involved in the immune system were selected, and their expression levels in the coinfection group were significantly higher than those in either of the single infection groups. These genes were associated with four different KEGG pathways. Additionally, the differential expression of eight DEGs was validated by using the RT-qPCR approach, and their immunological importance was discussed. The results provided insights into the responses of tilapia against S. agalactiae and S. iniae at the transcriptome level, promoting our better understanding of immune responses for aquatic animal against Streptococcus.
Collapse
Affiliation(s)
- Miao Cui
- *Correspondence: Miao Cui, ; Delin Xu,
| | | | | | | | | | | | | | - Delin Xu
- *Correspondence: Miao Cui, ; Delin Xu,
| |
Collapse
|
32
|
Identification and Characterization of Immunoglobulin T Heavy Chain in Large Yellow Croaker (Larimichthys crocea). FISHES 2022. [DOI: 10.3390/fishes7010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three immunoglobulin (Ig) isotypes have been identified in teleosts, IgM, IgD, and IgT or IgZ. IgT, a new teleost Ig isotype, plays a vital role in mucosal immunity. However, information on molecular and functional characteristics of fish IgT is still limited. In this study, an IgT heavy chain (LcIgT) gene was cloned and characterized in large yellow croaker (Larimichthys crocea). Complete cDNA of LcIgT was 1930 bp in length, encoding a protein of 554 amino acids. The deduced LcIgT contains a VH region and only three CH regions (CH1, CH2, CH4), but no transmembrane region was predicted. Phylogenetic analysis showed that IgT heavy chain sequences from all fish species are grouped together. Homology comparison showed that LcIgT shares the highest amino acid identity of 58.73% with IgT heavy chain in Scophthalmus maximus. The VH domain of LcIgT has the highest identity of 72.50% with that of Scophthalmus maximus IgT. Relatively, each constant domain of LcIgT exhibits the highest amino acid identity with that of IgT in Oreochromis niloticus (67.61% identity for CH1, 61.11% identity for CH2, and 63.74% identity for CH4). LcIgT was constitutively expressed in various tissues tested, with the highest levels in mucosa-associated tissues such as gills and skin. After Cryptocaryon irritans infection, the mRNA levels of LcIgT were significantly up-regulated in the spleen (3.27-fold) at 4 d, in the head kidney (3.98-fold) and skin (2.11-fold) at 7 d, and in gills (4.45-fold) at 14 d. The protein levels in these detected tissues were all significantly up-regulated; the peak of its up-regulation was 6.33-fold at 28d in gills, 3.44-fold at 7d in skin, and 3.72-fold at 14d in spleen. These results showed that IgT response could be simultaneously induced in both systemic and mucosal tissues after parasitic infection and that IgT may be involved in systemic immunity and mucosal immunity against parasitic infection.
Collapse
|
33
|
Wan Z, Zhao Y, Sun Y. Immunoglobulin D and its encoding genes: An updated review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104198. [PMID: 34237381 DOI: 10.1016/j.dci.2021.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Since the identification of a functional Cδ gene in ostriches, immunoglobulin (Ig) D has been considered to be an extremely evolutionarily conserved Ig isotype besides the IgM found in all classes of jawed vertebrates. However, in contrast to IgM (which remains stable over evolutionary time), IgD shows considerable structural plasticity among vertebrate species and, moreover, its functions are far from elucidated even in humans and mice. Recently, several studies have shown that high expression of the IgD-B-cell receptor (IgD-BCR) may help physiologically autoreactive B cells survive in peripheral lymphoid tissues thanks to unresponsiveness to self-antigens and help their entry into germinal centers to "redeem" autoreactivity via somatic hypermutation. Other studies have demonstrated that secreted IgD may enhance mucosal homeostasis and immunity by linking B cells with basophils to optimize T-helper-2 cell-mediated responses and to constrain IgE-mediated basophil degranulation. Herein, we review the new discoveries on IgD-encoding genes in jawed vertebrates in the past decade. We also highlight advances in the functions of the IgD-BCR and secreted IgD in humans and mice.
Collapse
Affiliation(s)
- Zihui Wan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
34
|
Huang L, Qiao Y, Xu W, Gong L, He R, Qi W, Gao Q, Cai H, Grossart HP, Yan Q. Full-Length Transcriptome: A Reliable Alternative for Single-Cell RNA-Seq Analysis in the Spleen of Teleost Without Reference Genome. Front Immunol 2021; 12:737332. [PMID: 34646272 PMCID: PMC8502891 DOI: 10.3389/fimmu.2021.737332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Wei Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Weilu Qi
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qiancheng Gao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute of Biochemistry and Biology, Postdam University, Potsdam, Germany
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
35
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
36
|
Ametrano A, Gerdol M, Vitale M, Greco S, Oreste U, Coscia MR. The evolutionary puzzle solution for the origins of the partial loss of the Cτ2 exon in notothenioid fishes. FISH & SHELLFISH IMMUNOLOGY 2021; 116:124-139. [PMID: 34038801 DOI: 10.1016/j.fsi.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Cryonotothenioidea is the main group of fishes that thrive in the extremely cold Antarctic environment, thanks to the acquisition of peculiar morphological, physiological and molecular adaptations. We have previously disclosed that IgM, the main immunoglobulin isotype in teleosts, display typical cold-adapted features. Recently, we have analyzed the gene encoding the heavy chain constant region (CH) of the IgT isotype from the Antarctic teleost Trematomus bernacchii (family Nototheniidae), characterized by the near-complete deletion of the CH2 domain. Here, we aimed to track the loss of the CH2 domain along notothenioid phylogeny and to identify its ancestral origins. To this end, we obtained the IgT gene sequences from several species belonging to the Antarctic families Nototheniidae, Bathydraconidae and Artedidraconidae. All species display a CH2 remnant of variable size, encoded by a short Cτ2 exon, which retains functional splicing sites and therefore is included in the mature transcript. We also considered representative species from the three non-Antarctic families: Eleginopsioidea (Eleginops maclovinus), Pseudaphritioidea (Pseudaphritis urvillii) and Bovichtidae (Bovichtus diacanthus and Cottoperca gobio). Even though only E. maclovinus, the sister taxa of Cryonotothenioidea, shared the partial loss of Cτ2, the other non-Antarctic notothenioid species displayed early molecular signatures of this event. These results shed light on the evolutionary path that underlies the origins of this remarkable gene structural modification.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Vitale
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Umberto Oreste
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy.
| |
Collapse
|
37
|
Thompson AW, Hawkins MB, Parey E, Wcisel DJ, Ota T, Kawasaki K, Funk E, Losilla M, Fitch OE, Pan Q, Feron R, Louis A, Montfort J, Milhes M, Racicot BL, Childs KL, Fontenot Q, Ferrara A, David SR, McCune AR, Dornburg A, Yoder JA, Guiguen Y, Roest Crollius H, Berthelot C, Harris MP, Braasch I. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat Genet 2021; 53:1373-1384. [PMID: 34462605 PMCID: PMC8423624 DOI: 10.1038/s41588-021-00914-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.
Collapse
Affiliation(s)
- Andrew W Thompson
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - M Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Elise Parey
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (the Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Emily Funk
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Animal Science Department, University of California Davis, Davis, CA, USA
| | - Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Olivia E Fitch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra Louis
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | | | - Marine Milhes
- GeT-PlaGe, INRAE, Genotoul, Castanet-Tolosan, France
| | - Brett L Racicot
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Quenton Fontenot
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Allyse Ferrara
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Solomon R David
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Center for Human Health and the Environment, NC State University, Raleigh, NC, USA
| | | | - Hugues Roest Crollius
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
38
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunological memory in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2021; 115:95-103. [PMID: 34058353 DOI: 10.1016/j.fsi.2021.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Immunological memory can be regarded as the key aspect of adaptive immunity, i.e. a specific response to first contact with an antigen, which in mammals is determined by the properties of T, B and NK cells. Re-exposure to the same antigen results in a more rapid response of the activated specific cells, which have a unique property that is the immunological memory acquired upon first contact with the antigen. Such a state of immune activity is also to be understood as related to "altered behavior of the immune system" due to genetic alterations, presumably maintained independently of the antigen. It also indicates a possible alternative mechanism of maintaining the immune state at a low level of the immune response, "directed" by an antigen or dependent on an antigen, associated with repeated exposure to the same antigen from time to time, as well as the concept of innate immune memory, associated with epigenetic reprogramming of myeloid cells, i.e. macrophages and NK cells. Studies on Teleostei have provided evidence for the presence of immunological memory determined by T and B cells and a secondary response stronger than the primary response. Research has also demonstrated that in these animals macrophages and NK-like cells (similar to mammalian NK cells) are able to respond when re-exposed to the same antigen. Regardless of previous reports on immunological memory in teleost fish, many reactions and mechanisms related to this ability require further investigation. The very nature of immunological memory and the activity of cells involved in this process, in particular macrophages and NK-like cells, need to be explained. This paper presents problems associated with adaptive and innate immune memory in teleost fish and characteristics of cells associated with this ability.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Gora, Poland
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
39
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Li A, Thwaite R, Kellie S, Barnes AC. Serum IgM heavy chain sub-isotypes and light chain variants revealed in giant grouper (Epinephelus lanceolatus) via protein A affinity purification, mass spectrometry and genome sequencing. FISH & SHELLFISH IMMUNOLOGY 2021; 113:42-50. [PMID: 33794338 DOI: 10.1016/j.fsi.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Two IgM heavy (H) chain sub-isotypes (80 and 40 kDa) and two light (L) chain variants (25 and 30 kDa) were detected in the serum of giant grouper (Epinephelus lanceolatus), purified by ammonium sulphate precipitation followed by protein A affinity chromatography. This method yielded 5.6 mg/mL high purity IgM from grouper serum, with efficiency estimated at 39.5% recovery from crude serum. The H and L chains were identified by SDS-PAGE and mass spectrometry (MS). Nanopore long-read sequencing was used to generate a genomic contig (MW768935), containing Cμ, Cδ loci, VH regions, and a H chain Joining segment. cDNA sequencing of Cμ transcripts (MW768933 and MW768934) were used to polish the genomic contig and determine the exons and introns of the corresponding locus. MS peptide mapping revealed that the 80 kDa H chain consisted of CH1-4 domains while peptides from the 40 kDa H chain only mapped to CH1-2 domains. Our genomic contig showed the Cμ locus has a Cμ1-Cμ2-Cμ3-Cμ4 arrangement on the same strand as the other Ig loci identified in this genomic sequence. Our study corrects the NCBI annotations of the opposing Cμ loci (LOC117268697 and LOC117268550) in chromosome 16 (NC_047006). Further, we identified both κ and λ L chain isotypes in serum IgM. The molecular weight differences observed may result from different combinations of CL and VL genes. Putative IgM sub-isotypes have also been reported in Epinephelus itajara and Epinephelus coioides. The presence of IgM sub-isotypes may be a conserved trait among Epinephelus species.
Collapse
Affiliation(s)
- Angus Li
- The University of Queensland, School of Biological Sciences, Australia
| | - Rosemary Thwaite
- The University of Queensland, School of Biological Sciences, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, Brisbane, QLD4072, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences, Australia.
| |
Collapse
|
41
|
Perdiguero P, Morel E, Díaz-Rosales P, Tafalla C. Individual B cells transcribe multiple rearranged immunoglobulin light chains in teleost fish. iScience 2021; 24:102615. [PMID: 34142062 PMCID: PMC8188548 DOI: 10.1016/j.isci.2021.102615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 11/01/2022] Open
Abstract
B cells express a unique antibody protein which comprises two pairs of immunoglobulin (Ig) heavy (H) and light (L) chains. In addition to an invariable constant (C) region, IgH and IgL chains encompass a variable (V) region mediating antigen binding. This unique region stems from Ig V(D)J gene recombination, which generates diversity by assembling these gene segments into VHDJH and VLJL genes. To ensure that one B cell only expresses one antibody, VHDJH rearrangement occurs only in one IgH locus (allelic exclusion), whereas VLJL rearrangement only in either the κ or λ locus (isotype exclusion). However, teleosts express multiple IgLs encoded by distinct CL genes. Using single-cell transcriptomics, we have demonstrated the transcription of distinct rearranged VLJLCL genes in single rainbow trout B cells. Our results highlight the laxity of isotype exclusion in teleosts and strongly suggest that fish B cells can produce antibodies of different specificities.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| | | | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| |
Collapse
|
42
|
Magadan S, Mondot S, Palti Y, Gao G, Lefranc MP, Boudinot P. Genomic analysis of a second rainbow trout line (Arlee) leads to an extended description of the IGH VDJ gene repertoire. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103998. [PMID: 33450314 DOI: 10.1016/j.dci.2021.103998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing technologies brought a renewed interest for immune repertoires. Fish Ab and B cell repertoires are no exception, and their comprehensive analysis can both provide new insights into poorly understood immune mechanisms, and identify markers of protection after vaccination. However, the lack of genomic description and standardized nomenclature of IG genes hampers accurate annotation of Ig mRNA deep sequencing data. Complete genome sequences of Atlantic salmon and rainbow trout (Swanson line) recently allowed us to establish a comprehensive and coherent annotation of Salmonid IGH genes following IMGT standards. Here we analyzed the IGHV, D, and J genes from the newly released genome of a second rainbow trout line (Arlee). We confirmed the validity of salmonid IGHV subgroups, and extended the description of the rainbow trout IGH gene repertoire with novel sequences, while keeping nomenclature continuity. This work provides an important resource for annotation of high-throughput Ab repertoire sequencing data.
Collapse
Affiliation(s)
- Susana Magadan
- Centro de Investigaciones Biomédicas, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310, Vigo, Spain.
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | - Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | - Marie Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR9002 CNRS, Université de Montpellier, Montpellier, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
43
|
Piazzon MC, Mladineo I, Dirks RP, Santidrián Yebra-Pimentel E, Hrabar J, Sitjà-Bobadilla A. Ceratothoa oestroides Infection in European Sea Bass: Revealing a Long Misunderstood Relationship. Front Immunol 2021; 12:645607. [PMID: 33777043 PMCID: PMC7991915 DOI: 10.3389/fimmu.2021.645607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Ceratothoa oestroides (Cymothoidea, Isopoda) is a generalist crustacean parasite that negatively affects the economic sustainability of European sea bass (Dicentrarchus labrax) aquaculture in the North-East Mediterranean. While mortalities are observed in fry and fingerlings, infection in juvenile and adult fish result in approximately 20% growth delay. A transcriptomic analysis (PCR array, RNA-Seq) was performed on organs (tongue, spleen, head kidney, and liver) from infected vs. Ceratothoa-free sea bass fingerlings. Activation of local and systemic immune responses was detected, particularly in the spleen, characterized by the upregulation of cytokines (also in the tongue), a general reshaping of the immunoglobulin (Ig) response and suppression of T-cell mediated responses. Interestingly, starvation and iron transport and metabolism genes were strongly downregulated, suggesting that the parasite feeding strategy is not likely hematophagous. The regulation of genes related to growth impairment and starvation supported the growth delay observed in infected animals. Most differentially expressed (DE) transcripts were exclusive of a specific organ; however, only in the tongue, the difference between infected and uninfected fish was significant. At the attachment/feeding site, the pathways involved in muscle contraction and intercellular junction were the most upregulated, whereas the pathways involved in fibrosis (extracellular matrix organization, collagen formation, and biosynthesis) were downregulated. These results suggest that parasite-inflicted damage is successfully mitigated by the host and characterized by regenerative processes that prevail over the reparative ones.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Ivona Mladineo
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia.,Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czechia
| | - Ron P Dirks
- Future Genomics Technology, Leiden, Netherlands
| | | | - Jerko Hrabar
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
44
|
Zhang XT, Yu YY, Xu HY, Huang ZY, Liu X, Cao JF, Meng KF, Wu ZB, Han GK, Zhan MT, Ding LG, Kong WG, Li N, Takizawa F, Sunyer JO, Xu Z. Prevailing Role of Mucosal Igs and B Cells in Teleost Skin Immune Responses to Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1088-1101. [PMID: 33495235 PMCID: PMC11152320 DOI: 10.4049/jimmunol.2001097] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
The skin of vertebrates is the outermost organ of the body and serves as the first line of defense against external aggressions. In contrast to mammalian skin, that of teleost fish lacks keratinization and has evolved to operate as a mucosal surface containing a skin-associated lymphoid tissue (SALT). Thus far, IgT representing the prevalent Ig in SALT have only been reported upon infection with a parasite. However, very little is known about the types of B cells and Igs responding to bacterial infection in the teleost skin mucosa, as well as the inductive or effector role of the SALT in such responses. To address these questions, in this study, we analyzed the immune response of trout skin upon infection with one of the most widespread fish skin bacterial pathogens, Flavobacterium columnare This pathogen induced strong skin innate immune and inflammatory responses at the initial phases of infection. More critically, we found that the skin mucus of fish having survived the infection contained significant IgT- but not IgM- or IgD-specific titers against the bacteria. Moreover, we demonstrate the local proliferation and production of IgT+ B cells and specific IgT titers, respectively, within the SALT upon bacterial infection. Thus, our findings represent the first demonstration that IgT is the main Ig isotype induced by the skin mucosa upon bacterial infection and that, because of the large surface of the skin, its SALT probably represents a prominent IgT-inductive site in fish.
Collapse
Affiliation(s)
- Xiao-Ting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao-Yue Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xia Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jia-Feng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zheng-Ben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Meng-Ting Zhan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Li-Guo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wei-Guang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Fumio Takizawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
| |
Collapse
|
45
|
Velázquez J, Rodríguez A, Aragón H, Haidar A, González M, Valdés R, Garay HE, Abreu DD, Ramos Y, Cabrales A, Morales A, González O, Herrera F, Estrada MP, Carpio Y. Monoclonal antibody against Nile tilapia (Oreochromis niloticus) IgM heavy chain: A valuable tool for detection and quantification of IgM and IgM + cells. FISH & SHELLFISH IMMUNOLOGY 2021; 110:44-54. [PMID: 33348037 DOI: 10.1016/j.fsi.2020.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is a freshwater fish, which is extensively cultivated worldwide and constitutes one of the model species for the study of fish immunology. Monoclonal antibodies are very advantageous molecular tools for studying teleost immune system. Specifically, monoclonal antibodies that react with immunoglobulins are used successfully in the study of the humoral immune response of several fish species. In the present study, we produced and characterized a monoclonal antibody against tilapia IgM heavy chain using a peptide-based strategy. The peptide sequence was selected from the surface-exposed region between CH3-CH4 domains. The specificity of the polyclonal serum and the hybridoma culture supernatant obtained by immunization with the peptide conjugated to keyhole limpet hemocyanin were evaluated by western blotting, both showing reactivity against tilapia serum IgM. The purified mAb was able to recognize secreted IgM by western blotting and ELISA and membrane IgM by flow cytometry. We also demonstrated that the antibody doesn't cross-react with a recombinant IgT fragment. This tool allowed us to study for the first time the stimulation of mucosal immunity after Pituitary Adenylate Cyclase Activating Polypeptide administration. Overall, the results demonstrated the utility of this mAb to characterize humoral immune response in O. niloticus.
Collapse
Affiliation(s)
- Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Alianet Rodríguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Hasel Aragón
- Monoclonal Antibodies Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Arlette Haidar
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Marcos González
- Monoclonal Antibodies Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Rodolfo Valdés
- Monoclonal Antibodies Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Hilda Elsa Garay
- Peptides Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - David Diago Abreu
- Peptides Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Yassel Ramos
- Proteomics Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Ania Cabrales
- Analytic and Purification Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Antonio Morales
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Osmany González
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Fidel Herrera
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba.
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba.
| |
Collapse
|
46
|
Epidermal Club Cells in Fishes: A Case for Ecoimmunological Analysis. Int J Mol Sci 2021; 22:ijms22031440. [PMID: 33535506 PMCID: PMC7867084 DOI: 10.3390/ijms22031440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermal club cells (ECCs), along with mucus cells, are present in the skin of many fishes, particularly in the well-studied Ostariophysan family Cyprinidae. Most ECC-associated literature has focused on the potential role of ECCs as a component of chemical alarm cues released passively when a predator damages the skin of its prey, alerting nearby prey to the presence of an active predator. Because this warning system is maintained by receiver-side selection (senders are eaten), there is want of a mechanism to confer fitness benefits to the individual that invests in ECCs to explain their evolutionary origin and maintenance in this speciose group of fishes. In an attempt to understand the fitness benefits that accrue from investment in ECCs, we reviewed the phylogenetic distribution of ECCs and their histochemical properties. ECCs are found in various forms in all teleost superorders and in the chondrostei inferring either early or multiple independent origins over evolutionary time. We noted that ECCs respond to several environmental stressors/immunomodulators including parasites and pathogens, are suppressed by immunomodulators such as testosterone and cortisol, and their density covaries with food ration, demonstrating a dynamic metabolic cost to maintaining these cells. ECC density varies widely among and within fish populations, suggesting that ECCs may be a convenient tool with which to assay ecoimmunological tradeoffs between immune stress and foraging activity, reproductive state, and predator-prey interactions. Here, we review the case for ECC immune function, immune functions in fishes generally, and encourage future work describing the precise role of ECCs in the immune system and life history evolution in fishes.
Collapse
|
47
|
Recombinant Baculovirus-Produced Grass Carp Reovirus Virus-Like Particles as Vaccine Candidate That Provides Protective Immunity against GCRV Genotype II Infection in Grass Carp. Vaccines (Basel) 2021; 9:vaccines9010053. [PMID: 33466933 PMCID: PMC7830148 DOI: 10.3390/vaccines9010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Grass carp reovirus (GCRV) leads to severe hemorrhagic disease in grass carp (Ctenopharyngodon idella) and causes economic losses in grass carp aquaculture. Recent epidemiological investigations showed that GCRV genotype II is the dominant subtype in China. Therefore, it is very important to develop a novel vaccine for preventing diseases caused by GCRV genotype II. In this study, we employed a bac-to-bac expression system to generate GCRV-II-based virus-like particles (VLPs). Previous studies have shown that the structural proteins VP3, VP4, and VP38 encoded by the segments S3, S6, and S10 of type II GCRV are immunogenic. Hence, the GCRV-VLPs were produced by co-infection of sf9 cells with recombinant baculoviruses PFBH-VP3, PFBH-VP4, and PFBH-VP38. The expressions of VP3, VP4, and VP38 proteins in GCRV-VLPs were tested by IFA and Western blot analysis. By electron microscopic observations of ultrathin sections, purified VLPs showed that the expressed proteins are similar in shape to GCRV genotype II with a size range from 40 nm to 60 nm. The immunogenicity of GCRV-VLPs was evaluated by the injection immunization of grass carp. The analysis of serum-specific IgM antibody showed that grass carp immunized with GCRV-VLPs produced GCRV-specific antibodies. Furthermore, injection with GCRV-VLPs increased the expressions of immune-related genes (IgM, IFN, TLR3, TLR7) in the spleen and kidney. In addition, grass carp immunized with a GCRV-VLPs-based vaccine showed a relative percent survival rate (RPS) of 83.33% after challenge. The data in this study showed that GCRV-VLPs demonstrated an excellent immunogenicity and represent a promising approach for vaccine development against GCRV genotype II infection.
Collapse
|
48
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
49
|
Yasumoto K, Koiwai K, Hiraoka K, Hirono I, Kondo H. Characterization of natural antigen-specific antibodies from naïve sturgeon serum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103770. [PMID: 32634523 DOI: 10.1016/j.dci.2020.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, we isolated and characterized natural antibodies found in serum samples from Bester sturgeon (Huso huso × Acipenser ruthenus). Natural antibodies specifically detected hen egg lysozyme (HEL), keyhole limpet hemocyanin (KLH), and several species of pathogenic bacteria. Interestingly, we detected no antibodies with similar specificity in serum samples from rainbow trout (Oncorhynchus mykiss) or from Japanese flounder (Paralichthys olivaceus). Binding capacity of the sturgeon natural serum antibodies increased slightly at 7 months compared to 3 months after hatching. Antigen-specific antibodies against KLH, Aeromonas hydrophila and Streptococcus iniae were affinity-fractionated from naive sera of Bester sturgeon; specific detection of the corresponding antigens was observed. We conclude that Bester sturgeon are capable of generating unique natural antibodies including those that are pathogen-specific.
Collapse
Affiliation(s)
- Kyutaro Yasumoto
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Kiyoshi Hiraoka
- Fujikin Inc, 18 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| |
Collapse
|
50
|
Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. Structure, Function, and Therapeutic Use of IgM Antibodies. Antibodies (Basel) 2020; 9:E53. [PMID: 33066119 PMCID: PMC7709107 DOI: 10.3390/antib9040053] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro-immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract. Several naturally occurring IgM antibodies have been explored as therapeutics in clinical trials, and a new class of molecules, engineered IgM antibodies with enhanced binding and/or additional functional properties are being evaluated in humans. Here, we review the considerable progress that has been made regarding the understanding of biology, structure, function, manufacturing, and therapeutic potential of IgM antibodies since their discovery more than 80 years ago.
Collapse
Affiliation(s)
- Bruce A. Keyt
- IGM Biosciences Inc, 325 East Middlefield Road, Mountain View, CA 94043, USA; (R.B.); (A.M.S.); (S.F.C.); (M.S.P.)
| | | | | | | | | |
Collapse
|