1
|
Mann JFS, Pankrac J, Klein K, McKay PF, King DFL, Gibson R, Wijewardhana CN, Pawa R, Meyerowitz J, Gao Y, Canaday DH, Avino M, Poon AFY, Foster C, Fidler S, Shattock RJ, Arts EJ. A targeted reactivation of latent HIV-1 using an activator vector in patient samples from acute infection. EBioMedicine 2020; 59:102853. [PMID: 32654992 PMCID: PMC7502668 DOI: 10.1016/j.ebiom.2020.102853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During combined anti-retroviral treatment, a latent HIV reservoir persists within resting memory CD4 T cells that initiates viral recrudescence upon treatment interruption. Strategies for HIV-1 cure have largely focused on latency reversing agents (LRAs) capable of reactivating and eliminating this viral reservoir. Previously investigated LRAs have largely failed to achieve a robust latency reversal sufficient for reduction of latent HIV pool or the potential of virus-free remission in the absence of treatment. METHODS We utilize a polyvalent virus-like particle (VLP) formulation called Activator Vector (ACT-VEC) to 'shock' provirus into transcriptional activity. Ex vivo co-culture experiments were used to evaluate the efficacy of ACT-VEC in relation to other LRAs in individuals diagnosed and treated during the acute stage of infection. IFN-γ ELISpot, qRT-PCR and Illumina MiSeq were used to evaluate antigenicity, latency reversal, and diversity of induced virus respectively. FINDINGS Using samples from HIV+ patients diagnosed and treated at acute/early infection, we demonstrate that ACT-VEC can reverse latency in HIV infected CD4 T cells to a greater extent than other major recall antigens as stimuli or even mitogens such as PMA/Iono. Furthermore, ACT-VEC activates more latent HIV-1 than clinically tested HDAC inhibitors or protein kinase C agonists. INTERPRETATION Taken together, these results show that ACT-VEC can induce HIV reactivation from latently infected CD4 T cells collected from participants on first line combined antiretroviral therapy for at least two years after being diagnosed and treated at acute/early stage of infection. These findings could provide guidance to possible targeted cure strategies and treatments. FUNDING NIH and CIHR.
Collapse
Affiliation(s)
- Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Joshua Pankrac
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Katja Klein
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Paul F McKay
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Deborah F L King
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Richard Gibson
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Chanuka N Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rahul Pawa
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jodi Meyerowitz
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, John Radcliffe Hospital, Oxford OX1 3SY, UK
| | - Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - David H Canaday
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Mariano Avino
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Art F Y Poon
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Caroline Foster
- The 900 Clinic, Jefferies Wing, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, UK
| | - Robin J Shattock
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Eric J Arts
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
2
|
Follicular T-cell subsets in HIV infection: recent advances in pathogenesis research. Curr Opin HIV AIDS 2020; 14:71-76. [PMID: 30585797 DOI: 10.1097/coh.0000000000000525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW T cells within B-cell follicles of secondary lymphoid tissues play key roles in HIV immunopathogenesis. This review highlights recent findings and identifies gaps in current knowledge. RECENT FINDINGS B-cell follicles are major sites of virus replication and demonstrate significant impairments in the generation of humoral immunity in HIV infection. Follicular T helper cells (Tfh), follicular T regulatory cells (Tfr) and follicular CD8 T cells (fCD8) play key roles in HIV immunopathogenesis. Tfh and more recently Tfr are highly permissive to HIV, and may serve as reservoirs of HIV in treated infection. Virus-specific CD8 T cells are less abundant in B-cell follicles than extrafollicular regions, but their effector mechanisms remain an area of significant controversy. Impairments in Tfh likely contribute to impaired humoral immunity and potential mechanisms include B-cell counter-regulatory mechanisms, Tfr suppression and diminished repertoire breadth. A better understanding of the roles of Tfh, Tfr and fCD8 in HIV immunopathogenesis is critical to the development of effective HIV vaccines and cure strategies. SUMMARY Tfh, Tfr and fCD8 contribute to HIV persistence and impaired humoral immunity. A better understanding of their roles could facilitate vaccine development and HIV cure strategies.
Collapse
|
3
|
Salido J, Ruiz MJ, Trifone C, Figueroa MI, Caruso MP, Gherardi MM, Sued O, Salomón H, Laufer N, Ghiglione Y, Turk G. Phenotype, Polyfunctionality, and Antiviral Activity of in vitro Stimulated CD8 + T-Cells From HIV + Subjects Who Initiated cART at Different Time-Points After Acute Infection. Front Immunol 2018; 9:2443. [PMID: 30405632 PMCID: PMC6205955 DOI: 10.3389/fimmu.2018.02443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1β), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.
Collapse
Affiliation(s)
- Jimena Salido
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - María Paula Caruso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
- Hospital General de Agudos “Dr. JA Fernández”, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
4
|
Leong YA, Atnerkar A, Yu D. Human Immunodeficiency Virus Playing Hide-and-Seek: Understanding the T FH Cell Reservoir and Proposing Strategies to Overcome the Follicle Sanctuary. Front Immunol 2017; 8:622. [PMID: 28620380 PMCID: PMC5449969 DOI: 10.3389/fimmu.2017.00622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) infects millions of people worldwide, and new cases continue to emerge. Once infected, the virus cannot be cleared by the immune system and causes acquired immunodeficiency syndrome. Combination antiretroviral therapeutic regimen effectively suppresses viral replication and halts disease progression. The treatment, however, does not eliminate the virus-infected cells, and interruption of treatment inevitably leads to viral rebound. The rebound virus originates from a group of virus-infected cells referred to as the cellular reservoir of HIV. Identifying and eliminating the HIV reservoir will prevent viral rebound and cure HIV infection. In this review, we focus on a recently discovered HIV reservoir in a subset of CD4+ T cells called the follicular helper T (TFH) cells. We describe the potential mechanisms for the emergence of reservoir in TFH cells, and the strategies to target and eliminate this viral reservoir.
Collapse
Affiliation(s)
- Yew Ann Leong
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anurag Atnerkar
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Yu
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
An initial examination of the potential role of T-cell immunity in protection against feline immunodeficiency virus (FIV) infection. Vaccine 2016; 34:1480-8. [PMID: 26802606 DOI: 10.1016/j.vaccine.2016.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/19/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
The importance of vaccine-induced T-cell immunity in conferring protection with prototype and commercial FIV vaccines is still unclear. Current studies performed adoptive transfer of T cells from prototype FIV-vaccinated cats to partial-to-complete feline leukocyte antigen (FLA)-matched cats a day before either homologous FIVPet or heterologous-subtype pathogenic FIVFC1 challenge. Adoptive-transfer (A-T) conferred a protection rate of 87% (13 of 15, p < 0.001) against FIVPet using the FLA-matched T cells, whereas all 12 control cats were unprotected. Furthermore, A-T conferred protection rate of 50% (6 of 12, p<0.023) against FIVFC1 using FLA-matched T cells, whereas all 8 control cats were unprotected. Transfer of FLA-matched T and B cells demonstrated that T cells are needed to confer A-T protection. In addition, complete FLA-matching and addition of T-cell numbers > 13 × 10(6) cells were required for A-T protection against FIVFC1 strain, reported to be a highly pathogenic virus resistant to vaccine-induced neutralizing-antibodies. The addition of FLA-matched B cells alone was not protective. The poor quality of the anti-FIV T-cell immunity induced by the vaccine likely contributed to the lack of protection in an FLA-matched recipient against FIVFC1. The quality of the immune response was determined by the presence of high mRNA levels of cytolysin (perforin) and cytotoxins (granzymes A, B, and H) and T helper-1 cytokines (interferon-γ [IFNγ] and IL2). Increased cytokine, cytolysin and cytotoxin production was detected in the donors which conferred protection in A-T studies. In addition, the CD4(+) and CD8(+) T-cell proliferation and/or IFNγ responses to FIV p24 and reverse transcriptase increased with each year in cats receiving 1X-3X vaccine boosts over 4 years. These studies demonstrate that anti-FIV T-cell immunity induced by vaccination with a dual-subtype FIV vaccine is essential for prophylactic protection against AIDS lentiviruses such as FIV and potentially HIV-1.
Collapse
|
6
|
Siewe B, Wallace J, Rygielski S, Stapleton JT, Martin J, Deeks SG, Landay A. Regulatory B cells inhibit cytotoxic T lymphocyte (CTL) activity and elimination of infected CD4 T cells after in vitro reactivation of HIV latent reservoirs. PLoS One 2014; 9:e92934. [PMID: 24739950 PMCID: PMC3989168 DOI: 10.1371/journal.pone.0092934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 12/24/2022] Open
Abstract
During HIV infection, IL-10/IL-10 receptor and programmed death-1 (PD-1)/programmed death-1-ligand (PD-L1) interactions have been implicated in the impairment of cytotoxic T lymphocyte (CTL) activity. Despite antiretroviral therapy (ART), attenuated anti-HIV CTL functions present a major hurdle towards curative measures requiring viral eradication. Therefore, deeper understanding of the mechanisms underlying impaired CTL is crucial before HIV viral eradication is viable. The generation of robust CTL activity necessitates interactions between antigen-presenting cells (APC), CD4+ and CD8+ T cells. We have shown that in vitro, IL-10hiPD-L1hi regulatory B cells (Bregs) directly attenuate HIV-specific CD8+-mediated CTL activity. Bregs also modulate APC and CD4+ T cell function; herein we characterize the Breg compartment in uninfected (HIVNEG), HIV-infected "elite controllers" (HIVEC), ART-treated (HIVART), and viremic (HIVvir), subjects, and in vitro, assess the impact of Bregs on anti-HIV CTL generation and activity after reactivation of HIV latent reservoirs using suberoylanilide hydroxamic acid (SAHA). We find that Bregs from HIVEC and HIVART subjects exhibit comparable IL-10 expression levels significantly higher than HIVNEG subjects, but significantly lower than HIVVIR subjects. Bregs from HIVEC and HIVART subjects exhibit comparable PD-L1 expression, significantly higher than in HIVVIR and HIVNEG subjects. SAHA-treated Breg-depleted PBMC from HIVEC and HIVART subjects, displayed enhanced CD4+ T-cell proliferation, significant upregulation of antigen-presentation molecules, increased frequency of CD107a+ and HIV-specific CD8+ T cells, associated with efficient elimination of infected CD4+ T cells, and reduction in integrated viral DNA. Finally, IL-10-R and PD-1 antibody blockade partially reversed Breg-mediated inhibition of CD4+ T-cell proliferation. Our data suggest that, possibly, via an IL-10 and PD-L1 synergistic mechanism; Bregs likely inhibit APC function and CD4+ T-cell proliferation, leading to anti-HIV CTL attenuation, hindering viral eradication.
Collapse
Affiliation(s)
- Basile Siewe
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- * E-mail:
| | - Jennillee Wallace
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Sonya Rygielski
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Jack T. Stapleton
- Iowa City Veterans Affairs Medical Center and the University of Iowa, Departments of Internal Medicine, Microbiology and Immunology, Iowa City, Iowa, United States of America
| | - Jeffrey Martin
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Alan Landay
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- FC Donders Chair, Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Younan P, Kowalski J, Kiem HP. Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS. Viruses 2013; 5:2946-62. [PMID: 24287598 PMCID: PMC3967155 DOI: 10.3390/v5122946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023] Open
Abstract
The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.
Collapse
Affiliation(s)
- Patrick Younan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; E-Mails: ; ;
| | - John Kowalski
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; E-Mails: ; ;
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; E-Mails: ; ;
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-206-667-4425; Fax: +1-206-667-6124
| |
Collapse
|