1
|
Han X, Liu L, Huang S, Xiao W, Gao Y, Zhou W, Zhang C, Zheng H, Yang L, Xie X, Liang Q, Tu Z, Yu H, Fu J, Wang L, Zhang X, Qian L, Zhou Y. RNA m 6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis. Nat Commun 2023; 14:7328. [PMID: 37957139 PMCID: PMC10643624 DOI: 10.1038/s41467-023-43219-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
N6-methyladenosine (m6A), the most prevalent mRNA modification, has an important function in diverse biological processes. However, the involvement of m6A in allergic asthma and macrophage homeostasis remains largely unknown. Here we show that m6A methyltransferases METTL3 is expressed at a low level in monocyte-derived macrophages from childhood allergic asthma patients. Conditional knockout of Mettl3 in myeloid cells enhances Th2 cell response and aggravates allergic airway inflammation by facilitating M2 macrophage activation. Loss and gain functional studies confirm that METTL3 suppresses M2 macrophage activation partly through PI3K/AKT and JAK/STAT6 signaling. Mechanistically, m6A-sequencing shows that loss of METTL3 impairs the m6A-YTHDF3-dependent degradation of PTX3 mRNA, while higher PTX3 expression positively correlates with asthma severity through promoting M2 macrophage activation. Furthermore, the METTL3/YTHDF3-m6A/PTX3 interactions contribute to autophagy maturation in macrophages by modulating STX17 expression. Collectively, this study highlights the function of m6A in regulating macrophage homeostasis and identifies potential targets in controlling allergic asthma.
Collapse
Affiliation(s)
- Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China.
| | - Lijuan Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Saihua Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Wenfeng Xiao
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Yajing Gao
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Weitao Zhou
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Caiyan Zhang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Hongmei Zheng
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Xueru Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Qiuyan Liang
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Zikun Tu
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Hongmiao Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China
| | - Jinrong Fu
- Department of General Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Libo Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Liling Qian
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200040, China.
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, 201102, China.
| |
Collapse
|
2
|
d'Amati A, Ronca R, Maccarinelli F, Turati M, Lorusso L, De Giorgis M, Tamma R, Ribatti D, Annese T. PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis. Pathol Res Pract 2023; 251:154901. [PMID: 37922722 DOI: 10.1016/j.prp.2023.154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The long pentraxin 3 (PTX3) is protective in different pathologies but was not analyzed in-depth in Idiopathic Pulmonary Fibrosis (IPF). Here, we have explored the influence of PTX3 in the bleomycin (BLM)-induced murine model of IPF by looking at immune cells (macrophages, mast cells, T cells) and stemness/regenerative markers of lung epithelium (SOX2) and fibro-blasts/myofibroblasts (CD44) at different time points that retrace the progression of the disease from onset at day 14, to full-blown disease at day 21, to incomplete regression at day 28. We took advantage of transgenic PTX3 overexpressing mice (Tie2-PTX3) and Ptx3 null ones (PTX3-KO) in which pulmonary fibrosis was induced. Our data have shown that PTX3 overexpression in Tie2-PTX3 compared to WT or PTX3-KO: reduced CD68+ and CD163+ macrophages and the Tryptase+ mast cells during the whole experimental time; on the contrary, CD4+ T cells are consistently present on day 14 and dramatically decreased on day 21; CD8+ T cells do not show significant differences on day 14, but are significantly reduced on day 21; SOX2 is reduced on days 14 and 21; CD44 is reduced on day 21. Therefore, PTX3 could act on the proimmune and fibrogenic microenvironment to prevent fibrosis in BLM-treated mice.
Collapse
Affiliation(s)
- Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy.
| |
Collapse
|
3
|
Moulana Z, Bagherzadeh M, Mirzakhani M, Rostami A, Mohammadnia-Afrouzi M, Shahbazi M. Increased Levels of serum Pentraxin 3 in Critical Coronavirus Disease-2019 Patients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85569-85573. [PMID: 34212320 PMCID: PMC8248285 DOI: 10.1007/s11356-021-15183-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 05/28/2023]
Abstract
Pentraxin 3 (PTX3) and ficolin are the plasma phase of pattern recognition receptors (PRRs) and can activate complement through classical and lectin pathways, respectively, which may contribute to disease severity. This study aimed to investigate the association between PTX3 and ficolin with disease severity in patients with coronavirus disease-2019 (COVID-19). Seventy-three COVID-19 patients and 25 healthy controls were enrolled in this study. The participants were divided into three groups as follows: 14 patients as the intensive care unit (ICU) group, 59 patients as the non-ICU group, and 25 subjects as the healthy control group. The serum levels of PTX3 and ficolin were measured by enzyme-linked immunosorbent assay (ELISA) kits. Patients in ICU and non-ICU groups had significantly higher levels of PTX3 compared to the healthy control group (p = 0.0002 and p = 0.0072, respectively). Patients in the ICU group also had an increased amount of PTX3 (1957 ± 1769 pg/ml) compared to non-ICU patients (1220 ± 1784 pg/ml). However, this difference was not significant. On the other hand, serum levels of ficolin were not different among the three groups. PTX3, as an acute phase protein, may contribute to disease severity. Its probable inflammatory role could result from the high activation of the complement system. On the other hand, it could be suggested that ficolin has no crucial role in the disease severity of COVID-19 patients.
Collapse
Affiliation(s)
- Zahra Moulana
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mojgan Bagherzadeh
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mirzakhani
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Rostami
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mehdi Shahbazi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Margiana R, Sharma SK, Khan BI, Alameri AA, Opulencia MJC, Hammid AT, Hamza TA, Babakulov SK, Abdelbasset WK, Jawhar ZH. RETRACTED: The pathogenicity of COVID-19 and the role of pentraxin-3: An updated review study. Pathol Res Pract 2022; 238:154128. [PMID: 36137396 PMCID: PMC9476367 DOI: 10.1016/j.prp.2022.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. In investigating concerns regarding the contributions of the authors to this article, the editors reached out to the authors for an explanation. In addition to the concerns regarding the contribution of each author, the editors discovered suspicious changes in authorship between the original submission and the revised version of this paper. The names of the authors Ameer A Alameri and Zanko Hassan Jawhar were added to the revised version of the article without explanation and without the exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship. The authors were unable to provide a reasonable explanation for either of the issues raised. The editor therefore feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India.
| | | | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Thulfeqar Ahmed Hamza
- Medical laboratory techniques department, Al-Mustaqbal University College, Babylon, Iraq
| | - Sharaf Khamrakulovich Babakulov
- Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| |
Collapse
|
5
|
Wang S, Zhou Q, Tian Y, Hu X. The Lung Microbiota Affects Pulmonary Inflammation and Oxidative Stress Induced by PM 2.5 Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12368-12379. [PMID: 35984995 DOI: 10.1021/acs.est.1c08888] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes respiratory diseases by inducing inflammation and oxidative stress. However, the correlation between the pulmonary microbiota and the progression of pulmonary inflammation and oxidative stress caused by PM2.5 is poorly understood. This study tested the hypothesis that the lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Mice were exposed to PM2.5 intranasally for 12 days. Then, pulmonary microbiota transfer and antibiotic intervention were performed. Histological examinations, biomarker index detection, and transcriptome analyses were conducted. Characterization of the pulmonary microbiota using 16S rRNA gene sequencing showed that its diversity decreased by 75.2% in PM2.5-exposed mice, with increased abundance of Proteobacteria and decreased abundance of Bacteroidota. The altered composition of the microbiota was significantly correlated with pulmonary inflammation and oxidative stress-related indicators. Intranasal transfer of the pulmonary microbiota from PM2.5-exposed mice affected pulmonary inflammation and oxidative stress caused by PM2.5, as shown by increased proinflammatory cytokine levels and dysregulated oxidative damage-related biomarkers. Antibiotic intervention during PM2.5 exposure alleviated pulmonary inflammation and oxidative damage in mice. The pulmonary microbiota also showed substantial changes after antibiotic treatment, as reflected by the increased microbiota diversity, decreased abundance of Proteobacteria and increased abundance of Bacteroidota. These results suggest that pulmonary microbial dysbiosis can promote and affect pulmonary inflammation and oxidative stress during PM2.5 exposure.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Palmieri F, Koutsokera A, Bernasconi E, Junier P, von Garnier C, Ubags N. Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp. Front Med (Lausanne) 2022; 9:832510. [PMID: 35386908 PMCID: PMC8977413 DOI: 10.3389/fmed.2022.832510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fungal infections are estimated to be the main cause of death for more than 1.5 million people worldwide annually. However, fungal pathogenicity has been largely neglected. This is notably the case for pulmonary fungal infections, which are difficult to diagnose and to treat. We are currently facing a global emergence of antifungal resistance, which decreases the chances of survival for affected patients. New therapeutic approaches are therefore needed to face these life-threatening fungal infections. In this review, we will provide a general overview on respiratory fungal infections, with a focus on fungi of the genus Aspergillus. Next, the immunological and microbiological mechanisms of fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its interactions with the bacterial microbiota on lung fungal infections will be presented from an ecological perspective. Finally, we will focus on existing and future innovative approaches for the treatment of respiratory fungal infections.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Fabio Palmieri,
| | - Angela Koutsokera
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Bernasconi
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Christophe von Garnier
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Niki Ubags,
| |
Collapse
|
7
|
Garantziotis S. Modulation of hyaluronan signaling as a therapeutic target in human disease. Pharmacol Ther 2021; 232:107993. [PMID: 34587477 DOI: 10.1016/j.pharmthera.2021.107993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The extracellular matrix is an active participant, modulator and mediator of the cell, tissue, organ and organismal response to injury. Recent research has highlighted the role of hyaluronan, an abundant glycosaminoglycan constituent of the extracellular matrix, in many fundamental biological processes underpinning homeostasis and disease development. From this basis, emerging studies have demonstrated the therapeutic potential of strategies which target hyaluronan synthesis, biology and signaling, with significant promise as therapeutics for a variety of inflammatory and immune diseases. This review summarizes the state of the art in this field and discusses challenges and opportunities in what could emerge as a new class of therapeutic agents, that we term "matrix biologics".
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
8
|
Balhara J, Koussih L, Mohammed A, Shan L, Lamkhioued B, Gounni AS. PTX3 Deficiency Promotes Enhanced Accumulation and Function of CD11c +CD11b + DCs in a Murine Model of Allergic Inflammation. Front Immunol 2021; 12:641311. [PMID: 34305885 PMCID: PMC8299994 DOI: 10.3389/fimmu.2021.641311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
PTX3 is a unique member of the long pentraxins family and plays an indispensable role in regulating the immune system. We previously showed that PTX3 deletion aggravates allergic inflammation via a Th17 -dominant phenotype and enhanced CD4 T cell survival using a murine model of ovalbumin (OVA) induced allergic inflammation. In this study, we identified that upon OVA exposure, increased infiltration of CD11c+CD11b+ dendritic cells (DCs) was observed in the lungs of PTX3-/- mice compared to wild type littermate. Further analysis showed that a short-term OVA exposure led to an increased number of bone marrow common myeloid progenitors (CMP) population concomitantly with increased Ly6Chigh CCR2high monocytes and CD11c+CD11b+ DCs in the lungs. Also, pulmonary CD11c+CD11b+ DCs from OVA-exposed PTX3-/- mice exhibited enhanced expression of maturation markers, chemokines receptors CCR2, and increased OVA uptake and processing compared to wild type controls. Taken together, our data suggest that PTX3 deficiency heightened lung CD11c+CD11b+DC numbers and function, hence exacerbating airway inflammatory response.
Collapse
Affiliation(s)
- Jyoti Balhara
- Department of Immunology, Max-Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Latifa Koussih
- Department of Immunology, Max-Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department des Sciences Experimentales, Université de Saint-Boniface, Winnipeg, MB, Canada
| | - Ashfaque Mohammed
- Department of Immunology, Max-Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lianyu Shan
- Department of Immunology, Max-Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bouchaib Lamkhioued
- Laboratoire d'Immunologie et de Biotechnologies, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Abdelilah S Gounni
- Department of Immunology, Max-Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Doni A, Mantovani A, Bottazzi B, Russo RC. PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis. Front Immunol 2021; 12:676702. [PMID: 34276664 PMCID: PMC8284251 DOI: 10.3389/fimmu.2021.676702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient's life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Andrea Doni
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Alberto Mantovani
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University of Milan, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
11
|
Levy L, Huszti E, Ahmed M, Ghany R, Hunter S, Moshkelgosha S, Zhang CYK, Boonstra K, Klement W, Tikkanen J, Singer LG, Keshavjee S, Juvet S, Martinu T. Bronchoalveolar lavage cytokine-based risk stratification of minimal acute rejection in clinically stable lung transplant recipients. J Heart Lung Transplant 2021; 40:1540-1549. [PMID: 34215500 DOI: 10.1016/j.healun.2021.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Acute cellular rejection (ACR) remains the most significant risk factor for chronic lung allograft dysfunction (CLAD). While clinically significant or higher-grade (≥A2) ACR is generally treated with augmented immunosuppression (IS), the management of clinically stable grade A1 ACR remains controversial. At our center, patients with clinically stable grade A1 ACR are routinely not treated with augmented IS. While the overall outcomes in this group of patients at our center are equivalent to patients with stable A0 pathology, CLAD and death rates remain overall high. We hypothesized that a distinct cytokine signature at the time of early minimal rejection state would be associated with worse outcomes. Specifically, we aimed to determine whether bronchoalveolar lavage (BAL) biomarkers at the time of first clinically stable grade A1 ACR (CSA1R) are predictive of subsequent CLAD or death. METHODS Among all adult, bilateral, first lung transplants, performed 2010-2016, transbronchial biopsies obtained within the first-year post-transplant were categorized as clinically stable or unstable based on the presence or absence of ≥10% concurrent drop in forced expiratory volume in 1 second (FEV1). We assessed BAL samples obtained at the time of CSA1R episodes, which were not preceded by another ACR (i.e., first episodes). Twenty-one proteins previously associated with ACR or CLAD were measured in the BAL using a multiplex bead assay. Association between protein levels and subsequent CLAD or death was assessed using Cox Proportional Hazards models, adjusted for relevant peri-transplant clinical covariates. RESULTS We identified 75 patients with first CSA1R occurring at a median time of 98 days (range 48.5-197) post-transplant. Median time from transplant to CLAD or death was 1247 (756.5-1921.5) and 1641 days (1024.5-2326.5), respectively. In multivariable models, levels of MCP1/CCL2, S100A8, IL10, TNF-receptor 1, and pentraxin 3 (PTX3) were associated with both CLAD development and death (p < 0.05 for all). PTX3 remained significantly associated with both CLAD and death after adjusting for multiple comparisons. CONCLUSION Our data indicate that a focused BAL protein signature, with PTX3 having the strongest association, may be useful in determining a subset of CSA1R patients at increased risk and may benefit from a more aggressive management strategy.
Collapse
Affiliation(s)
- Liran Levy
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Pulmonary Medicine, Sheba Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Musawir Ahmed
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rasheed Ghany
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Hunter
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Chen Yang Kevin Zhang
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kristen Boonstra
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - William Klement
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jussi Tikkanen
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Orach J, Rider CF, Carlsten C. Concentration-dependent health effects of air pollution in controlled human exposures. ENVIRONMENT INTERNATIONAL 2021; 150:106424. [PMID: 33596522 DOI: 10.1016/j.envint.2021.106424] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is a leading contributor to premature mortality worldwide and is often represented by particulate matter (PM), a key contributor to its harmful health effects. Concentration-response relationships are useful for quantifying the effects of air pollution in relevant populations and in considering potential effect thresholds. Controlled human exposures can provide data on acute effects and concentration-response relationships that complement epidemiological studies. OBJECTIVES We examined PM concentration-responses after controlled human air pollution exposures to examine exposure-response markers, assess effect modifiers, and identify potential effect thresholds. METHODS We reviewed primary research from published controlled human exposure studies where responses were reported at multiple target PM concentrations or summarized per unit change in PM to identify concentration-dependent effects. RESULTS Of the 191 publications identified through PubMed and supplementary searches, 31 were eligible. Eligible studies collectively represented four pollutant models: concentrated ambient particles, engineered carbon nanoparticles, diesel exhaust, and woodsmoke. We identified concentration-dependent effects on oxidative stress markers, inflammation, and cardiovascular function that overlapped across different pollutants. Metabolic syndrome and glutathione s-transferase mu 1 genotype were identified as potential effect modifiers. DISCUSSION Improved understanding of concentration-response relationships is integral to biomonitoring and mitigation of health effects through impact assessment and policy. Although we identified potential concentration-response markers, thresholds, and modifiers, our conclusions on these relationships were limited by a dearth of eligible publications, considerable variability in methodology, and inconsistent reporting standards between studies. More research is required to validate these observations. We recommend that future studies harmonize estimate reporting to facilitate the identification of robust response markers across research and applied settings.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Li Y, Song X, Niu J, Ren M, Tang G, Sun Z, Kong F. Pentraxin 3 acts as a functional effector of Akt/NF-κB signaling to modulate the progression and cisplatin-resistance in non-small cell lung cancer. Arch Biochem Biophys 2021; 701:108818. [PMID: 33617838 DOI: 10.1016/j.abb.2021.108818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/24/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Pentraxin 3 (PTX3) has been documented to be involved in the development of chemoresistance, however, the mechanisms by which it regulates cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC) have never been elucidated. Quantitative reverse transcriptase polymerase chain reaction and Western blot were carried to determine the expression of PTX3, ATP-binding cassette sub-family B member 1 (ABCB1)/P-glycoprotein 1 (p-gp), protein kinase B (Akt), phosphorylated Akt and nuclear factor-kappa B (NF-кB) p65. The biological roles of PTX3 in NSCLC progression and NSCLC cell resistance to DDP were evaluated using enzyme-linked immunosorbent assay, cell count kit-8, colony formation assay, flow cytometry, as well as xenograft tumor assay. The expression of PTX3 was increased in the serum of NSCLC patients as well as in NSCLC cell lines. Lower PTX3 level was associated with longer overall survival in lung adenocarcinoma and lung squamous cell carcinoma patients. Furthermore, PTX3 expression was greatly higher in DDP-resistant NSCLC cells than that in NSCLC cells. Silencing of PTX3 restrained the proliferation and promoted the apoptosis of NSCLC cells, as well as sensitized DDP-resistant NSCLC cells to DDP. Additionally, knockdown of PTX3 inhibited the growth of NSCLC tumors in vivo. Upregulation of PTX3 expression was dependent on the activation of Akt/NF-κB signaling. The induction of apoptosis by PTX3 knockdown was enhanced by MK-2206 or JSH-23. In conclusion, knockdown of PTX3 restrained the progression of NSCLC and sensitized NSCLC cells towards DDP, which provides a potential target to restore DDP chemoresponse.
Collapse
Affiliation(s)
- Yanguang Li
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiang Song
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China.
| | - Jieting Niu
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Mingming Ren
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guojie Tang
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zhen Sun
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fanyi Kong
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
14
|
Maccarinelli F, Bugatti M, Churruca Schuind A, Ganzerla S, Vermi W, Presta M, Ronca R. Endogenous Long Pentraxin 3 Exerts a Protective Role in a Murine Model of Pulmonary Fibrosis. Front Immunol 2021; 12:617671. [PMID: 33679758 PMCID: PMC7930377 DOI: 10.3389/fimmu.2021.617671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis is a progressive scarring disease of the lungs, characterized by inflammation, fibroblast activation, and deposition of extracellular matrix. The long pentraxin 3 (PTX3) is a member of the pentraxin family with non-redundant functions in innate immune responses, tissue repair, and haemostasis. The role played in the lungs by PTX3 during the fibrotic process has not been elucidated. In this study, the impact of PTX3 expression on lung fibrosis was assessed in an intratracheal bleomycin (BLM)-induced murine model of the disease applied to wild type animals, transgenic mice characterized by endothelial overexpression and stromal accumulation of PTX3 (Tie2-PTX3 mice), and genetically deficient Ptx3−/− animals. Our data demonstrate that PTX3 is produced during BLM-induced fibrosis in wild type mice, and that PTX3 accumulation in the stroma compartment of Tie2-PTX3 mice limits the formation of fibrotic tissue in the lungs, with reduced fibroblast activation and collagen deposition, and a decrease in the recruitment of the immune infiltrate. Conversely, Ptx3-null mice showed an exacerbated fibrotic response and decreased survival in response to BLM treatment. These results underline the protective role of endogenous PTX3 during lung fibrosis and pave the way for the study of novel PTX3-derived therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,ASST Spedali Civili di Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
16
|
Magrone T, Jirillo E, Magrone M, Russo MA, Romita P, Massari F, Foti C. Red Grape Polyphenol Oral Administration Improves Immune Response in Women Affected by Nickel-Mediated Allergic Contact Dermatitis. Endocr Metab Immune Disord Drug Targets 2020; 21:374-384. [PMID: 32167433 DOI: 10.2174/1871530320666200313152648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Our previous findings demonstrated that in vitro supplementation of polyphenols, extracted from seeds of red grape (Nero di Troia cultivar), to peripheral lymphomonocytes from patients affected by allergic contact dermatitis (ACD) to nickel (Ni) could reduce the release of proinflammatory cytokines and nitric oxide (NO), while increasing the levels of interleukin (IL)-10, an anti-inflammatory cytokine. OBJECTIVE To assess whether an intervention with oral administration of polyphenols leads to a reduction of peripheral biomarkers in ACD patients. METHODS At T0, 25 patients affected by ACD to Ni were orally administered with 300 mg polyphenols prodie extracted from seeds of red grape (Nero di Troia cultivar) (NATUR-OX®) for 3 months (T1). The other 25 patients affected by ACD to Ni received placebo only for the same period of time. Serum biomarkers were analyzed at T0 and T1. In both groups, seven dropouts were recorded. RESULTS At T1 in comparison to T0, in treated patients, values of interferon-γ, IL-4, IL-17, pentraxin 3 and NO decreased, while IL-10 levels increased when compared with T0 values. Conversely, in placebo- treated patients, no modifications of biomarkers were evaluated at T1. CONCLUSION Present laboratory data rely on the anti-oxidant, anti-inflammatory and anti-allergic properties of polyphenols.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Paolo Romita
- Department of Biomedical Sciences and Human Oncology, University of Bari, School of Medicine, University of Bari, Bari, Italy
| | - Francesco Massari
- Department of Biomedical Sciences and Human Oncology, University of Bari, School of Medicine, University of Bari, Bari, Italy
| | - Caterina Foti
- Department of Biomedical Sciences and Human Oncology, University of Bari, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
17
|
Tonial AF, Nisihara R, Nassif PAN, Munhoz SI, Cortina AG, Gobetti JSC, Skare T. Bariatric surgery results in restoration of physiological plasma levels of pentraxine-3. Biomed Rep 2019; 12:68-72. [PMID: 31929876 DOI: 10.3892/br.2019.1264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022] Open
Abstract
Pentraxine-3 (PTX3) is a member of the humoral innate immune system and serves a role in protection against infections, inflammation control and matrix deposition. The aim of the present study was to measure the PTX3 levels in obese patients and its association with glycemic and lipid profiles, and to analyze the effects of weight loss provided by bariatric surgery in serum PTX3 levels. PTX3 was measured in 84 obese patients whom underwent bariatric surgery and 94 healthy controls. Lipid and glycemic profiles were determined using a clinical chemistry analyzer, and PTX3 levels were measured in patients prior to and following bariatric surgery using ELISA. PTX3 levels prior to surgery were significantly lower compared with the normal controls (median of 0.10 vs. 0.80 ng/ml; P<0.0001). Following surgery, the median weight loss was 33.1 kg, and the median PTX3 levels were significantly increased to 1.45 ng/ml compared with pre-surgery levels (P<0.001) and did not differ significantly from the control group levels (P=0.10). There were no correlations between PTX3 levels and total cholesterol, HDL and LDL, fasting glycemia, HbA1c and basal insulin levels. A significant positive correlation was observed between PTX3 levels and triglycerides levels in the post-operative period (ρ=0.26, P=0.01). In conclusion, obese patients had lower levels of PTX3 compared with the control patients, and the levels were restored to physiological levels following bariatric surgery which may be associated with the weight loss.
Collapse
Affiliation(s)
- Alessandro F Tonial
- Medical Research Institute, Evangelical Mackenzie University, Curitiba, Paraná 80730-000, Brazil
| | - Renato Nisihara
- Department of Medicine, Mackenzie Evangelical School of Medicine Paraná, Curitiba, Paraná 80730-000, Brazil.,Department of Medicine, Positivo University, Curitiba, Paraná 80730-000, Brazil
| | - Paulo A N Nassif
- Medical Research Institute, Evangelical Mackenzie University, Curitiba, Paraná 80730-000, Brazil.,Department of Medicine, Mackenzie Evangelical School of Medicine Paraná, Curitiba, Paraná 80730-000, Brazil
| | - Sofia I Munhoz
- Department of Medicine, Mackenzie Evangelical School of Medicine Paraná, Curitiba, Paraná 80730-000, Brazil
| | - Alex G Cortina
- Department of Medicine, Mackenzie Evangelical School of Medicine Paraná, Curitiba, Paraná 80730-000, Brazil
| | - Júlia S C Gobetti
- Department of Medicine, Mackenzie Evangelical School of Medicine Paraná, Curitiba, Paraná 80730-000, Brazil
| | - Thelma Skare
- Medical Research Institute, Evangelical Mackenzie University, Curitiba, Paraná 80730-000, Brazil.,Department of Medicine, Mackenzie Evangelical School of Medicine Paraná, Curitiba, Paraná 80730-000, Brazil
| |
Collapse
|
18
|
Ahmmed B, Khan MN, Nisar MA, Kampo S, Zheng Q, Li Y, Yan Q. Tunicamycin enhances the suppressive effects of cisplatin on lung cancer growth through PTX3 glycosylation via AKT/NF-κB signaling pathway. Int J Oncol 2018; 54:431-442. [PMID: 30483742 PMCID: PMC6317655 DOI: 10.3892/ijo.2018.4650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
Long pentraxin-3 (PTX3) is an inflammatory molecule related to cancer proliferation, invasion, and metastasis. Many studies have highlighted the significance of glycosylated molecules in immune modulation, inflammation and cancer progression. Moreover, aberrant glycosylation of cancer cells is linked to chemoresistance. This study aimed to develop effective therapeutic strategies for deglycosylation of PTX3 (dePTX3) in order to enhance chemosensitivity to cisplatin (Cis) in lung cancer treatment. The A549 and SPCA1 cells were used to determine the role of PTX3 glycosylation in lung cancer growth. Our results revealed that PTX3 was higher in both human lung cancer tissues and serum in comparison with control. Furthermore, we found that deglycosylated PTX3 (dePTX3) by tunicamycin (TM), which is N-glycan precursor biosynthesis blocker, and PNGase F significantly reduced the survival and migration of lung cancer cells. To further confirm this, we also generated glycosylation-site mutant of PTX3 (mPTX3) to characterize the loss of glyco-function. dePTX3 and TM enhanced the suppressive effects of Cis on lung cancer cell growth, migration and invasion compared to individual treatment. Treatment with a combination of TM and Cis significantly inactivated AKT/NF-κB signaling pathway and induced apoptosis. In conclusion, these findings suggest that PTX3 is an important mediator of lung cancer progression, and dePTX3 by TM enhances the anticancer effects of Cis. The deglycosylation in chemotherapy may represent a potential novel therapeutic strategy against lung cancer.
Collapse
Affiliation(s)
- Bulbul Ahmmed
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Muhammad Noman Khan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Muhammad Azhar Nisar
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Sylvanus Kampo
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yulin Li
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
19
|
Hyaluronan interactions with innate immunity in lung biology. Matrix Biol 2018; 78-79:84-99. [PMID: 29410190 DOI: 10.1016/j.matbio.2018.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Lung disease is a leading cause of morbidity and mortality worldwide. Innate immune responses in the lung play a central role in the pathogenesis of lung disease and the maintenance of lung health, and thus it is crucial to understand factors that regulate them. Hyaluronan is ubiquitous in the lung, and its expression is increased following lung injury and in disease states. Furthermore, hyaladherins like inter-α-inhibitor, tumor necrosis factor-stimulated gene 6, pentraxin 3 and versican are also induced and help form a dynamic hyaluronan matrix in injured lung. This review synthesizes present knowledge about the interactions of hyaluronan and its associated hyaladherins with the lung immune system, and the implications of these interactions for lung biology and disease.
Collapse
|
20
|
Koh SH, Shin SG, Andrade MJ, Go RH, Park S, Woo CH, Lim JH. Long pentraxin PTX3 mediates acute inflammatory responses against pneumococcal infection. Biochem Biophys Res Commun 2017; 493:671-676. [PMID: 28864415 DOI: 10.1016/j.bbrc.2017.08.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023]
Abstract
Streptococcus pneumoniae is an important human pathogen responsible for more than 2 million deaths annually worldwide. The airway epithelium acts as the first-line of defense against pneumococcal infections by regulating acute inflammation against invading pneumococcus. Despite the intact adaptive immunity, failure in early defense due to loss of pattern recognition receptors (PRRs) and/or acute phase proteins (APPs) results in detrimental damage and death. C-reactive protein (CRP), the first found APP, is a member of the pentraxin family of proteins and an important soluble PRR for pneumococcus. CRP and another short pentraxin, serum amyloid P, are critical for acute defense against pneumococcal infection. However, the role of the long pentraxin PTX3 in regulating pneumococcal infections is unknown. In this study, PTX3 expression was upregulated by pneumococcus in epithelial cells and in lungs of mice. In addition, PTX3 potentiated pneumococcal inflammation; overexpression of PTX3 enhanced pneumococcus-induced cytokine expression, whereas knock-down of PTX3 with siPTX3 inhibited the cytokine expression. Furthermore, PTX3 deficiency indeed ameliorated acute inflammation and protected mice against death following pneumococcal infection. Pneumococcal toxin pneumolysin was responsible for PTX3 expression and upregulated PTX3 expression via JNK MAPK signaling. These data implicate PTX3 as a novel therapeutic target for the control of acute inflammation by pneumococcus.
Collapse
Affiliation(s)
- Seo Hyun Koh
- Department of Microbiology, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Seul Gi Shin
- Department of Microbiology, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Maria Jose Andrade
- Department of Microbiology, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Ryun-Hee Go
- Department of Microbiology, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Seonghee Park
- Department of Physiology, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Chang-Hoon Woo
- Department of Pharmacology and Smart-Aging Convergence Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea.
| | - Jae Hyang Lim
- Department of Microbiology, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea.
| |
Collapse
|
21
|
Thulborn SJ, Dilpazir M, Haldar K, Mistry V, Brightling CE, Barer MR, Bafadhel M. Investigating the role of pentraxin 3 as a biomarker for bacterial infection in subjects with COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:1199-1205. [PMID: 28458531 PMCID: PMC5402921 DOI: 10.2147/copd.s123528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Pentraxin 3 (PTX3) is an acute phase protein, involved in antibacterial resistance. Recent studies have shown PTX3 levels to be elevated in the presence of a bacterial infection and in a murine sepsis model. Objective We aim to investigate if sputum PTX3 can be used as a biomarker for bacterial infection in subjects with COPD. Materials and methods Sputum samples from 142 COPD patients (102 men) with a mean (range) age of 69 years (45–85) and mean (SD) post-bronchodilator percentage predicted forced expiratory volume in 1 second (FEV1) of 50% (19) were analyzed for PTX3, using a commercial assay at stable state and during an exacerbation. Association with bacteria, from culture, quantitative real-time polymerase chain reaction (qPCR) and colony-forming units (CFU) was investigated. Results The geometric mean (95% CI) PTX3 level at stable state was 50.5 ng/mL (41.4–61.7). PTX3 levels correlated with absolute neutrophil count in sputum (r=0.37; P<0.01), but not FEV1 or health status. There was a weak correlation between PTX3 and bacterial load (CFU: r=0.29, P<0.01; 16S qPCR: r=0.18, P=0.05). PTX3 was a poor predictor of bacterial colonization (defined as >105 CFU/mL at stable state) with a receiver-operating characteristic (ROC) area under the curve (AUC) of 0.59 and 95% confidence interval (CI) 0.43–0.76 (P=0.21). During an exacerbation, there was a modest increase in PTX3 (fold difference 0.15, 95% of difference 0.02–0.29; P=0.02), and PTX3 fared better at identifying a bacteria-associated exacerbation (ROC AUC 0.65, 95% CI 0.52–0.78, P=0.03). Conclusion PTX3 is associated with bacterial infection in patients with COPD, but its utility as a biomarker for identifying a bacteria-associated exacerbation warrants further studies.
Collapse
Affiliation(s)
- Samantha J Thulborn
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford
| | - Madiha Dilpazir
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford
| | - Koirobi Haldar
- Department of Immunity, Infection & Inflammation, University of Leicester, Leicester, UK
| | - Vijay Mistry
- Department of Immunity, Infection & Inflammation, University of Leicester, Leicester, UK
| | | | - Michael R Barer
- Department of Immunity, Infection & Inflammation, University of Leicester, Leicester, UK
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford
| |
Collapse
|
22
|
Zelante T, Wong AYW, Mencarelli A, Foo S, Zolezzi F, Lee B, Poidinger M, Ricciardi-Castagnoli P, Fric J. Impaired calcineurin signaling in myeloid cells results in downregulation of pentraxin-3 and increased susceptibility to aspergillosis. Mucosal Immunol 2017; 10:470-480. [PMID: 27301880 DOI: 10.1038/mi.2016.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/08/2016] [Indexed: 02/04/2023]
Abstract
Treatment of post-transplant patients with immunosuppressive drugs targeting the calcineurin-nuclear factor of activated T cells (NFAT) pathway, including cyclosporine A or tacrolimus, is commonly associated with a higher incidence of opportunistic infections, such as Aspergillus fumigatus, which can lead to severe life-threatening conditions. A component of the A. fumigatus cell wall, β-glucan, is recognized by dendritic cells (DCs) via the Dectin-1 receptor, triggering downstream signaling that leads to calcineurin-NFAT binding, NFAT translocation, and transcription of NFAT-regulated genes. Here, we address the question of whether calcineurin signaling in CD11c-expressing cells, such as DCs, has a specific role in the innate control of A. fumigatus. Impairment of calcineurin in CD11c-expressing cells (CD11ccrecnb1loxP) significantly increased susceptibility to systemic A. fumigatus infection and to intranasal infection in irradiated mice undergoing bone marrow transplant. Global expression profiling of bone marrow-derived DCs identified calcineurin-regulated processes in the immune response to infection, including expression of pentraxin-3, an important antifungal defense protein. These results suggest that calcineurin inhibition directly impairs important immunoprotective functions of myeloid cells, as shown by the higher susceptibility of CD11ccrecnbloxP mice in models of systemic and invasive pulmonary aspergillosis, including after allogeneic bone marrow transplantation. These findings are relevant to the clinical management of transplant patients with severe Aspergillus infections.
Collapse
Affiliation(s)
- T Zelante
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - A Y W Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - A Mencarelli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Emerging Infectious Diseases Programme, Duke-NUS, Singapore
| | - S Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - F Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - B Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - M Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - P Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - J Fric
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
23
|
Herseth JI, Volden V, Bolling AK. Particulate matter-mediated release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) in vitro: Limited importance of endotoxin and organic content. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:105-119. [PMID: 28071984 DOI: 10.1080/15287394.2016.1257399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Exposure to particulate matter (PM) is associated with adverse health effects, but it is still relatively unknown which role PM sources and physicochemical properties play in the observed effects. It was postulated that PM in vitro induces release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) and that endotoxin and organic compounds present in the PM regulate this release. A contact coculture of THP-1 human leukemia monocytes and A549 human adenocarcinoma alveolar pneumocytes was exposed to PM from Traffic, Wood, Diesel, and Quartz (10-40 µg/cm2) for 12-64 h to determine release of PTX3 and VEGF. The role of endotoxin and the organic fraction in the mediator release was assessed using polymyxin B sulfate and organic extracts, respectively. Finally, antagonists were used to investigate whether the early proinflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α affected the PTX3 and VEGF release. All PM samples induced a time-dependent release of both PTX3 and VEGF. Traffic mediated the greatest release of PTX3, whereas Wood and Diesel were more potent inducers of VEGF. The endotoxin content did not markedly affect release of either mediator, while the organic fraction exerted no significant effect on VEGF release and limited influence on PTX3 release. In addition, the IL-1 and TNF-α agonists affected PTX3 release more strongly than VEGF release. In conclusion, the current data show a limited impact of endotoxin and organic compounds on PTX3 and VEGF release. Further, the observed differences in response patterns may point toward differential regulation of PM-mediated release of PTX3 and VEGF.
Collapse
Affiliation(s)
- J I Herseth
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - V Volden
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - A K Bolling
- b Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
24
|
Balhara J, Shan L, Zhang J, Muhuri A, Halayko AJ, Almiski MS, Doeing D, McConville J, Matzuk MM, Gounni AS. Pentraxin 3 deletion aggravates allergic inflammation through a T H17-dominant phenotype and enhanced CD4 T-cell survival. J Allergy Clin Immunol 2016; 139:950-963.e9. [PMID: 27567326 PMCID: PMC6317853 DOI: 10.1016/j.jaci.2016.04.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 04/01/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Background Pentraxin 3 (PTX3) is a multifunctional molecule that plays a nonredundant role at the crossroads between pathogen clearance, innate immune system, matrix deposition, female fertility, and vascular biology. It is produced at sites of infection and inflammation by both structural and inflammatory cells. However, its role in allergen-induced inflammation remains to be tested. Objective We sought to determine the effect of Ptx3 deletion on ovalbumin (OVA)–induced allergic inflammation in a murine model of asthma. Methods Bronchoalveolar lavage fluid was collected from patients with severe asthma and healthy subjects, and the level of PTX3 was determined by using ELISA. Ptx3+/+ and Ptx3−/− mice were sensitized and challenged with OVA and bronchoalveolar lavage fluid, and the lungs were collected for assessing inflammation. Lung tissue inflammation and mucus production were assessed by means of flow cytometry and hematoxylin and eosin and periodic acid-Schiff staining, respectively. flexiVent was used to determine airway resistance to methacholine in these mice. Results Here we report that mice with severe asthma and OVA-sensitized/challenged mice had increased PTX3 levels in the lungs compared with healthy control mice. Mice lacking PTX3 have exaggerated neutrophilic/eosinophilic lung inflammation, mucus production, and airway hyperresponsiveness in an experimental model of OVA-induced asthma. Furthermore, OVA-exposed lung Ptx3−/− CD4 T cells exhibit an increased production of IL-17A, an effect that is accompanied by an increased signal transducer and activator of transcription 3 phosphorylation, reduced IL-2 production, and enhanced activation and survival. Also, we observed an increase in numbers of IL-6– and IL-23–producing dendritic cells in OVA-exposed Ptx3−/− mice compared with those in wild-type control mice. Conclusion Altogether, PTX3 deficiency results in augmented airway hyperresponsiveness, mucus production, and IL-17A–dominant pulmonary inflammation, suggesting a regulatory role of PTX3 in the development of allergic inflammation.
Collapse
Affiliation(s)
- Jyoti Balhara
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jingbo Zhang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anik Muhuri
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Muhamad S Almiski
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Diana Doeing
- Department of Medicine, University of Chicago, Chicago, Ill
| | | | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Tex
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
25
|
Thakur R, Shankar J. In silico Analysis Revealed High-risk Single Nucleotide Polymorphisms in Human Pentraxin-3 Gene and their Impact on Innate Immune Response against Microbial Pathogens. Front Microbiol 2016; 7:192. [PMID: 26941719 PMCID: PMC4763014 DOI: 10.3389/fmicb.2016.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/04/2016] [Indexed: 01/13/2023] Open
Abstract
Pentraxin-3 (PTX-3) protein is an evolutionary conserved protein that acts as a soluble pattern-recognition receptor for pathogens and plays important role in innate immune response. It recognizes various pathogens by interacting with extracellular moieties such as glactomannan of conidia (Aspergillus fumigatus), lipopolysaccharide of Pseudomonas aeruginosa, Streptococcus pneumonia and Salmonella typhimurium. Thus, PTX-3 protein helps to clear these pathogens by activating downstream innate immune process. In this study, computational methods were used to analyze various non-synonymous single nucleotide polymorphisms (nsSNPs) in PTX-3 gene. Three different databases were used to retrieve SNP data sets followed by seven different in silico algorithms to screen nsSNPs in PTX-3 gene. Sequence homology based approach was used to identify nsSNPs. Conservation profile of PTX-3 protein amino acid residues were predicted by ConSurf web server. In total, 10 high-risk nsSNPs were identified in pentraxin-domain of PTX-3 gene. Out of these 10 high-risk nsSNPs, 4 were present in the conserved structural and functional residues of the pentraxin-domain, hence, selected for structural analyses. The results showed alteration in the putative structure of pentraxin-domain. Prediction of protein–protein interactions analysis showed association of PTX-3 protein with C1q component of complement pathway. Different functional and structural residues along with various putative phosphorylation sites and evolutionary relationship were also predicted for PTX-3 protein. This is the first extensive computational analyses of pentraxin protein family with nsSNPs and will serve as a valuable resource for future population based studies.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Solan, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Solan, India
| |
Collapse
|
26
|
Casimirri E, Stendardo M, Bonci M, Andreoli R, Bottazzi B, Leone R, Schito M, Vaccari A, Papi A, Contoli M, Corradi M, Boschetto P. Biomarkers of oxidative-stress and inflammation in exhaled breath condensate from hospital cleaners. Biomarkers 2015; 21:115-22. [DOI: 10.3109/1354750x.2015.1118541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Robinson MB, Deshpande DA, Chou J, Cui W, Smith S, Langefeld C, Hastie AT, Bleecker ER, Hawkins GA. IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2015; 309:L129-38. [PMID: 26001777 DOI: 10.1152/ajplung.00288.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/14/2015] [Indexed: 12/18/2022] Open
Abstract
Genetic data suggest that IL-6 trans-signaling may have a pathogenic role in the lung; however, the effects of IL-6 trans-signaling on lung effector cells have not been investigated. In this study, human airway smooth muscle (HASM) cells were treated with IL-6 (classical) or IL-6+sIL6R (trans-signaling) for 24 h and gene expression was measured by RNAseq. Intracellular signaling and transcription factor activation were assessed by Western blotting and luciferase assay, respectively. The functional effect of IL-6 trans-signaling was determined by proliferation assay. IL-6 trans-signaling had no effect on phosphoinositide-3 kinase and Erk MAP kinase pathways in HASM cells. Both classical and IL-6 trans-signaling in HASM involves activation of Stat3. However, the kinetics of Stat3 phosphorylation by IL-6 trans-signaling was different than classical IL-6 signaling. This was further reflected in the differential gene expression profile by IL-6 trans-signaling in HASM cells. Under IL-6 trans-signaling conditions 36 genes were upregulated, including PLA2G2A, IL13RA1, MUC1, and SOD2. Four genes, including CCL11, were downregulated at least twofold. The expression of 112 genes was divergent between IL-6 classical and trans-signaling, including the genes HILPDA, NNMT, DAB2, MUC1, WWC1, and VEGFA. Pathway analysis revealed that IL-6 trans-signaling induced expression of genes involved in regulation of airway remodeling, immune response, hypoxia, and glucose metabolism. Treatment of HASM cells with IL-6+sIL6R induced proliferation in a dose-dependent fashion, suggesting a role for IL-6 trans-signaling in asthma pathogenesis. These novel findings demonstrate differential effect of IL-6 trans-signaling on airway cells and identify IL-6 trans-signaling as a potential modifier of airway inflammation and remodeling.
Collapse
Affiliation(s)
- Mac B Robinson
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina; Wake Forest School of Medicine, Department of Neurobiology and Anatomy, Winston-Salem, North Carolina
| | - Deepak A Deshpande
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Jeffery Chou
- Wake Forest School of Medicine, Center for Public Health Genomics, Winston-Salem, North Carolina
| | - Wei Cui
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Shelly Smith
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Carl Langefeld
- Wake Forest School of Medicine, Center for Public Health Genomics, Winston-Salem, North Carolina
| | - Annette T Hastie
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Eugene R Bleecker
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina;
| |
Collapse
|
28
|
Pilling D, Cox N, Vakil V, Verbeek JS, Gomer RH. The long pentraxin PTX3 promotes fibrocyte differentiation. PLoS One 2015; 10:e0119709. [PMID: 25774777 PMCID: PMC4361553 DOI: 10.1371/journal.pone.0119709] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/16/2015] [Indexed: 12/31/2022] Open
Abstract
Monocyte-derived, fibroblast-like cells called fibrocytes are associated with fibrotic lesions. The plasma protein serum amyloid P component (SAP; also known as pentraxin-2, PTX2) inhibits fibrocyte differentiation in vitro, and injections of SAP inhibit fibrosis in vivo. SAP is a member of the pentraxin family of proteins that includes C-reactive protein (CRP; PTX1) and pentraxin-3 (PTX3). All three pentraxins are associated with fibrosis, but only SAP and CRP have been studied for their effects on fibrocyte differentiation. We find that compared to SAP and CRP, PTX3 promotes human and murine fibrocyte differentiation. The effect of PTX3 is dependent on FcγRI. In competition studies, the fibrocyte-inhibitory activity of SAP is dominant over PTX3. Binding competition studies indicate that SAP and PTX3 bind human FcγRI at different sites. In murine models of lung fibrosis, PTX3 is present in fibrotic areas, and the PTX3 distribution is associated with collagen deposition. In lung tissue from pulmonary fibrosis patients, PTX3 has a widespread distribution, both in unaffected tissue and in fibrotic lesions, whereas SAP is restricted to areas adjacent to vessels, and absent from fibrotic areas. These data suggest that the relative levels of SAP and PTX3 present at sites of fibrosis may have a significant effect on the ability of monocytes to differentiate into fibrocytes.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (DP); (RHG)
| | - Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Varsha Vakil
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - J. Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- * E-mail: (DP); (RHG)
| |
Collapse
|