1
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2025; 203:1-17. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-Immunomodulatory Potential of Nanoenabled 4D Bioprinted Microtissue for Cartilage Tissue Engineering. Adv Healthc Mater 2024:e2400496. [PMID: 38850170 DOI: 10.1002/adhm.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis (OA) progression. Here, a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) is 4D-bioprinted to locally mitigate inflammation and impair nerve sprouting. Under an in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1β and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo, assessments utilizing the air pouch mouse model affirm the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretomes do not elicit a systemic immune response and decrease locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome has no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Marina Couto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto - ICBAS, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Daniela Pereira Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| | - Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, Porto, 4200-072, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Instituto Universitário de Ciências da Saúde - IUCS-CESPU, Rua Central de Gandra, 1317, Gandra, 4585-116, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| |
Collapse
|
3
|
Chełmińska M, Specjalski K, Jassem E, Polańska J, Kita K, Górska L, Didkowska J, Wojciechowska U, Nittner-Marszalska M, Kuna P, Kupczyk M, Kruszewski J, Zakrzewski A, Czarnobilska E, Stobiecki M, Krenke R, Dąbrowski A, Kwaśniewski A, Jarząb J, Bożek A, Bodzenta-Łukaszyk A, Łukaszyk M, Kowalski M, Smorawska-Sabanty E, Fal A, Przybyłowska K, Bartuzi Z, Pałgan K, Niedoszytko M. Venom Immunotherapy Does Not Affect Survival of Patients with Malignant Tumor in Poland. J Clin Med 2024; 13:3152. [PMID: 38892863 PMCID: PMC11173344 DOI: 10.3390/jcm13113152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Allergen immunotherapy (AIT) is a well-established and efficient method of causative treatment for allergic rhinitis, asthma and insect venom allergy. Traditionally, a recent history of malignant neoplasm is regarded as a contraindication to AIT due to concerns that AIT might stimulate tumor growth. However, there are no data confirming that the silencing of the Th2 response affects prognosis in cancer. Objectives: The aim of this study was to investigate frequency of malignant tumors in patients undergoing AIT and the association between AIT and cancer-related mortality. Patients and Methods: A group of 2577 patients with insect venom allergy undergoing AIT in 10 Polish allergology centers was screened in the Polish National Cancer Registry. Data on cancer type, diagnosis time and patients' survival were collected and compared with the general population. Results: In the study group, 86 cases of malignancies were found in 85 patients (3.3% of the group). The most common were breast (19 cases), lung (9 cases), skin (8 cases), colon and prostate cancers (5 cases each). There were 21 cases diagnosed before AIT, 38 during and 27 after completing AIT. Laplace's crude incidence rate was 159.5/100,000/year (general population rate: 260/100,000/year). During follow-up, 13 deaths related to cancer were revealed (15% of patients with cancer). Laplace's cancer mortality rate was 37.3/100,000/year (general population rate: 136.8/100,000/year). Conclusions: Malignancy was found in patients undergoing immunotherapy less often than in the general population. Patients with cancer diagnosed during or after AIT did not show a lower survival rate, which suggests that AIT does not affect the prognosis.
Collapse
Affiliation(s)
- Marta Chełmińska
- Department of Allergology, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.C.); (K.K.); (L.G.); (M.N.)
| | - Krzysztof Specjalski
- Department of Allergology, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.C.); (K.K.); (L.G.); (M.N.)
| | - Ewa Jassem
- Department of Pneumonology, Medical University of Gdańsk, 80-952 Gdańsk, Poland;
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Karolina Kita
- Department of Allergology, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.C.); (K.K.); (L.G.); (M.N.)
| | - Lucyna Górska
- Department of Allergology, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.C.); (K.K.); (L.G.); (M.N.)
| | - Joanna Didkowska
- National Institute of Oncology, 00-001 Warsaw, Poland; (J.D.); (U.W.)
| | | | - Marita Nittner-Marszalska
- Department of Internal Diseases, Pneumonology and Allergology, Medical University of Wroclaw, 50-368 Wroclaw, Poland;
| | - Piotr Kuna
- Department of Internal Diseases, Asthma and Allergy, Medical University of Łódź, 90-419 Łódż, Poland; (P.K.); (M.K.)
| | - Maciej Kupczyk
- Department of Internal Diseases, Asthma and Allergy, Medical University of Łódź, 90-419 Łódż, Poland; (P.K.); (M.K.)
| | - Jerzy Kruszewski
- Department of Infectious Diseases and Allergology, Military Institute of Medicine, 04-141 Warsaw, Poland; (J.K.); (A.Z.)
| | - Aleksander Zakrzewski
- Department of Infectious Diseases and Allergology, Military Institute of Medicine, 04-141 Warsaw, Poland; (J.K.); (A.Z.)
| | - Ewa Czarnobilska
- Centre of Clinical and Environmental Allergology, Jagiellonian University, 31-503 Cracow, Poland; (E.C.); (M.S.)
| | - Marcin Stobiecki
- Centre of Clinical and Environmental Allergology, Jagiellonian University, 31-503 Cracow, Poland; (E.C.); (M.S.)
| | - Rafał Krenke
- Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, 02-097 Warsaw, Poland; (R.K.); (A.D.)
| | - Andrzej Dąbrowski
- Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, 02-097 Warsaw, Poland; (R.K.); (A.D.)
| | | | - Jerzy Jarząb
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia, 40-055 Zabrze, Poland; (J.J.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia, 40-055 Zabrze, Poland; (J.J.); (A.B.)
| | - Anna Bodzenta-Łukaszyk
- Department of Allergology and Internal Diseases, University Hospital, 15-089 Białystok, Poland;
| | - Mateusz Łukaszyk
- I Department of Pulmonary Diseases and Tuberculosis, Medical University of Białystok, 15-089 Białystok, Poland;
| | - Marek Kowalski
- Department of Immunology, Reumatology and Allergy, Medical University of Łódź, 92-213 Łódź, Poland (E.S.-S.)
| | - Ewa Smorawska-Sabanty
- Department of Immunology, Reumatology and Allergy, Medical University of Łódź, 92-213 Łódź, Poland (E.S.-S.)
| | - Andrzej Fal
- Department of Allergology, Pulmonary Diseases and Internal Medicine, MSWiA Central Clinical Hospital, 02-507 Warsaw, Poland; (A.F.); (K.P.)
| | - Katarzyna Przybyłowska
- Department of Allergology, Pulmonary Diseases and Internal Medicine, MSWiA Central Clinical Hospital, 02-507 Warsaw, Poland; (A.F.); (K.P.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Jan Biziel University Hospital, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (Z.B.); (K.P.)
| | - Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Jan Biziel University Hospital, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (Z.B.); (K.P.)
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.C.); (K.K.); (L.G.); (M.N.)
| |
Collapse
|
4
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Li M, Jiang H, Hu P, Shi J. Nanocatalytic Anti-Tumor Immune Regulation. Angew Chem Int Ed Engl 2024; 63:e202316606. [PMID: 38212843 DOI: 10.1002/anie.202316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Immunotherapy has brought a new dawn for human being to defeat cancer. Although existing immunotherapy regimens (CAR-T, etc.) have made breakthroughs in the treatments of hematological cancer and few solid tumors such as melanoma, the therapeutic efficacy on most solid tumors is still far from being satisfactory. In recent years, the researches on tumor immunotherapy based on nanocatalytic materials are under rapid development, and significant progresses have been made. Nanocatalytic medicine has been demonstrated to be capable of overcoming the limitations of current clinicnal treatments by using toxic chemodrugs, and exhibits highly attractive advantages over traditional therapies, such as the enhanced and sustained therapeutic efficacy based on the durable catalytic activity, remarkably reduced harmful side-effects without using traditional toxic chemodrugs, and so on. Most recently, nanocatalytic medicine has been introduced in the immune-regulation for disease treatments, especially, in the immunoactivation for tumor therapies. This article presents the most recent progresses in immune-response activations by nanocatalytic medicine-initiated chemical reactions for tumor immunotherapy, and elucidates the mechanism of nanocatalytic medicines in regulating anti-tumor immunity. By reviewing the current research progress in the emerging field, this review will further highlight the great potential and broad prospects of nanocatalysis-based anti-tumor immune-therapeutics.
Collapse
Affiliation(s)
- Mingyuan Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Han Jiang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine, Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| | - Jianlin Shi
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| |
Collapse
|
6
|
Danaeifar M, Negahdari B, Eslam HM, Zare H, Ghanaat M, Koushali SS, Malekshahi ZV. Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnol Lett 2023; 45:1053-1072. [PMID: 37335426 DOI: 10.1007/s10529-023-03383-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Cancer is one of the leading causes of death and mortality in the world. There is an essential need to develop new drugs or therapeutic approaches to manage treatment-resistant cancers. Cancer immunotherapy is a type of cancer treatment that uses the power of the body's immune system to prevent, control, and eliminate cancer. One of the materials used as a vaccine in immunotherapy is DNA. The application of polymeric nanoparticles as carriers for DNA vaccines could be an effective therapeutic approach to activate immune responses and increase antigen presentation efficiency. Various materials have been used as polymeric nanoparticles, including: chitosan, poly (lactic-co-glycolic acid), Polyethylenimine, dendrimers, polypeptides, and polyesters. Application of these polymer nanoparticles has several advantages, including increased vaccine delivery, enhanced antigen presentation, adjuvant effects, and more sustainable induction of the immune system. Besides many clinical trials and commercial products that were developed based on polymer nanoparticles, there is still a need for more comprehensive studies to increase the DNA vaccine efficiency in cancer immunotherapy using this type of carrier.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Momeneh Ghanaat
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Sekinehe Shokouhi Koushali
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Peng L, Xu Q, Yin S, Zhang Y, Wu H, Liu Y, Chen L, Hu Y, Yuan J, Peng K, Lin Q. The emerging nanomedicine-based technology for non-small cell lung cancer immunotherapy: how far are we from an effective treatment. Front Oncol 2023; 13:1153319. [PMID: 37182180 PMCID: PMC10172578 DOI: 10.3389/fonc.2023.1153319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prominent etiology of cancer-related mortality. The heterogeneous nature of this disease impedes its accurate diagnosis and efficacious treatment. Consequently, constant advancements in research are imperative in order to comprehend its intricate nature. In addition to currently available therapies, the utilization of nanotechnology presents an opportunity to enhance the clinical outcomes of NSCLC patients. Notably, the burgeoning knowledge of the interaction between the immune system and cancer itself paves the way for developing novel, emerging immunotherapies for treating NSCLC in the early stages of the disease. It is believed that with the novel engineering avenues of nanomedicine, there is a possibility to overcome the inherent limitations derived from conventional and emerging treatments, such as off-site drug cytotoxicity, drug resistance, and administration methods. Combining nanotechnology with the convergence points of current therapies could open up new avenues for meeting the unmet needs of NSCLC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qin Lin
- Department of Thoracic Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
9
|
Khatun S, Putta CL, Hak A, Rengan AK. Immunomodulatory nanosystems: An emerging strategy to combat viral infections. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100073. [PMID: 36967725 PMCID: PMC10036237 DOI: 10.1016/j.bbiosy.2023.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The viral infection spreads with the assistance of a host. Traditional antiviral therapies cannot provide long-term immunity against emerging and drug-resistant viral infections. Immunotherapy has evolved as an efficient approach for disease prevention and treatment, which include cancer, infections, inflammatory, and immune disorders. Immunomodulatory nanosystems can dramatically enhance therapeutic outcomes by combating many therapeutic challenges, such as poor immune stimulation and off-target adverse effects. Recently, immunomodulatory nanosystems have emerged as a potent antiviral strategy to intercept viral infections effectively. This review introduces major viral infections with their primary symptoms, route of transmission & targeted organ, and different stages of the viral life cycle with respective traditional blockers. The IMNs have an exceptional capacity for precisely modulating the immune system for therapeutic applications. The nano sized immunomodulatory systems permit the immune cells to interact with infectious agents enhancing lymphatic drainage and endocytosis by the over-reactive immune cells in the infected areas. Immune cells that can be modulated upon viral infection via various immunomodulatory nanosystems have been discussed. Advancement in theranostics can yield an accurate diagnosis, adequate treatment, and real-time screening of viral infections. Nanosystem-based drug delivery can continue to thrive in diagnosing, treating, and preventing viral infections. The curative medicine for remerging and drug-resistant viruses remains challenging, though certain systems have expanded our perception and initiated a new research domain in antiviral treatments.
Collapse
|
10
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Avik Maji
- grid.416241.4Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014 India
| | - Pravin D. Potdar
- grid.414939.20000 0004 1766 8488Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026 India
| | - Navneet Singh
- grid.415131.30000 0004 1767 2903Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan 302022 India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
| | - Bharti Bisht
- grid.19006.3e0000 0000 9632 6718Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K. Paul
- grid.19006.3e0000 0000 9632 6718Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA ,grid.411639.80000 0001 0571 5193Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
11
|
Bissa M, Kim S, Galli V, Fourati S, Sarkis S, Arakelyan A, de Castro IS, Rahman MA, Fujiwara S, Vaccari M, Tomalka JA, Stamos JD, Schifanella L, Gorini G, Moles R, Gutowska A, Ferrari G, Lobanov A, Montefiori DC, Nelson GW, Cam MC, Chakhtoura M, Haddad EK, Doster MN, McKinnon K, Brown S, Venzon DJ, Choo-Wosoba H, Breed MW, Killoran KE, Kramer J, Margolis L, Sekaly RP, Hager GL, Franchini G. HIV vaccine candidate efficacy in female macaques mediated by cAMP-dependent efferocytosis and V2-specific ADCC. Nat Commun 2023; 14:575. [PMID: 36732510 PMCID: PMC9894672 DOI: 10.1038/s41467-023-36109-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/15/2023] [Indexed: 02/04/2023] Open
Abstract
The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14+ monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10). Epigenetic reprogramming in CD14+ cells of the cyclic AMP/CREB pathway and increased systemic levels of miRNA-139-5p, a negative regulator of expression of the cAMP-specific phosphodiesterase PDE4D, correlated with vaccine efficacy. These data posit that efferocytosis, through the prompt and effective removal of apoptotic infected cells, contributes to vaccine efficacy by decreasing inflammation and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Saori Fujiwara
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Jeffrey A Tomalka
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - James D Stamos
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Guido Ferrari
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Alexei Lobanov
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - George W Nelson
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marita Chakhtoura
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias K Haddad
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Sophia Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Kristin E Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
12
|
Allergen immunotherapy, cancer, and immune disorders. Curr Opin Allergy Clin Immunol 2022; 22:428-434. [PMID: 36165426 DOI: 10.1097/aci.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the intriguing relationships between allergies, allergen immunotherapy, cancer, and immune disorders. Allergic diseases and cancer are increasing in incidence and prevalence and a potential relationship, or not, between these diseases have been suggested for many years. RECENT FINDINGS Recent findings suggest that there may be some causative effects between certain types of cancer and allergic diseases, as described in the text. Some types of cancer may be more linked to the presence of an allergic disease, than others. However, epigenetic factors, such as tobacco smoke alcohol and toxic substances should also be taken into consideration. SUMMARY The association between allergy and cancer is complex and depends on the specific allergy and the specific organ under consideration. Regarding pancreatic cancer, colorectal cancer (CRC), and glioma, all types of allergies were shown to be a protective factor. Conversely, asthma is a risk factor for lung cancer as is atopic dermatitis for skin cancer. Despite extensive research, no definite relationship has been determined, and no clear relationship, either positive or negative, to allergies can be observed. These results should be corroborated with large epidemiological well designed prospective studies due to some weaknesses in the previous investigations.
Collapse
|
13
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
14
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
15
|
Watanabe A, Yamashita K, Fujita M, Arimoto A, Nishi M, Takamura S, Saito M, Yamada K, Agawa K, Mukoyama T, Ando M, Kanaji S, Matsuda T, Oshikiri T, Kakeji Y. Vaccine Based on Dendritic Cells Electroporated with an Exogenous Ovalbumin Protein and Pulsed with Invariant Natural Killer T Cell Ligands Effectively Induces Antigen-Specific Antitumor Immunity. Cancers (Basel) 2021; 14:cancers14010171. [PMID: 35008335 PMCID: PMC8750915 DOI: 10.3390/cancers14010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This study shows the potential of a novel dendritic cell vaccine therapy in antitumor immunity, in which bone marrow-derived dendritic cells are electroporated with an exogenous ovalbumin protein and simultaneously pulsed with α-galactosylceramide. This strategy enhances the induction of cytotoxic CD8+ T cells specific for tumor-associated antigens through the activation of invariant natural killer T cells, natural killer cells, and intrinsic dendritic cells. Moreover, this strategy sustains antigen-specific antitumor T cell responses over time. Abstract (1) Background: Cancer vaccines are administered to induce cytotoxic CD8+ T cells (CTLs) specific for tumor antigens. Invariant natural killer T (iNKT) cells, the specific T cells activated by α-galactosylceramide (α-GalCer), play important roles in this process as they are involved in both innate and adaptive immunity. We developed a new cancer vaccine strategy in which dendritic cells (DCs) were loaded with an exogenous ovalbumin (OVA) protein by electroporation (EP) and pulsed with α-GalCer. (2) Methods: We generated bone marrow-derived DCs from C57BL/6 mice, loaded full-length ovalbumin proteins to the DCs by EP, and pulsed them with α-GalCer (OVA-EP-galDCs). The OVA-EP-galDCs were intravenously administered to C57BL/6 mice as a vaccine. We then investigated subsequent immune responses, such as the induction of iNKT cells, NK cells, intrinsic DCs, and OVA-specific CD8+ T cells, including tissue-resident memory T (TRM) cells. (3) Results: The OVA-EP-galDC vaccine efficiently rejected subcutaneous tumors in a manner primarily dependent on CD8+ T cells. In addition to the OVA-specific CD8+ T cells both in early and late phases, we observed the induction of antigen-specific TRM cells in the skin. (4) Conclusions: The OVA-EP-galDC vaccine efficiently induced antigen-specific antitumor immunity, which was sustained over time, as shown by the TRM cells.
Collapse
Affiliation(s)
- Akihiro Watanabe
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
- Correspondence:
| | - Mitsugu Fujita
- Center for Medical Education and Clinical Training, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka 589-0014, Japan;
| | - Akira Arimoto
- Division of Gastrointestinal Surgery, Saiseikai Suita Hospital, Kawazono-cho, Suita 564-0013, Japan;
| | - Masayasu Nishi
- Division of Gastrointestinal Surgery, Konan Medical Center, Kamokogahara, Higashinada, Kobe 658-0064, Japan;
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ono-higashi, Osakasayama 589-0014, Japan;
| | - Masafumi Saito
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Kota Yamada
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Kyosuke Agawa
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Tomosuke Mukoyama
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Masayuki Ando
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Shingo Kanaji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Takeru Matsuda
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Taro Oshikiri
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| |
Collapse
|
16
|
Paris JL, de la Torre P, Flores AI. New Therapeutic Approaches for Allergy: A Review of Cell Therapy and Bio- or Nano-Material-Based Strategies. Pharmaceutics 2021; 13:pharmaceutics13122149. [PMID: 34959429 PMCID: PMC8707403 DOI: 10.3390/pharmaceutics13122149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Allergy constitutes a major health issue due to its large prevalence. The established therapeutic approaches (allergen avoidance, antihistamines, and corticosteroids) do not address the underlying causes of the pathology, highlighting the need for other long-term treatment options. Antigen-specific immunotherapy enables the long-term control of allergic diseases by promoting immunological tolerance to the allergen. However, efficacious immunotherapies are not available for all possible allergens, and the risk of undesired reactions during therapy remains a concern, especially in patients with severe allergic reactions. In this context, two types of therapeutic strategies appear especially promising for the future in the context of allergy: cell therapy and bio- or nano-material-based therapy. In this review, the main strategies developed this far in these two types of strategies are discussed, with several examples illustrating the different approaches.
Collapse
Affiliation(s)
- Juan L. Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
17
|
Fu J, Lehmann CHK, Wang X, Wahlbuhl M, Allabauer I, Wilde B, Amon L, Dolff S, Cesnjevar R, Kribben A, Woelfle J, Rascher W, Hoyer PF, Dudziak D, Witzke O, Hoerning A. CXCR4 blockade reduces the severity of murine heart allograft rejection by plasmacytoid dendritic cell-mediated immune regulation. Sci Rep 2021; 11:23815. [PMID: 34893663 PMCID: PMC8664946 DOI: 10.1038/s41598-021-03115-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.
Collapse
Affiliation(s)
- Jian Fu
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany.,The Emergency and Trauma Center, The First Affiliated Hospital of Hai Nan Medical University, Haikou, China
| | - Christian H K Lehmann
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany. .,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Xinning Wang
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mandy Wahlbuhl
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Ida Allabauer
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Amon
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Department of Cardiac Surgery, Universitäts-Kinderspital Zürich, Zurich, Switzerland
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim Woelfle
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Wolfgang Rascher
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Peter F Hoyer
- Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany.,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - André Hoerning
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany. .,Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
18
|
Parsons RF, Baquerizo A, Kirchner VA, Malek S, Desai CS, Schenk A, Finger EB, Brennan TV, Parekh KR, MacConmara M, Brayman K, Fair J, Wertheim JA. Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. Am J Transplant 2021; 21:3225-3238. [PMID: 34212485 DOI: 10.1111/ajt.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.
Collapse
Affiliation(s)
- Ronald F Parsons
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Angeles Baquerizo
- Scripps Center for Cell and Organ Transplantation, La Jolla, California
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Malek
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chirag S Desai
- Division of Transplantation, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Austin Schenk
- Division of Transplantation, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Erik B Finger
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Todd V Brennan
- Department of Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Malcolm MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Brayman
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Fair
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jason A Wertheim
- Departments of Surgery and Biomedical Engineering, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
19
|
Chauhan A, Khan T, Omri A. Design and Encapsulation of Immunomodulators onto Gold Nanoparticles in Cancer Immunotherapy. Int J Mol Sci 2021; 22:8037. [PMID: 34360803 PMCID: PMC8347387 DOI: 10.3390/ijms22158037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
20
|
Suuring M, Moreau A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. Int J Mol Sci 2021; 22:7970. [PMID: 34360736 PMCID: PMC8348814 DOI: 10.3390/ijms22157970] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn's disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.
Collapse
Affiliation(s)
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie—UMR1064, INSERM—ITUN, Nantes Université, CHU Nantes, 44000 Nantes, France;
| |
Collapse
|
21
|
Sun Y, Long J, Chen W, Sun Y, Zhou L, Zhang L, Zeng H, Yuan D. Alisol B 23-acetate, a new promoter for cholesterol efflux from dendritic cells, alleviates dyslipidemia and inflammation in advanced atherosclerotic mice. Int Immunopharmacol 2021; 99:107956. [PMID: 34284288 DOI: 10.1016/j.intimp.2021.107956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/02/2023]
Abstract
Atherosclerosis (AS) is characterized by dyslipidemia and chronic inflammation. In the high-fat environment, the lipid metabolism of dendritic cells (DCs) is abnormal, which leads to abnormal immune function, promotes the occurrence of immune inflammatory reactions, and promotes the development of AS. Alisol B 23-acetate (23B) is a triterpenoid in the rhizomes of Alisma, which is a traditional Chinese medicine. Here, we identified cholesterol metabolism-related targets of 23B through a virtual screen, and further transcriptome analysis revealed that 23B can change antigen presentation and cholesterol metabolism pathways in cholesterol-loaded DCs. In vitro experiments confirmed that 23B promoted cholesterol efflux from ApoE-/- DCs, reduced the expression of MHC II, CD80, and CD86, and inhibited the activation of CD4+ T cells and the production of inflammatory cytokines IL-12 and IFN-γ. In advanced AS mice, 23B can decrease triacylglycerol (TG) levels and increase high-density lipoprotein-cholesterol (HDL-C) levels in plasma and the expression of cholesterol efflux genes in the aorta. Neither helper T cells 1 (Th1) nor regulatory T cells (Tregs) in peripheral blood changed significantly in the presence of 23B, but 23B reduced the levels of IL-12 and IFN-γ in serum. However, 23B did not change the total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels in serum or lipid accumulation in the aorta. Moreover, 23B did not increase the production of IL-10 and TGF-β1 in vivo or in vitro. These results indicate that 23B promotes cholesterol efflux from DCs, which can improve the immune inflammatory response and contribute to controlling the inflammatory status of AS.
Collapse
Affiliation(s)
- Yuting Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Weikai Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Yunxia Sun
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing 210029, China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Hongbo Zeng
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China.
| |
Collapse
|
22
|
Tabares-Guevara JH, Jaramillo JC, Ospina-Quintero L, Piedrahíta-Ochoa CA, García-Valencia N, Bautista-Erazo DE, Caro-Gómez E, Covián C, Retamal-Díaz A, Duarte LF, González PA, Bueno SM, Riedel CA, Kalergis AM, Ramírez-Pineda JR. IL-10-Dependent Amelioration of Chronic Inflammatory Disease by Microdose Subcutaneous Delivery of a Prototypic Immunoregulatory Small Molecule. Front Immunol 2021; 12:708955. [PMID: 34305950 PMCID: PMC8297659 DOI: 10.3389/fimmu.2021.708955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
One of the interventional strategies to reestablish the immune effector/regulatory balance, that is typically altered in chronic inflammatory diseases (CID), is the reinforcement of endogenous immunomodulatory pathways as the one triggered by interleukin (IL)-10. In a recent work, we demonstrated that the subcutaneous (sc) administration of an IL-10/Treg-inducing small molecule-based formulation, using a repetitive microdose (REMID) treatment strategy to preferentially direct the effects to the regional immune system, delays the progression of atherosclerosis. Here we investigated whether the same approach using other IL-10-inducing small molecule, such as the safe, inexpensive, and widely available polyphenol curcumin, could induce a similar protective effect in two different CID models. We found that, in apolipoprotein E deficient mice, sc treatment with curcumin following the REMID strategy induced atheroprotection that was not consequence of its direct systemic lipid-modifying or antioxidant activity, but instead paralleled immunomodulatory effects, such as reduced proatherogenic IFNγ/TNFα-producing cells and increased atheroprotective FOXP3+ Tregs and IL-10-producing dendritic and B cells. Remarkably, when a similar strategy was used in the neuroinflammatory model of experimental autoimmune encephalomyelitis (EAE), significant clinical and histopathological protective effects were evidenced, and these were related to an improved effector/regulatory cytokine balance in restimulated splenocytes. The essential role of curcumin-induced IL-10 for neuroprotection was confirmed by the complete abrogation of the clinical effects in IL-10-deficient mice. Finally, the translational therapeutic prospection of this strategy was evidenced by the neuroprotection observed in mice starting the treatment one week after disease triggering. Collectively, results demonstrate the power of a simple natural IL-10-inducing small molecule to tackle chronic inflammation, when its classical systemic and direct pharmacological view is shifted towards the targeting of regional immune cells, in order to rationally harness its immunopharmacological potential. This shift implies that many well-known IL-10-inducing small molecules could be easily reformulated and repurposed to develop safe, innovative, and accessible immune-based interventions for CID.
Collapse
Affiliation(s)
- Jorge H Tabares-Guevara
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Julio C Jaramillo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Laura Ospina-Quintero
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Christian A Piedrahíta-Ochoa
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Natalia García-Valencia
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - David E Bautista-Erazo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Erika Caro-Gómez
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
23
|
Song HY, Sik Kim W, Moo Han J, Yong Park W, Lim ST, Byun EB. HMOC, a chrysin derivative, induces tolerogenic properties in lipopolysaccharide-stimulated dendritic cells. Int Immunopharmacol 2021; 95:107523. [PMID: 33706053 DOI: 10.1016/j.intimp.2021.107523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 11/20/2022]
Abstract
Although we previously identified a new hydroxymethoxyl chrysin derivative (HMOC) using ionizing radiation, the anti-inflammatory mechanism of HMOC in dendritic cells remains unclear. In this study, we investigate the effects of HMOC on phenotypic and functional changes in activated bone marrow-derived dendritic cells (BMDCs). In lipopolysaccharide (LPS)-stimulated BMDCs, HMOC treatment inhibited pro-inflammatory cytokines (TNF-α, IL-12p70, and IL-1β), surface molecules (CD80, CD86, MHC-I, and MHC-II), and antigen-presentation to MHC-I and II without a decrease in IL-10. Furthermore, HMOC increased indoleamine 2,3-dioxygenase-1 (IDO1) activity via activation of JNK and p38 signaling in the presence of LPS. Interestingly, LPS-stimulated DCs treated with HMOC inhibited the proliferation and activation of CD4+ and CD8+ T cells, as well as differentiation of CD4+ T cells into Th1-, Th2- and Th17 cells. In addition, LPS-stimulated DCs treated with HMOC induced an increase in CD4+CD25+Foxp3+ regulatory T cells (Tregs). Collectively, our results suggest that HMOC confers tolerogenic properties in BMDCs, which are responsible for inducing Th cell differentiation to Tregs. Our findings provide a better understanding of the anti-inflammatory mechanism of HMOC in DCs and may contribute to development of a valuable therapeutic candidate for atopic dermatitis.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
24
|
Ellias SD, Larson EL, Taner T, Nyberg SL. Cell-Mediated Therapies to Facilitate Operational Tolerance in Liver Transplantation. Int J Mol Sci 2021; 22:ijms22084016. [PMID: 33924646 PMCID: PMC8069094 DOI: 10.3390/ijms22084016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapies using immune cells or non-parenchymal cells of the liver have emerged as potential treatments to facilitate immunosuppression withdrawal and to induce operational tolerance in liver transplant (LT) recipients. Recent pre-clinical and clinical trials of cellular therapies including regulatory T cells, regulatory dendritic cells, and mesenchymal cells have shown promising results. Here we briefly summarize current concepts of cellular therapy for induction of operational tolerance in LT recipients.
Collapse
Affiliation(s)
- Samia D. Ellias
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| | - Ellen L. Larson
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| | - Timucin Taner
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott L. Nyberg
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
- Correspondence: ; Tel.: +1-507-266-6772; Fax: +1-507-266-2810
| |
Collapse
|
25
|
Dawicki W, Huang H, Ma Y, Town J, Zhang X, Rudulier CD, Gordon JR. CD40 signaling augments IL-10 expression and the tolerogenicity of IL-10-induced regulatory dendritic cells. PLoS One 2021; 16:e0248290. [PMID: 33793599 PMCID: PMC8016274 DOI: 10.1371/journal.pone.0248290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
CD40 expressed on stimulatory dendritic cells (DC) provides an important accessory signal for induction of effector T cell responses. It is also expressed at lower levels on regulatory DC (DCreg), but there is little evidence that CD40 signaling contributes to the tolerogenic activity of these cells. Indeed, CD40 silencing within DCreg has been reported to induce T cell tolerance in multiple disease models, suggesting that CD40 is superfluous to DC-induced tolerance. We critically assessed whether CD40 does have a role in tolerance induced by IL-10-differentiated DC (DC10) by using DC10 generating from the bone marrow of wild-type (w.t.) or CD40-/- donor mice, or IL-10-complemented CD40-/- DC10 to treat asthmatic mice. Wild-type DC10 ablated the OVA-asthma phenotype via induction of Foxp3+ Treg responses, but CD40-/- DC10 had no discernible effects on primary facets of the phenotype (e.g., IL-5, IL-9, IL-13 levels, IgE & IgG1 antibodies; p>0.05) and were ≤40% effective in reversal of others. Foxp3+ T cells from the lungs of CD40-/- DC10-treated mice expressed reduced levels of a panel of six Treg-specific activation markers relative to Treg from w.t. DC10-treated mice. Coculture with effector T cells from asthmatic mice induced a marked upregulation of cell surface CD40 on w.t. DC10. While untreated CD40-/- and w.t. DC10 secreted equally low levels of IL-10, stimulation of w.t. DC10 with anti-CD40 for 72 h increased their expression of IL-10 by ≈250%, with no parallel induction of IL-12. Complementing IL-10 expression in CD40-/- DC10 by IL-10 mRNA transfection fully restored the cells’ abilities to suppress the asthma phenotype. In summary, CD40 signaling in DC10 contributes importantly to their expression of IL-10 and to a robust induction of tolerance, including activation of induced Treg.
Collapse
Affiliation(s)
- Wojciech Dawicki
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Hui Huang
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Yanna Ma
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Jennifer Town
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Xiaobei Zhang
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Chris D. Rudulier
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - John R. Gordon
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
26
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Wang Q, Liu Y, Wu Y, Wen J, Man C. Immune function of miR-214 and its application prospects as molecular marker. PeerJ 2021; 9:e10924. [PMID: 33628646 PMCID: PMC7894119 DOI: 10.7717/peerj.10924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are a class of evolutionary conserved non-coding small RNAs that play key regulatory roles at the post-transcriptional level. In recent years, studies have shown that miR-214 plays an important role in regulating several biological processes such as cell proliferation and differentiation, tumorigenesis, inflammation and immunity, and it has become a hotspot in the miRNA field. In this review, the regulatory functions of miR-214 in the proliferation, differentiation and functional activities of immune-related cells, such as dendritic cells, T cells and NK cells, were briefly reviewed. Also, the mechanisms of miR-214 involved in tumor immunity, inflammatory regulation and antivirus were discussed. Finally, the value and application prospects of miR-214 as a molecular marker in inflammation and tumor related diseases were analyzed briefly. We hope it can provide reference for further study on the mechanism and application of miR-214.
Collapse
Affiliation(s)
- Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
28
|
Alahdal M, Zhang H, Huang R, Sun W, Deng Z, Duan L, Ouyang H, Wang D. Potential efficacy of dendritic cell immunomodulation in the treatment of osteoarthritis. Rheumatology (Oxford) 2021; 60:507-517. [PMID: 33249512 DOI: 10.1093/rheumatology/keaa745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are a cluster of heterogeneous antigen-presenting cells that play a pivotal role in both innate and adaptive immune responses. Rare reports have discussed their role in OA immunopathogenesis. Recently, DCs derived from the synovial fluid of OA mice were shown to have increased expression of toll-like receptors. Moreover, from in vitro studies it was concluded that DCs derived from OA patients had secreted high levels of inflammatory cytokines. Likewise, a significant increase in CD123+BDCA-2 plasmacytoid DCs has been observed in the synovial fluid of OA patients. Furthermore, DCs have a peripheral tolerance potential and can become regulatory under specific circumstances. This could be exploited as a promising tool to eliminate immunoinflammatory manifestations in OA disease. In this review, the potential roles DCs could play in OA pathogenesis have been described. In addition, suggestions for the development of new immunotherapeutic strategies involving intra-articular injections of tolerogenic plasmacytoid DCs for treating OA inflammations have been made.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hui Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,School of Medicine, University of South China, Hengyang, China
| | - Rongxiang Huang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,School of Medicine, University of South China, Hengyang, China
| | - Wei Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhiqin Deng
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
Li C, Dawicki W, Zhang X, Rudulier C, Gordon JR. IL-10- and retinoic acid-induced regulatory dendritic cells are therapeutically equivalent in mouse models of asthma and food allergy. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Wu Y, Luo J, Garden OA. Immunoregulatory Cells in Myasthenia Gravis. Front Neurol 2020; 11:593431. [PMID: 33384654 PMCID: PMC7769807 DOI: 10.3389/fneur.2020.593431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B-cell mediated autoimmune disease caused by antibodies against the nicotinic acetylcholine receptor or other components of the post-synaptic muscle endplate at the neuromuscular junction. These specific antibodies serve as excellent biomarkers for diagnosis, but do not adequately substitute for clinical evaluations to predict disease severity or treatment response. Several immunoregulatory cell populations are implicated in the pathogenesis of MG. The immunophenotype of these populations has been well-characterized in human peripheral blood. CD4+FoxP3+ regulatory T cells (Tregs) are functionally defective in MG, but there is a lack of consensus on whether they show numerical perturbations. Myeloid-derived suppressor cells (MDSCs) have also been explored in the context of MG. Adoptive transfer of CD4+FoxP3+ Tregs or MDSCs suppresses ongoing experimental autoimmune MG (EAMG), a rodent model of MG, suggesting a protective role of both populations in this disease. An imbalance between follicular Tregs and follicular T helper cells is found in untreated MG patients, correlating with disease manifestations. There is an inverse correlation between the frequency of circulating IL-10–producing B cells and clinical status in MG patients. Taken together, both functional and numerical defects in various populations of immunoregulatory cells in EAMG and human MG have been demonstrated, but how they relate to pathogenesis and whether these cells can serve as biomarkers of disease activity in humans deserve further exploration.
Collapse
Affiliation(s)
- Ying Wu
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jie Luo
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Oliver A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
31
|
Wu Y, Chang YM, Lawson BS, Galban EM, Mittelman NS, Benedicenti L, Petesch SC, Carroll AB, Punt JA, Luo J, Garden OA. Myeloid-derived suppressor cell and regulatory T cell frequencies in canine myasthenia gravis: A pilot study. Vet J 2020; 267:105581. [PMID: 33375962 DOI: 10.1016/j.tvjl.2020.105581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023]
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated autoimmune disease. Little is known about its cellular pathogenesis in dogs. This study provides the first preliminary assessment of the frequency of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the peripheral blood of dogs with seropositive generalized MG. No alteration in frequency of either MDSCs or Tregs in dogs with MG was observed when compared to those in either seronegative dogs with diagnoses other than MG, or healthy dogs. A longitudinal study in three dogs with MG revealed no correlation between the relative numbers of either population and the clinical course of disease. Neither the frequency of MDSCs nor of Tregs showed a correlation with anti-AChR antibody titer in dogs with MG. These findings suggest that aberrations in the frequency of either immunosuppressive population do not occur in MG, but they need to be validated in large-scale prospective studies.
Collapse
Affiliation(s)
- Ying Wu
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, London NW1 0TU, UK
| | - Brandon S Lawson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Evelyn M Galban
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Neil S Mittelman
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Leontine Benedicenti
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Scott C Petesch
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alicia B Carroll
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jennifer A Punt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jie Luo
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Oliver A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
32
|
Christofi M, Le Sommer S, Mölzer C, Klaska IP, Kuffova L, Forrester JV. Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cell Mol Life Sci 2020; 78:2857-2876. [PMID: 33074350 PMCID: PMC8004500 DOI: 10.1007/s00018-020-03672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Cell therapies for autoimmune diseases using tolerogenic dendritic cells (tolDC) have been promisingly explored. A major stumbling block has been generating stable tolDC, with low risk of converting to mature immunogenic DC (mDC), exacerbating disease. mDC induction involves a metabolic shift to lactate production from oxidative phosphorylation (OXPHOS) and β-oxidation, the homeostatic energy source for resting DC. Inhibition of glycolysis through the administration of 2-deoxy glucose (2-DG) has been shown to prevent autoimmune disease experimentally but is not clinically feasible. We show here that treatment of mouse bone marrow-derived tolDC ex vivo with low-dose 2-DG (2.5 mM) (2-DGtolDC) induces a stable tolerogenic phenotype demonstrated by their failure to engage lactate production when challenged with mycobacterial antigen (Mtb). ~ 15% of 2-DGtolDC express low levels of MHC class II and 30% express CD86, while they are negative for CD40. 2-DGtolDC also express increased immune checkpoint molecules PDL-1 and SIRP-1α. Antigen-specific T cell proliferation is reduced in response to 2-DGtolDC in vitro. Mtb-stimulated 2-DGtolDC do not engage aerobic glycolysis but respond to challenge via increased OXPHOS. They also have decreased levels of p65 phosphorylation, with increased phosphorylation of the non-canonical p100 pathway. A stable tolDC phenotype is associated with sustained SIRP-1α phosphorylation and p85-AKT and PI3K signalling inhibition. Further, 2-DGtolDC preferentially secrete IL-10 rather than IL-12 upon Mtb-stimulation. Importantly, a single subcutaneous administration of 2-DGtolDC prevented experimental autoimmune uveoretinitis (EAU) in vivo. Inhibiting glycolysis of autologous tolDC prior to transfer may be a useful approach to providing stable tolDC therapy for autoimmune/immune-mediated diseases.
Collapse
Affiliation(s)
- M Christofi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - S Le Sommer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - C Mölzer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - I P Klaska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - L Kuffova
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - J V Forrester
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| |
Collapse
|
33
|
Kucuksezer UC, Ozdemir C, Cevhertas L, Ogulur I, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol Int 2020; 69:549-560. [PMID: 32900655 DOI: 10.1016/j.alit.2020.08.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the mainstay treatment for the cure of allergic disorders, with depicted efficacy and safety by several trials and meta-analysis. AIT impressively contributes to the management of allergic rhinitis, asthma and venom allergies. Food allergy is a new arena for AIT with promising results, especially via novel administration routes. Cell subsets with regulatory capacities are induced during AIT. IL-10 and transforming growth factor (TGF)-β are the main suppressor cytokines, in addition to surface molecules such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) within the micro milieu. Modified T- and B-cell responses and antibody isotypes, increased activity thresholds for eosinophils, basophils and mast cells and consequent limitation of inflammatory cascades altogether induce and maintain a state of sustained allergen-specific unresponsiveness. Established tolerance is reflected into the clinical perspectives as improvement of allergy symptoms together with reduced medication requirements and evolved disease severity. Long treatment durations, costs, reduced patient compliance and risk of severe, even life-threatening adverse reactions during treatment stand as major limiting factors for AIT. By development of purified non-allergenic, highly-immunogenic modified allergen extracts, and combinational usage of them with novel adjuvant molecules via new routes may shorten treatment durations and possibly reduce these drawbacks. AIT is the best model for custom-tailored therapy of allergic disorders. Better characterization of disease endotypes, definition of specific biomarkers for diagnosis and therapy follow-up, as well as precision medicine approaches may further contribute to success of AIT in management of allergic disorders.
Collapse
|
34
|
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15:576-590. [PMID: 33193861 PMCID: PMC7610208 DOI: 10.1016/j.ajps.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Vaccines therapeutics manipulate host's immune system and have broad potential for cancer prevention and treatment. However, due to poor immunogenicity and limited safety, fewer cancer vaccines have been successful in clinical trials. Over the past decades, nanotechnology has been exploited to deliver cancer vaccines, eliciting long-lasting and effective immune responses. Compared to traditional vaccines, cancer vaccines delivered by nanomaterials can be tuned towards desired immune profiles by (1) optimizing the physicochemical properties of the nanomaterial carriers, (2) modifying the nanomaterials with targeting molecules, or (3) co-encapsulating with immunostimulators. In order to develop vaccines with desired immunogenicity, a thorough understanding of parameters that affect immune responses is required. Herein, we discussed the effects of physicochemical properties on antigen presentation and immune response, including but not limited to size, particle rigidity, intrinsic immunogenicity. Furthermore, we provided a detailed overview of recent preclinical and clinical advances in nanotechnology for cancer vaccines, and considerations for future directions in advancing the vaccine platform to widespread anti-cancer applications.
Collapse
Affiliation(s)
- Jingjing Liu
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Jiying Sui
- Affiliated Hospital of Shandong Academy of Medical Sciences, Ji'nan 250012, China
| | - Yanyun Hao
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Guihua Huang
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
35
|
Xu K, Wu N, Min Z, Li Z, Zhu T, Liu C, Zeng Y, Song J, Mao R, Ji H, Jiang Z, Chen Z. Adoptive transfer of bone marrow-derived dendritic cells (BMDCs) alleviates OVA-induced allergic airway inflammation in asthmatic mice. Sci Rep 2020; 10:13915. [PMID: 32807859 PMCID: PMC7431555 DOI: 10.1038/s41598-020-70467-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Airway dendritic cells (DCs) are recognized as important factors in the mechanisms of allergic inflammatory diseases. Suppressor of cytokine signaling 3 (SOCS3) is involved in regulating the functions of T cells and macrophages, but the roles of SOCS3-expressing DCs in the pathogeneses of allergic inflammatory diseases are still controversial. We compared the effects of adoptively transferred SOCS3-/- and SOCS3+/+ bone marrow-derived DCs (BMDCs) on airway inflammation in ovalbumin (OVA)-sensitized asthmatic mice. Adoptive transfer of mature DCs (lipopolysaccharide [LPS]-induced DCs, DClps) with or without SOCS3 gene expression significantly ameliorated allergic airway inflammation. SOCS3-/- DCs slightly attenuated BMDC-induced immunogenic tolerance. DClps migrated to OVA-sensitized lungs with higher efficiency than immature DCs (DCim). DClps with or without SOCS3 greatly improved lung pathology scores and alleviated airway inflammatory cell infiltration after adoptive transfer into mice; they also increased interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production and inhibited signal transducer and activator of transcription (STAT) 4 and STAT6 signaling in the lungs after OVA sensitization. In conclusion, the BMDC adoptive transfer-induced immunogenic tolerance in OVA-sensitized mice might not be due to SOCS3 gene depletion. BMDC adoptive transfer may be developed into a new approach that alleviates asthma by modulating the balance between immune tolerance and inflammation.
Collapse
Affiliation(s)
- Kan Xu
- Geriatric Department of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Nan Wu
- Geriatric Department of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Zhihui Min
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- California National Primate Research Center, Davis, CA, USA
| | - Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuzhen Zeng
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China
| | - Juan Song
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China
| | - Ruolin Mao
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA.
- California National Primate Research Center, Davis, CA, USA.
| | - Zhilong Jiang
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China.
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
36
|
Blumenthal D, Chandra V, Avery L, Burkhardt JK. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. eLife 2020; 9:e55995. [PMID: 32720892 PMCID: PMC7417170 DOI: 10.7554/elife.55995] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
T cell activation by dendritic cells (DCs) involves forces exerted by the T cell actin cytoskeleton, which are opposed by the cortical cytoskeleton of the interacting antigen-presenting cell. During an immune response, DCs undergo a maturation process that optimizes their ability to efficiently prime naïve T cells. Using atomic force microscopy, we find that during maturation, DC cortical stiffness increases via a process that involves actin polymerization. Using stimulatory hydrogels and DCs expressing mutant cytoskeletal proteins, we find that increasing stiffness lowers the agonist dose needed for T cell activation. CD4+ T cells exhibit much more profound stiffness dependency than CD8+ T cells. Finally, stiffness responses are most robust when T cells are stimulated with pMHC rather than anti-CD3ε, consistent with a mechanosensing mechanism involving receptor deformation. Taken together, our data reveal that maturation-associated cytoskeletal changes alter the biophysical properties of DCs, providing mechanical cues that costimulate T cell activation.
Collapse
Affiliation(s)
- Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Vidhi Chandra
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Lyndsay Avery
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
37
|
Mahata B, Pramanik J, van der Weyden L, Polanski K, Kar G, Riedel A, Chen X, Fonseca NA, Kundu K, Campos LS, Ryder E, Duddy G, Walczak I, Okkenhaug K, Adams DJ, Shields JD, Teichmann SA. Tumors induce de novo steroid biosynthesis in T cells to evade immunity. Nat Commun 2020; 11:3588. [PMID: 32680985 PMCID: PMC7368057 DOI: 10.1038/s41467-020-17339-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.
Collapse
Affiliation(s)
- Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gozde Kar
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Angela Riedel
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Nuno A Fonseca
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Kousik Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Lia S Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Izabela Walczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline D Shields
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
38
|
Yuzuriha K, Yoshida A, Li S, Kishimura A, Mori T, Katayama Y. Synthesis of peptide conjugates with vitamins for induction of antigen-specific immunotolerance. J Pept Sci 2020; 26:e3275. [PMID: 32671962 DOI: 10.1002/psc.3275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/06/2020] [Accepted: 06/20/2020] [Indexed: 11/07/2022]
Abstract
In this report, we designed conjugates of an antigen peptide with the immunosuppressive vitamins all-trans retinoic acid (ATRA) and vitamin D3 for efficient induction of antigen-specific immunotolerance. We established a synthetic scheme for the preparation of the peptide-vitamin conjugates, which the chemically unstable vitamins tolerated. Among the obtained conjugates, the ATRA conjugate successfully suppressed inflammatory effects in macrophages and dendritic cells and induced antigen presentation in dendritic cells. This synthetic method of conjugate is conceivably applicable to other antigen peptides for induction of antigen-specific immunotolerance.
Collapse
Affiliation(s)
- Kazuki Yuzuriha
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ayaka Yoshida
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shunyi Li
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan.,Centre for Advanced Medicine Innovation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City, ROC, 32023, Taiwan
| |
Collapse
|
39
|
Silva-Cardoso SC, Tao W, Fernández BM, Boes M, Radstake TRDJ, Pandit A. CXCL4 suppresses tolerogenic immune signature of monocyte-derived dendritic cells. Eur J Immunol 2020; 50:1598-1601. [PMID: 32502279 PMCID: PMC7586983 DOI: 10.1002/eji.201948341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/28/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Sandra C Silva-Cardoso
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Weiyang Tao
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Beatriz Malvar Fernández
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
Comi M, Amodio G, Passeri L, Fortunato M, Santoni de Sio FR, Andolfi G, Kajaste-Rudnitski A, Russo F, Cesana L, Gregori S. Generation of Powerful Human Tolerogenic Dendritic Cells by Lentiviral-Mediated IL-10 Gene Transfer. Front Immunol 2020; 11:1260. [PMID: 32695103 PMCID: PMC7338371 DOI: 10.3389/fimmu.2020.01260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
The prominent role of dendritic cells (DC) in promoting tolerance and the development of methods to generate clinical grade products allowed the clinical application of tolerogenic DC (tolDC)-based therapies for controlling unwanted immune responses. We established an efficient method to generate tolerogenic human DC, producing supra-physiological levels of IL-10, by genetically engineering monocyte-derived DC with a bidirectional Lentiviral Vector (bdLV) encoding for IL-10 and a marker gene. DCIL−10 are mature DC, modulate T cell responses, promote T regulatory cells, and are phenotypically and functionally stable upon stimulation. Adoptive transfer of human DCIL−10 in a humanized mouse model dampens allogeneic T cell recall responses, while murine DCIL−10 delays acute graft-vs.-host disease in mice. Our report outlines an efficient method to transduce human myeloid cells with large-size LV and shows that stable over-expression of IL-10 generates an effective cell product for future clinical applications in the contest of allogeneic transplantation.
Collapse
Affiliation(s)
- Michela Comi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Marta Fortunato
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | | | - Grazia Andolfi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Luca Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| |
Collapse
|
41
|
Srinivasan S, Babensee JE. Controlled Delivery of Immunomodulators from a Biomaterial Scaffold Niche to Induce a Tolerogenic Phenotype in Human Dendritic Cells. ACS Biomater Sci Eng 2020; 6:4062-4076. [DOI: 10.1021/acsbiomaterials.0c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sangeetha Srinivasan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Julia E. Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
42
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
43
|
Ospina-Quintero L, Jaramillo JC, Tabares-Guevara JH, Ramírez-Pineda JR. Reformulating Small Molecules for Cardiovascular Disease Immune Intervention: Low-Dose Combined Vitamin D/Dexamethasone Promotes IL-10 Production and Atheroprotection in Dyslipidemic Mice. Front Immunol 2020; 11:743. [PMID: 32395119 PMCID: PMC7197409 DOI: 10.3389/fimmu.2020.00743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The targeting of proinflammatory pathways has a prophylactic and therapeutic potential on atherosclerotic cardiovascular diseases (CVD). An alternative/complementary strategy is the promotion of endogenous atheroprotective mechanisms that are impaired during atherosclerosis progression, such as the activity of tolerogenic dendritic cells (tolDC) and regulatory T cells (Treg). There is a need to develop novel low cost, safe and effective tolDC/Treg-inducing formulations that are atheroprotective and that can be of easy translation into clinical settings. We found that apolipoprotein E-deficient (ApoE–/–) mice treated with a low-dose combined formulation of Vitamin D and Dexamethasone (VitD/Dexa), delivered repetitively and subcutaneously (sc) promoted interleukin-10 (IL-10) production by dendritic cells and other antigen presenting cells in the lymph nodes draining the site of injection and the spleens. Expectedly, the treatment also increased the numbers of IL-10-producing CD4+ T cells. Concomitantly, the frequency of IFNγ-producing CD4+ and CD8+ T cells in the spleen, and the IFNγ response of splenocytes to polyclonal stimulation ex vivo were lower after VitD/Dexa treatment, indicating a reduced proatherogenic Th1 response. Interestingly, VitD/Dexa-treated mice had smaller atherosclerotic lesions, with reduced lipid content and lower inflammatory infiltrate of macrophages and T cells in the aortic root. No hypolipidemic or antioxidant effect could be detected, suggesting that a dominantly immunomodulatory mechanism of atheroprotection was engaged under the low-dose sc VitD/Dexa conditions used. Finally, no evidence of clinical, biochemical or immune toxicity was observed in treated ApoE–/– mice and, most importantly, C57BL/6 mice latently infected with Leishmania parasites and treated with an identical VitD/Dexa dose/scheme showed no clinical or microbiological signs of disease reactivation, suggesting the absence of general immunosuppression. Altogether, these results indicate that a non-toxic, non-immunosuppressive, low-dose of VitD/Dexa, administered subcutaneously and repetitively, exerts atheroprotective effects in dyslipidemic mice, apparently due to the induction of an IL-10-producing network of lymphoid and myeloid immune cells. These well known, widely available, and inexpensive small molecules can be easily co-formulated into a simple and accessible agent with a potential use as a prophylactic or therapeutic immune intervention for CVD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Ospina-Quintero
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Julio C Jaramillo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Jorge H Tabares-Guevara
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
44
|
Brief Report: No Evidence for an Association Between Statin Use and Lower Biomarkers of HIV Persistence or Immune Activation/Inflammation During Effective ART. J Acquir Immune Defic Syndr 2020; 82:e27-e31. [PMID: 31335587 DOI: 10.1097/qai.0000000000002124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Statins exert pleiotropic anti-inflammatory and immune-modulatory effects, which might translate into antiviral activity. We evaluated whether reported current statin exposure is associated with lower levels of markers of HIV persistence and immune activation/inflammation. METHODS We compared levels of markers of HIV viral persistence [cell-associated HIV RNA (CA-RNA), CA-DNA, and single copy assay plasma HIV RNA] and immune activation/inflammation (IL-6, IP-10, neopterin, sCD14, sCD163, and TNF-alpha) between statin users and nonusers among participants of ACTG A5321 who initiated antiretroviral therapy (ART) during chronic infection and maintained virologic suppression (HIV-1 RNA levels ≤50 copies/mL) for ≥3 years. RESULTS A total of 303 participants were analyzed. Median time on the current statin was 2.9 years (1.2-5.1). There were no differences between statin users and nonusers in levels of CA-DNA (median 650 vs. 540 copies/10 CD4 T cells; P = 0.58), CA-RNA (53 vs. 37 copies/10 CD4 T cells; P = 0.12), or single copy assay (0.4 vs. 0.4 copies/mL; P = 0.45). Similarly, there were no significant differences between statin users and nonusers in markers of inflammation/activation, except for IP-10 (137 vs. 118 pg/mL; P = 0.028). Findings were unchanged after adjustment for factors including pre-ART CD4 and HIV RNA, and years on ART. CONCLUSIONS In this cohort of persons on long-term suppressive ART, current statin use was not associated with lower levels of HIV persistence or immune activation/inflammation. These results do not support a major role for statins in reducing HIV persistence, although an early transient effect cannot be excluded. Prospective, randomized studies are needed to confirm these findings.
Collapse
|
45
|
Li G, Yang L, Li D, Zhang J, Du L, Xia L, Liu Y, Hu W. Effects of combined treatment with PD‑L1 Ig and CD40L mAb on immune tolerance in the CBA/J x DBA/2 mouse model. Mol Med Rep 2020; 21:1789-1798. [PMID: 32319625 PMCID: PMC7057827 DOI: 10.3892/mmr.2020.10977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/01/2020] [Indexed: 12/31/2022] Open
Abstract
The embryo is a natural allograft and is the only exception to immune rejection, which reflects maternal immune tolerance towards the embryo. However, pregnancy loss is primarily caused by maternal immune rejection of the embryo. The aim of the present study was to explore the effects of combined treatment of programmed death-ligand 1 (PD-L1) immunoglobulin (Ig) and CD40-ligand (CD40L) monoclonal antibody (mAb) on immune tolerance in an abortion-prone mating model. Mice were divided into the normal, spontaneous abortion, PD-L1 Ig, CD40L mAb and the PD-L1 Ig + CD40L mAb groups. On day 14 of gestation, the embryo resorption abortion rates of all the groups was observed. The maternal hypo-responsiveness to paternal antigens was determined using a mixed lymphocyte response and the splenic CD4+CD25+ T-cell population, major histocompatibility complex (MHC)-II+, CD80+ and CD86+ cell populations in pregnant female CBA/J mice were analyzed using flow cytometry. The expression levels of intracellular cytokines in the splenic tissues of pregnant CBA/J female mice were analyzed using western blotting. The PD-L1 Ig + CD40L group displayed the lowest resorption rate compared with the other groups. A significant decrease in the proliferative response of maternal splenic immunocompetent cells against paternal antigens, and a significant increase in the proliferative response of maternal splenic CD4+CD25+ T cells was observed in the PD-L1 Ig + CD40L group compared with the spontaneous abortion group. The number of MHC-II+, CD80+ and CD86+ bone marrow-derived dendritic cells (DCs) generated by female mice, and the levels of tumor necrosis factor-α and interferon-γ in the spleens of female mice were significantly decreased in the PD-L1 Ig + CD40L mAb group compared with the spontaneous abortion group. By contrast, interleukin-4 levels were significantly increased in the PD-L1 Ig + CD40L mAb group compared with the spontaneous abortion group. The results suggested that the administration of PD-L1 Ig + CD40L mAb on day 4 of gestation, the period of peri-implantation, may induce paternal antigen-specific immunotolerance, leading to the embryo resorption rate of the abortion-prone model being similar to that of the normal pregnancy model. The results indicate that the combined treatment of PD-L1 Ig and anti-CD40L mAbs may serve as a potential therapeutic for pregnancy loss.
Collapse
Affiliation(s)
- Guanfei Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lihua Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Dan Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinhong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ling Du
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Libin Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yunhua Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wanqin Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
46
|
Miura S, Asano Y, Saigusa R, Yamashita T, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Yoshizaki A, Sato S, Kadono T. Regulation of skin fibrosis by RALDH1-producing dermal dendritic cells via retinoic acid-mediated regulatory T cell induction: A role in scleroderma. J Dermatol Sci 2020; 97:125-134. [PMID: 31959382 DOI: 10.1016/j.jdermsci.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Skin fibrosis of systemic sclerosis (SSc) is believed to be driven by complex processes including immune abnormalities, but the underlying immune response remains enigmatic. In particular, the role of dermal dendritic cells (DCs) is totally unknown. OBJECTIVE We investigated the impact of CD103 loss on bleomycin-induced skin fibrosis because CD103 is a critical molecule determining DC phenotypes. METHODS Bleomycin-induced skin fibrosis was generated with Cd103-/- mice. The alterations of tissue fibrosis and related inflammation were investigated by histologic examination, hydroxyproline assay, quantitative reverse transcription PCR and flow cytometry. SSc skin samples were evaluated by immunofluorescence. RESULTS CD103 loss decreased bleomycin-induced dermal thickness and collagen contents, along with TGF-β1 and CTGF suppression. Treg proportion was increased, while Th1/Th2/Th17 cell proportions were decreased in the skin of bleomycin-treated Cd103-/- mice. Bleomycin injection enhanced CD11b-CD103- DC proportion in wild-type mice, which was further augmented in Cd103-/- mice. Importantly, RALDH1/ALDH1A1 enzyme oxidizing retinaldehyde to retinoic acid, an inducer of Tregs, was preferentially expressed by CD11b-CD103- DCs and its expression levels were elevated in bleomycin-injected skin lesions, to a greater extent in Cd103-/- mice than in wild-type mice. Importantly, the number of RALDH1-positive DCs was decreased in the lesional skin of SSc patients and tended to inversely correlate with skin fibrosis severity. CONCLUSION This study identified a critical role of dermal DCs as a regulator of Treg development through RALDH1 in bleomycin-treated mice and possibly in human SSc. This finding sheds new light on dermal DCs as a new therapeutic target of SSc.
Collapse
Affiliation(s)
- Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yohei Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuo Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takafumi Kadono
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, St Marianna University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
47
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
48
|
Wei Y, Lan Y, Zhong Y, Yu K, Xu W, Zhu R, Sun H, Ding Y, Wang Y, Zeng Q. Interleukin-38 alleviates cardiac remodelling after myocardial infarction. J Cell Mol Med 2019; 24:371-384. [PMID: 31746138 PMCID: PMC6933378 DOI: 10.1111/jcmm.14741] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Excessive immune‐mediated inflammatory reaction plays a deleterious role in ventricular remodelling after myocardial infarction (MI). Interleukin (IL)‐38 is a newly characterized cytokine of the IL‐1 family and has been reported to exert a protective effect in some autoimmune diseases. However, its role in cardiac remodelling post‐MI remains unknown. In this study, we found that the expression of IL‐38 was increased in infarcted heart after MI induced in C57BL/6 mice by permanent ligation of the left anterior descending artery. In addition, our data showed that ventricular remodelling after MI was significantly ameliorated after recombinant IL‐38 injection in mice. This amelioration was demonstrated by better cardiac function, restricted inflammatory response, attenuated myocardial injury and decreased myocardial fibrosis. Our results in vitro revealed that IL‐38 affects the phenotype of dendritic cells (DCs) and IL‐38 plus troponin I (TNI)‐treated tolerogenic DCs dampened adaptive immune response when co‐cultured with CD4+T cells. In conclusion, IL‐38 plays a protective effect in ventricular remodelling post‐MI, one possibility by influencing DCs to attenuate inflammatory response. Therefore, targeting IL‐38 may hold a new therapeutic potential in treating MI.
Collapse
Affiliation(s)
- Yuzhen Wei
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yin Lan
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yucheng Zhong
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Kunwu Yu
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Wenbin Xu
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Ruirui Zhu
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Haitao Sun
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yan Ding
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yue Wang
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Kondratova M, Czerwinska U, Sompairac N, Amigorena SD, Soumelis V, Barillot E, Zinovyev A, Kuperstein I. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat Commun 2019; 10:4808. [PMID: 31641119 PMCID: PMC6805895 DOI: 10.1038/s41467-019-12270-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
The lack of integrated resources depicting the complexity of the innate immune response in cancer represents a bottleneck for high-throughput data interpretation. To address this challenge, we perform a systematic manual literature mining of molecular mechanisms governing the innate immune response in cancer and represent it as a signalling network map. The cell-type specific signalling maps of macrophages, dendritic cells, myeloid-derived suppressor cells and natural killers are constructed and integrated into a comprehensive meta map of the innate immune response in cancer. The meta-map contains 1466 chemical species as nodes connected by 1084 biochemical reactions, and it is supported by information from 820 articles. The resource helps to interpret single cell RNA-Seq data from macrophages and natural killer cells in metastatic melanoma that reveal different anti- or pro-tumor sub-populations within each cell type. Here, we report a new open source analytic platform that supports data visualisation and interpretation of tumour microenvironment activity in cancer. The complexity of the innate immune response to cancer makes interpretation of large data sets challenging. Here, the authors provide an integrated multi-scale map of signalling networks representing the different immune cells and their interactions and show its utility for data interpretation.
Collapse
Affiliation(s)
- Maria Kondratova
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Urszula Czerwinska
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | | | - Vassili Soumelis
- Institut Curie, PSL Research University, Inserm, U932, 75005, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.
| |
Collapse
|
50
|
Gorabi AM, Hajighasemi S, Sathyapalan T, Sahebkar A. Cell transfer-based immunotherapies in cancer: A review. IUBMB Life 2019; 72:790-800. [PMID: 31633881 DOI: 10.1002/iub.2180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
In cell transfer therapy (CTT), immune cells such as innate immune-derived natural killer cells and dendritic cells as well as acquired immune-related T lymphocytes such as tumor-infiltrating lymphocytes and cytokine-activated or genetically modified peripheral blood T cells are used in the management of cancer. These therapies are increasingly becoming the most used treatment modality in cancer after tumor resection, chemotherapy, and radiotherapy. In adoptive cell transfer, the lymphocytes isolated from either a donor or the patient are modified ex vivo and reinfused to target malignant cells. Transferring in vitro-manipulated immune cells produces a continuous antitumor immune response. In this review, we evaluate the recent advances in CTT for the management of various malignancies.
Collapse
Affiliation(s)
- Armita M Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Hajighasemi
- Faculty of Paramedicine, Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|