1
|
Meewes C, Gupta K, Geisler WM. Role of microRNAs in immune regulation and pathogenesis of Chlamydia trachomatis and Chlamydia muridarum infections: a rapid review. Microbes Infect 2024; 26:105397. [PMID: 39025257 PMCID: PMC11609027 DOI: 10.1016/j.micinf.2024.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
MicroRNAs in Chlamydia trachomatis (CT) and Chlamydia muridarum (CM) infections are an emerging topic of research that provide knowledge that could advance vaccine development and strategies for managing infection. This rapid review summarizes human and murine studies on miRNA expression in CT and CM infections in vivo and ex vivo.
Collapse
Affiliation(s)
- Chloe Meewes
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kanupriya Gupta
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William M Geisler
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
2
|
Mukherjee AG, Gopalakrishnan AV. Anti-sperm Antibodies as an Increasing Threat to Male Fertility: Immunological Insights, Diagnostic and Therapeutic Strategies. Reprod Sci 2024; 31:3303-3322. [PMID: 38831152 DOI: 10.1007/s43032-024-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
It is a fact that sperm possess antigenic properties. Substantial scientific research suggests that specific antibodies that attach to sperm antigens can induce infertility in both humans and other species. Antisperm antibodies (ASA) represent a significant etiology of infertility in humans, leading to immunoinfertility. The association between ASA and infertility is multifaceted. The observation of sperm agglutination, although not conclusive for the diagnosis of immunological infertility, may suggest the presence of ASA. Nevertheless, ASA may also manifest in the lack of any sperm agglutination. Managing ASA from an andrological perspective depends on the underlying cause and the specific approaches healthcare professionals adopt. The precise etiology of male infertility resulting from ASA remains unclear. Current research has examined the impact of ASA and its prevalence among infertile males to understand the relationship between ASA and changes in semen parameters. However, the findings have been inconclusive. Numerous techniques have been documented for the management of immunoinfertility. This review examines the importance of ASA in the context of infertility, encompassing the postulated mechanisms underlying the development of ASA, the various assays employed for detecting them, and the available treatments.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Ma Y, Yu X, Liu YF, Song B, Sun Z, Zhao S. Immunoregulation and male reproductive function: Impacts and mechanistic insights into inflammation. Andrology 2024. [PMID: 39428853 DOI: 10.1111/andr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
This paper investigates the complex relationship between the immune system and male reproductive processes, emphasizing how chronic inflammation can adversely affect male reproductive health. The immune system plays a dual role; it protects and regulates reproductive organs and spermatogenesis while maintaining reproductive health through immune privilege in the testes and the activities of various immune cells and cytokines. However, when chronic inflammation persists or intensifies, it can disrupt this balance, leading to immune attacks on reproductive tissues and resulting in infertility.This study provides a detailed analysis of how chronic inflammation can impair sperm production, sperm quality, and the secretion of gonadal hormones both directly and indirectly. It also delves into the critical roles of testicular immune privilege, various immune cells, and cytokines in sustaining reproductive health and examines the impacts of infections, autoimmune diseases, and environmental factors on male fertility.
Collapse
Affiliation(s)
- Yingjie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinru Yu
- School of PharmacyJinan, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bihan Song
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengtian Zhao
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Yantai, Shandong, China
- Institute of Urology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Taylor BD, Noah AI, Adekanmbi V, Zhang Y, Berenson AB. Per- and Polyfluoroalkyl Substances May Be Correlated With Chlamydia trachomatis: Data From the National Health and Nutrition Examination Survey 2003-2016. J Occup Environ Med 2024; 66:750-756. [PMID: 38752649 PMCID: PMC11371533 DOI: 10.1097/jom.0000000000003151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
OBJECTIVE Per- and polyfluoroalkyl substances (PFAS) alter immune function increasing infectious diseases risk. We examined the relationship between PFAS and chlamydia. METHODS A total of 3965 nonpregnant adults ages 18-39 years from the National Nutrition Examination Survey 2003-2016 cycles were included. Poisson regression with robust error variance estimated the prevalence ratio and 95% confidence intervals for the association between PFAS and chlamydia. A g computation model was used to examine PFAS mixtures and chlamydia. RESULTS In adjusted age and sex-stratified models, an increase in PFAS mixtures by one quintile was associated with chlamydia in older males and younger females. Associations were not observed before stratification. CONCLUSIONS PFAS exposure associated with higher chlamydia prevalence, but only in stratified models suggesting biological differences by gender and age. However, small sample sizes could have affected the precision of our models.
Collapse
Affiliation(s)
- Brandie DePaoli Taylor
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas (B.D.T., A.N., V.A., A.B.); Department of Population Health and Health Disparities, University of Texas Medical Branch, Galveston, Texas (B.D.T.); Center for Interdisciplinary Research in Women's Health, University of Texas Medical Branch, Galveston, Texas (B.D.T., V.A., A.B.); and Department of Biostatistics and Data Science, University of Texas Medical Branch, Galveston, Texas (Y.Z.)
| | | | | | | | | |
Collapse
|
5
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
6
|
Wang X, Wu H, Fang C, Li Z. Insights into innate immune cell evasion by Chlamydia trachomatis. Front Immunol 2024; 15:1289644. [PMID: 38333214 PMCID: PMC10850350 DOI: 10.3389/fimmu.2024.1289644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
Collapse
Affiliation(s)
| | | | | | - Zhongyu Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
7
|
Ghasemian E, Harding-Esch E, Mabey D, Holland MJ. When Bacteria and Viruses Collide: A Tale of Chlamydia trachomatis and Sexually Transmitted Viruses. Viruses 2023; 15:1954. [PMID: 37766360 PMCID: PMC10536055 DOI: 10.3390/v15091954] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The global incidence of sexually transmitted infections (STIs) remains high, with the World Health Organization (WHO) estimating that over 1 million people acquire STIs daily. STIs can lead to infertility, pregnancy complications, and cancers. Co-infections with multiple pathogens are prevalent among individuals with an STI and can lead to heightened infectivity and more severe clinical manifestations. Chlamydia trachomatis (CT) is the most reported bacterial STI worldwide in both men and women, and several studies have demonstrated co-infection of CT with viral and other bacterial STIs. CT is a gram-negative bacterium with a unique biphasic developmental cycle including infectious extracellular elementary bodies (EBs) and metabolically active intracellular reticulate bodies (RBs). The intracellular form of this organism, RBs, has evolved mechanisms to persist for long periods within host epithelial cells in a viable but non-cultivable state. The co-infections of CT with the most frequently reported sexually transmitted viruses: human immunodeficiency virus (HIV), human papillomavirus (HPV), and herpes simplex virus (HSV) have been investigated through in vitro and in vivo studies. These research studies have made significant strides in unraveling the intricate interactions between CT, these viral STIs, and their eukaryotic host. In this review, we present an overview of the epidemiology of these co-infections, while specifically delineating the underlying mechanisms by which CT influences the transmission and infection dynamics of HIV and HSV. Furthermore, we explore the intricate relationship between CT and HPV infection, with a particular emphasis on the heightened risk of cervical cancer. By consolidating the current body of knowledge, we provide valuable insights into the complex dynamics and implications of co-infection involving CT and sexually transmitted viruses.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK; (E.H.-E.); (D.M.); (M.J.H.)
| | | | | | | |
Collapse
|
8
|
Collar AL, Clarke TN, Jamus AN, Frietze KM. Ensuring equity with pre-clinical planning for chlamydia vaccines. NPJ Vaccines 2023; 8:131. [PMID: 37673890 PMCID: PMC10482967 DOI: 10.1038/s41541-023-00726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Chlamydia trachomatis (Ct) remains the most common bacterial sexually transmitted pathogen worldwide, causing significant morbidity particularly among women, including pelvic inflammatory disease, ectopic pregnancy, and infertility. Several vaccines are advancing through pre-clinical and clinical development, and it is likely that one or more vaccines will progress into human efficacy trials soon. In this Perspective, we present a case for considering the challenges of Ct vaccine development through a lens of equity and justice. These challenges include the need to protect against multiple serovars, in both females and males, at multiple anatomic sites, and in resource poor areas of the world. We propose that early consideration of vaccine implementation by conducting community-engaged research will ensure that a scientifically sound chlamydia vaccine promotes equity, justice, and shared-gendered responsibility for STI prevention.
Collapse
Affiliation(s)
- Amanda L Collar
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Tegan N Clarke
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Andzoa N Jamus
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Kathryn M Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
9
|
Jin Y, Li W, Ba X, Li Y, Wang Y, Zhang H, Li Z, Zhou J. Gut microbiota changes in horses with Chlamydia. BMC Microbiol 2023; 23:246. [PMID: 37660043 PMCID: PMC10474637 DOI: 10.1186/s12866-023-02986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Zoonotic diseases pose a significant threat to public health. Chlamydia, as an intracellular pathogen, can colonize the intestinal tract of humans and animals, changing the gut microbiota. However, only a few studies have evaluated alterations in the gut microbiota of horses infected with Chlamydia. Therefore, this study aimed to investigate gut microbiota and serum biochemical indicators in horses with Chlamydial infection (IG) and healthy horses (HG). Fecal and blood samples were collected from 16 horses (IG: 10; HG: 6) before morning feeding for the determination of gut microbiota and serum biochemical parameters. RESULTS The results showed that total globulin (GLB), alanine aminotransferase (ALT), and creatine kinase (CK) levels were significantly increased in IG compared with HG. Notably, the gut microbial diversity increased in IG compared with HG. Furthermore, Moraxellaceae and Akkermanisa abundance decreased in IG, while Streptococcus, Treponema, Prevotella, and Paraprevotella abundances (13 genera of bacterial species) increased. Compared with HG, carbohydrate metabolism increased in IG while amino acid metabolism decreased. In addition, the abundance of 18 genera of bacteria was associated with the level of five serum biochemical indicators. CONCLUSIONS In summary, this study elucidated the influence of Chlamydia infection in horses on the gut microbiota, unraveling consequential alterations in its composition and metabolic profile. Therefore, this study improves the understanding of Chlamydia-induced intestinal infections.
Collapse
Affiliation(s)
- Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yunhui Li
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang, 712100, China
| | - Yanyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Huaiyu Zhang
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang, 712100, China
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Guiton R, Drevet JR. Viruses, bacteria and parasites: infection of the male genital tract and fertility. Basic Clin Androl 2023; 33:19. [PMID: 37468865 DOI: 10.1186/s12610-023-00193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/05/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Infertility affects one couple out of six worldwide. Male infertilty can result from congenital or acquired factors, of which pathogens that reach the genital tract through sexual contact or blood dissemination. The impact of major viral, bacterial and parasitic infections on the male genital tract and fertility has been summarized. RESULTS AND CONCLUSIONS A systematic review of articles published in the Google Scholar and PubMed databases was conducted. It turns out that viruses, as well as bacteria and parasites are major inducers of male genital tract infections and ensuing infertility through damage to the organs and subsequent loss of function and/or through direct damage to the sperm cells. Moreover, not only male infertility results from such infections but these can also be transmitted to women and even to the offspring, thus highlighting the need to efficiently detect, treat and prevent them.
Collapse
Affiliation(s)
- Rachel Guiton
- Université Clermont Auvergne, CNRS UMR6293, GReD Institute, 63001, Clermont-Ferrand, France.
| | - Joël R Drevet
- Université Clermont Auvergne, CNRS UMR6293, GReD Institute, 63001, Clermont-Ferrand, France
| |
Collapse
|
11
|
Lillis R, Kuritzky L, Huynh Z, Arcenas R, Hansra A, Shah R, Yang B, Taylor SN. Outpatient sexually transmitted infection testing and treatment patterns in the United States: a real-world database study. BMC Infect Dis 2023; 23:469. [PMID: 37442964 DOI: 10.1186/s12879-023-08434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the most common notifiable sexually transmitted infections (STIs) in the United States. Because symptoms of these infections often overlap with other urogenital infections, misdiagnosis and incorrect treatment can occur unless appropriate STI diagnostic testing is performed in clinical settings. The objective of this study was to describe STI diagnostic testing and antimicrobial treatment patterns and trends among adolescent and adult men and women with lower genitourinary tract symptoms (LGUTS). METHODS We analyzed insurance claims data from the IBM® MarketScan® Research Databases. Patients included were between 14 and 64 years old with LGUTS as determined by selected International Classification of Diseases codes between January 2010 and December 2019. Testing of STIs and relevant drug claims were captured, and distribution of testing patterns and drug claims were described. RESULTS In total, 23,537,812 episodes with LGUTS (87.4% from women; 12.6% from men) were analyzed from 12,341,154 patients. CT/NG testing occurred in only 17.6% of all episodes. For episodes where patients received treatment within 2 weeks of the visit date, 89.3% received treatment within the first 3 days (likely indicating presumptive treatment), and 77.7% received it on the first day. For women with pelvic inflammatory disease and men with orchitis/epididymitis and acute prostatitis, ≤ 15% received CT/NG testing, and around one-half received antibiotic treatment within 3 days. CONCLUSIONS Our study revealed low CT/NG testing rates, even in patients diagnosed with complications commonly associated with these STIs, along with high levels of potentially inappropriate presumptive treatment. This highlights the need for timely and accurate STI diagnosis in patients with LGUTS to inform appropriate treatment recommendations.
Collapse
Affiliation(s)
- Rebecca Lillis
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70119, USA.
| | - Louis Kuritzky
- Department of Community Health and Family Medicine, University of Florida, Gainesville, FL, USA
- Clinical Faculty, University of Central Florida/Hospital Corporation of America Family Medicine Residency, Gainesville, FL, USA
| | - Zune Huynh
- Roche Molecular Systems, Inc, Pleasanton, CA, USA
| | | | | | - Roma Shah
- Roche Molecular Systems, Inc, Pleasanton, CA, USA
| | - Baiyu Yang
- Roche Molecular Systems, Inc, Pleasanton, CA, USA
| | - Stephanie N Taylor
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70119, USA
| |
Collapse
|
12
|
Onorini D, Leonard CA, Phillips Campbell R, Prähauser B, Pesch T, Schoborg RV, Jerse AE, Tarigan B, Borel N. Neisseria gonorrhoeae Coinfection during Chlamydia muridarum Genital Latency Does Not Modulate Murine Vaginal Bacterial Shedding. Microbiol Spectr 2023; 11:e0450022. [PMID: 37039695 PMCID: PMC10269798 DOI: 10.1128/spectrum.04500-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Chlamydia trachomatis and Neisseria gonorrhoeae are the most frequently reported agents of bacterial sexually transmitted disease worldwide. Nonetheless, C. trachomatis/N. gonorrhoeae coinfection remains understudied. C. trachomatis/N. gonorrhoeae coinfections are more common than expected by chance, suggesting C. trachomatis/N. gonorrhoeae interaction, and N. gonorrhoeae infection may reactivate genital chlamydial shedding in women with latent (quiescent) chlamydial infection. We hypothesized that N. gonorrhoeae would reactivate latent genital Chlamydia muridarum infection in mice. Two groups of C. muridarum-infected mice were allowed to transition into genital latency. One group was then vaginally inoculated with N. gonorrhoeae; a third group received N. gonorrhoeae alone. C. muridarum and N. gonorrhoeae vaginal shedding was measured over time in the coinfected and singly infected groups. Viable C. muridarum was absent from vaginal swabs but detected in rectal swabs, confirming C. muridarum genital latency and consistent with the intestinal tract as a C. muridarum reservoir. C. muridarum inclusions were observed in large intestinal, but not genital, tissues during latency. Oviduct dilation was associated with C. muridarum infection, as expected. Contradicting our hypothesis, N. gonorrhoeae coinfection did not reactivate latent C. muridarum vaginal shedding. In addition, latent C. muridarum infection did not modulate recovery of vaginal viable N. gonorrhoeae. Evidence for N. gonorrhoeae-dependent increased C. muridarum infectivity has thus not been demonstrated in murine coinfection, and the ability of C. muridarum coinfection to potentiate N. gonorrhoeae infectivity may depend on actively replicating vaginal C. muridarum. The proportion of mice with increased vaginal neutrophils (PMNs) was higher in N. gonorrhoeae-infected than in C. muridarum-infected mice, as expected, while that of C. muridarum/N. gonorrhoeae-coinfected mice was intermediate to the singly infected groups, suggesting latent C. muridarum murine infection may limit PMN response to subsequent N. gonorrhoeae infection. IMPORTANCE Our work builds upon the limited understanding of C. muridarum/N. gonorrhoeae coinfection. Previously, N. gonorrhoeae infection of mice with acute (actively replicating) vaginal C. muridarum infection was shown to increase recovery of viable vaginal N. gonorrhoeae and vaginal PMNs, with no effect on C. muridarum vaginal shedding (R. A. Vonck et al., Infect Immun 79:1566-1577, 2011). It has also been shown that chlamydial infection of human and murine PMNs prevents normal PMN responses, including the response to N. gonorrhoeae (K. Rajeeve et al., Nat Microbiol 3:824-835, 2018). Our findings show no effect of latent genital C. muridarum infection on the recovery of viable N. gonorrhoeae, in contrast to the previously reported effect of acute C. muridarum infection, and suggesting that acute versus latent C. muridarum infection may have distinct effects on PMN function in mice. Together, these studies to date provide evidence that Chlamydia/N. gonorrhoeae synergistic interactions may depend on the presence of replicating Chlamydia in the genital tract, while chlamydial effects on vaginal PMNs may extend beyond acute infection.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regenia Phillips Campbell
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Bernadetta Tarigan
- Department of Mathematics, Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Wang L, Hou Y, Yuan H, Chen H. The role of tryptophan in Chlamydia trachomatis persistence. Front Cell Infect Microbiol 2022; 12:931653. [PMID: 35982780 PMCID: PMC9378776 DOI: 10.3389/fcimb.2022.931653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) and a worldwide public health issue. The natural course with C. trachomatis infection varies widely between individuals. Some infections clear spontaneously, others can last for several months or some individuals can become reinfected, leading to severe pathological damage. Importantly, the underlying mechanisms of C. trachomatis infection are not fully understood. C. trachomatis has the ability to adapt to immune response and persist within host epithelial cells. Indoleamine-2,3-dioxygenase (IDO) induced by interferon-gamma (IFN-γ) degrades the intracellular tryptophan pool, to which C. trachomatis can respond by converting to a non-replicating but viable state. C. trachomatis expresses and encodes for the tryptophan synthase (TS) genes (trpA and trpB) and tryptophan repressor gene (trpR). Multiple genes interact to regulate tryptophan synthesis from exogenous indole, and persistent C. trachomatis can recover its infectivity by converting indole into tryptophan. In this review, we discuss the characteristics of chlamydial infections, biosynthesis and regulation of tryptophan, the relationship between tryptophan and C. trachomatis, and finally, the links between the tryptophan/IFN-γ axis and C. trachomatis persistence.
Collapse
Affiliation(s)
- Li Wang
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - YingLan Hou
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - HongXia Yuan
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - Hongliang Chen
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
- *Correspondence: Hongliang Chen,
| |
Collapse
|
14
|
Chavda VP, Pandya A, Kypreos E, Patravale V, Apostolopoulos V. Chlamydia trachomatis: quest for an eye-opening vaccine breakthrough. Expert Rev Vaccines 2022; 21:771-781. [PMID: 35470769 DOI: 10.1080/14760584.2022.2061461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Chlamydia trachomatis, commonly referred to as chlamydia (a bacterium), is a common sexually transmitted infection, and if attended to early, it can be treatable. However, if left untreated it can lead to serious consequences. C. trachomatis infects both females and males although its occurrence in females is more common, and it can spread to the eyes causing disease and in some case blindness. AREA COVERED With ongoing attempts in the most impoverished regions of the country, trachoma will be eradicated as a blinding disease by the year 2022. A prophylactic vaccine candidate with established safety and efficacy is a cogent tool to achieve this goal. This manuscript covers the vaccine development programs for chlamydial infection. EXPERT OPINION Currently, the Surgery Antibiotics Facial Environmental (SAFE) program is being implemented in endemic countries in order to reduce transmission and control of the disease. Vaccines have been shown over the years to protect against infectious diseases. Charge variant-based adjuvant can also be used for the successful delivery of chlamydial specific antigen for efficient vaccine delivery through nano delivery platform. Thus, a vaccine against C. trachomatis would be of great public health benefit.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Erica Kypreos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Vasso Apostolopoulos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| |
Collapse
|
15
|
Izadi M, Dehghan Marvast L, Rezvani ME, Zohrabi M, Aliabadi A, Mousavi SA, Aflatoonian B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front Microbiol 2022; 12:785622. [PMID: 35095800 PMCID: PMC8792933 DOI: 10.3389/fmicb.2021.785622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Some microbial sexually transmitted infections (STIs) have adverse effects on the reproductive tract, sperm function, and male fertility. Given that STIs are often asymptomatic and cause major complications such as urogenital inflammation, fibrosis, and scarring, optimal treatments should be performed to prevent the noxious effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most common asymptomatic preventable bacterial STI. C. trachomatis can affect both sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs) derived exosomes have been considered as a new therapeutic medicine due to their immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without consequences through the stem cell transplantation based therapies. Inflammation of the genital tract and sperm dysfunction are the consequences of the microbial infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive approach has shown promising results on the ability to regenerate the damaged sperm and treating asthenozoospermia. Recent experimental methods may be helpful in the novel treatments of male infertility. Thus, it is demonstrated that exosomes play an important role in preventing the consequences of infection, and thereby preventing inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation. This review aimed to overview the studies about the potential therapeutic roles of MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Disease Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Das S, Roychoudhury S, Roychoudhury S, Agarwal A, Henkel R. Role of Infection and Leukocytes in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:115-140. [DOI: 10.1007/978-3-030-89340-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Shibahara H, Chen Y, Honda H, Wakimoto Y, Fukui A, Hasegawa A. Sex difference in anti-sperm antibodies. Reprod Med Biol 2022; 21:e12477. [PMID: 35814191 PMCID: PMC9255895 DOI: 10.1002/rmb2.12477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background Some diseases have sex differences. There have been no reports on the relationship between anti-sperm antibodies (ASA) and sex differences. Methods ASA are detected by sperm-immobilization test using patients' sera in women. In men, the ASA testing is generally performed by direct-immunobead test. Main findings Sperm-immobilizing antibodies in women inhibit sperm migration in their genital tract and exert inhibitory effects on fertilization. ASA bound to sperm surface in men also show inhibitory effect on sperm passage through cervical mucus. The fertilization rate of IVF significantly decreased when sperm were coated with higher numbers of ASA. For women with the antibodies, it is important to assess individual patients' SI50 titers. In patients with continuously high SI50 titers, pregnancy can be obtained only by IVF. For men with abnormal fertilizing ability by ASA, it is necessary to select intracytoplasmic sperm injection. Production of sperm-immobilizing antibodies is likely to occur in women with particular HLA after exposure to sperm. The risk factors for ASA production in men are still controversial. Conclusion Attention to sex differences in specimens, test methods and the diagnosis of ASA should be paid. For patients with ASA, treatment strategies have been established by considering sex difference for each.
Collapse
Affiliation(s)
- Hiroaki Shibahara
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Yuekun Chen
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Haruka Honda
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Yu Wakimoto
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Atsushi Fukui
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Akiko Hasegawa
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| |
Collapse
|
18
|
Prokopev IV, Abdrakhmanov AR. Capabilities of combined peptide drugs in the correction of male infertility (literature review). CONSILIUM MEDICUM 2021. [DOI: 10.26442/20751753.2021.12.201295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute and chronic urogenital infections are associated with male infertility. Besides "traditional" sexually transmitted infections, there is a significant increase in inflammatory diseases of reproductive system caused by opportunistic pathogens. Studies show that sperm fertility is influenced by direct exposure to sexually transmitted infections, as well as dysfunction of the blood-testicular barrier, leading to autoimmune infertility. In a number of clinical trials, Prostatilen AC was shown to have benefitial effects on the ejaculate.
Collapse
|
19
|
Tjagur S, Mändar R, Poolamets O, Pomm K, Punab M. Mycoplasma genitalium Provokes Seminal Inflammation among Infertile Males. Int J Mol Sci 2021; 22:ijms222413467. [PMID: 34948264 PMCID: PMC8707260 DOI: 10.3390/ijms222413467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023] Open
Abstract
The impact of sexually transmitted infections (STI) on male fertility is controversial. Aims: To investigate the prevalence of urethritis-associated STIs (chlamydia, gonorrhoeae, Mycoplasma genitalium, trichomoniasis) among infertile males; to analyze the effect of STIs on semen parameters and blood PSA. Case-control study. Study group (n = 2000): males with fertility problems or desire for fertility check. Control group (n = 248): male partners of pregnant women. Analyses: polymerase chain reaction for STI, seminal interleukin 6 (IL-6), semen and fractionated urine, blood analyses (PSA, reproductive hormones). The prevalence of M. genitalium and chlamydia in the study group was 1.1% and 1.2%, respectively. The prevalence of chlamydia in the control group was 1.6%, while there were no M. genitalium cases. No cases with gonorrhoeae or trichomoniasis or combined infections were observed in neither group. There was a higher seminal concentration of neutrophils and IL-6 among M. genitalium positives compared with STI negatives. There was a trend toward a lower total count of spermatozoa and progressive motility among STI positives. No impact of STIs on PSA was found. The prevalence of STIs among infertile males is low. M. genitalium is associated with seminal inflammation. The impact of STIs on semen parameters deserves further investigations.
Collapse
Affiliation(s)
- Stanislav Tjagur
- Andrology Centre, Tartu University Hospital, Ludvig Puusepa 8 Street, 50406 Tartu, Estonia; (O.P.); (K.P.); (M.P.)
- Faculty of Medicine, University of Tartu, Ravila 19 Street, 50411 Tartu, Estonia
- Correspondence: (S.T.); (R.M.)
| | - Reet Mändar
- Andrology Centre, Tartu University Hospital, Ludvig Puusepa 8 Street, 50406 Tartu, Estonia; (O.P.); (K.P.); (M.P.)
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19 Street, 50411 Tartu, Estonia
- Competence Centre on Health Technologies, Teaduspargi 13 Street, 50411 Tartu, Estonia
- Correspondence: (S.T.); (R.M.)
| | - Olev Poolamets
- Andrology Centre, Tartu University Hospital, Ludvig Puusepa 8 Street, 50406 Tartu, Estonia; (O.P.); (K.P.); (M.P.)
| | - Kristjan Pomm
- Andrology Centre, Tartu University Hospital, Ludvig Puusepa 8 Street, 50406 Tartu, Estonia; (O.P.); (K.P.); (M.P.)
| | - Margus Punab
- Andrology Centre, Tartu University Hospital, Ludvig Puusepa 8 Street, 50406 Tartu, Estonia; (O.P.); (K.P.); (M.P.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Ravila 19 Street, 50411 Tartu, Estonia
| |
Collapse
|
20
|
Henkel R. Long-term consequences of sexually transmitted infections on men's sexual function: A systematic review. Arab J Urol 2021; 19:411-418. [PMID: 34552793 PMCID: PMC8451632 DOI: 10.1080/2090598x.2021.1942414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: To systematically review the available literature on the long-term effects of sexually transmitted diseases (STIs) on male reproductive functions. Methods: A PubMed search was conducted on 3 January 2021, and as a result, 952 articles were retrieved. Exclusion of irrelevant articles resulted in 36 articles, dating from 1998 to 2020, which were analysed. Results: Only 52.8% of these articles described original research, while the rest were reviews. The majority (26) of the articles dealt with bacterial infections, of which 20 described Chlamydia trachomatis. There were 11 articles that described research on viruses, with five on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The analysis of the articles showed further that not much new knowledge on the long-term effects on male reproductive functions has been added. The existing knowledge that ascending infections can cause epididymo-orchitis, prostatitis or urethritis was confirmed. Due to epithelial inflammatory responses these infections can result in scarring with resulting infertility due to obstruction. These effects were described for Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium or Treponema pallidum, as well as for the Zika and SARS-CoV-2 viruses. Even trichomoniasis can lead to long-term compromised male fertility if not treated. Conclusion: In conclusion, problem awareness needs to be raised and more research on this important topic needs to be conducted.
Collapse
Affiliation(s)
- Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,Department of Urology, LogixX Pharma, Theale, Reading, UK.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Bryan ER, Redgrove KA, Mooney AR, Mihalas BP, Sutherland JM, Carey AJ, Armitage CW, Trim LK, Kollipara A, Mulvey PBM, Palframan E, Trollope G, Bogoevski K, McLachlan R, McLaughlin EA, Beagley KW. Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development†. Biol Reprod 2021; 102:888-901. [PMID: 31965142 PMCID: PMC7124966 DOI: 10.1093/biolre/ioz229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/28/2019] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison R Mooney
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Bettina P Mihalas
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Jessie M Sutherland
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Charles W Armitage
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia.,Peter Goher Department of Immunobiology, King's College London, London, United Kingdom
| | - Logan K Trim
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Avinash Kollipara
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Peter B M Mulvey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Ella Palframan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Gemma Trollope
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kristofor Bogoevski
- Scientific Services, Histology Services, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Robert McLachlan
- Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,School of Science, Western Sydney University, Richmond, New South Wales, Australia.,School of Life Sciences, The University of Auckland, Auckland, New Zealand
| | - Kenneth W Beagley
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| |
Collapse
|
22
|
Paira DA, Molina G, Tissera AD, Olivera C, Molina RI, Motrich RD. Results from a large cross-sectional study assessing Chlamydia trachomatis, Ureaplasma spp. and Mycoplasma hominis urogenital infections in patients with primary infertility. Sci Rep 2021; 11:13655. [PMID: 34211075 PMCID: PMC8249471 DOI: 10.1038/s41598-021-93318-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Female and male infertility have been associated to Chlamydia trachomatis, Ureaplasma spp. and Mycoplasma hominis urogenital infections. However, evidence from large studies assessing their prevalence and putative associations in patients with infertility is still scarce. The study design was a cross-sectional study including 5464 patients with a recent diagnosis of couple's primary infertility and 404 healthy control individuals from Cordoba, Argentina. Overall, the prevalence of C. trachomatis, Ureaplasma spp. and M. hominis urogenital infection was significantly higher in patients than in control individuals (5.3%, 22.8% and 7.4% vs. 2.0%, 17.8% and 1.7%, respectively). C. trachomatis and M. hominis infections were significantly more prevalent in male patients whereas Ureaplasma spp. and M. hominis infections were more prevalent in female patients. Of clinical importance, C. trachomatis and Ureaplasma spp. infections were significantly higher in patients younger than 25 years. Moreover, Ureaplasma spp. and M. hominis infections were associated to each other in either female or male patients being reciprocal risk factors of their co-infection. Our data revealed that C. trachomatis, Ureaplasma spp. and M. hominis are prevalent uropathogens in patients with couple's primary infertility. These results highlight the importance of including the screening of urogenital infections in the diagnostic workup of infertility.
Collapse
Affiliation(s)
- Daniela Andrea Paira
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5016HUA, Córdoba, Argentina
| | - Guillermo Molina
- Servicio de Urología y Andrología, Hospital Privado Universitario de Córdoba, 5016, Córdoba, Argentina
| | | | - Carolina Olivera
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5016HUA, Córdoba, Argentina
| | - Rosa Isabel Molina
- Laboratorio de Andrología y Reproducción (LAR), 5000, Córdoba, Argentina
| | - Ruben Dario Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5016HUA, Córdoba, Argentina.
| |
Collapse
|
23
|
Seminal pro-inflammatory cytokines and pH are affected by Chlamydia infection in asymptomatic patients with teratozoospermia. Cent Eur J Immunol 2021; 46:76-81. [PMID: 33897287 PMCID: PMC8056351 DOI: 10.5114/ceji.2021.105247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/24/2020] [Indexed: 12/04/2022] Open
Abstract
Introduction Infection and inflammation of the reproductive tract by Chlamydia trachomatis (CT) are recognized as significant risk factors for male infertility. This study aimed to evaluate CT infection and its effects on seminal parameters and cytokines in asymptomatic patients with teratozoospermia. Material and methods Semen samples from one hundred four male patients were collected, and CT detection was performed by polymerase chain reaction (PCR). The quality (volume, sperm concentration, pH, motility, morphology, and leucocytes) of the semen was measured by standard procedures recommended by the World Health Organization (WHO). Pro-inflammatory cytokines [interleukin (IL)-1 β, IL-6, IL-8, tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ)], as well as anti-inflammatory cytokines (IL-4, IL-10), were determined by using enzyme-linked immunosorbent assay (ELISA). The frequency of CT infection was expressed as a percentage. Descriptive statistics were used for comparison of cytokines from infertile men, and then the Mann-Whitney U test was applied for the contrast of seminal parameters and cytokines from CT-infected versus non-CT infected men. Results A ratio of 33/104 (31.7%) patients were positive for CT infection. The ejaculate of positive CT infection was found to have increased pH (pH = 7.65 in non-CT infected vs. 7.94 CT-infected men; p = 0.026). High levels of pro-inflammatory cytokines were found in the population studied; however, infected males were noted to have high levels of IL-1 β [184.66 (0-3985.33 pg/ml), p = 0.001] and IL-6 [87.8 (0-1042.8 pg/ml), p = 0.001]. Conclusions CT infection increased seminal pH, as well as IL-1 β and IL-6 cytokines, suggesting a potential role of infection and inflammation in asymptomatic patients with teratozoospermia.
Collapse
|
24
|
Hulse L, Beagley K, Larkin R, Nicolson V, Gosálvez J, Johnston S. The effect of Chlamydia infection on koala (Phascolarctos cinereus) semen quality. Theriogenology 2021; 167:99-110. [PMID: 33813053 DOI: 10.1016/j.theriogenology.2021.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023]
Abstract
Although it is well established that chlamydial disease renders female koalas infertile, there has been limited research on its effects on male koala fertility, specifically sperm quality. This study determined whether chlamydial infection adversely affects semen quality of naturally infected koalas and spermatozoa recovered from Chlamydia negative koalas co-incubated in vitro with C. pecorum elementary bodies (EBs). Semen from 102 south-east Queensland sexually mature wild koalas exhibiting varying degrees of chlamydiosis and clinical signs of disease were assessed for semen quality and compared to 11 clinically healthy, Chlamydia-free captive male koalas. For in vitro studies, semen samples were collected from 6 Chlamydia-free captive koalas, and co-incubated over 24 h with high and low concentrations of C. pecorum EBs and sperm quality assessed. Wild koalas displaying severe signs of clinical disease with C. pecorum present in the semen had significantly greater sperm DNA damage (P = 0.0267). The total % of morphologically abnormal spermatozoa was highest in wild koalas that had severe signs of clinical disease but whose semen was negative for C. pecorum (P = 0.0328). This apparent contradiction is possibly associated with wild males having resolved the infection but still possessing underlining reproductive pathology. A higher incidence of loose head spermatozoa occurred in semen of wild koalas not infected with C. pecorum compared to those that were C. pecorum infected (P = 0.026). In vitro incubation of semen with C. pecorum significantly decreased sperm motility and viability over 24 h.
Collapse
Affiliation(s)
- Lyndal Hulse
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, 4343, Australia.
| | - Kenneth Beagley
- Centre for Immunology and Infection Control and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Rebecca Larkin
- Moggill Koala Rehabilitation Centre (previously Known As Moggill Koala Hospital), 55 Priors Pocket Road, Moggill, Queensland, 4070, Australia
| | | | - Jaime Gosálvez
- Genetics Unit, Facultad de Biología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Stephen Johnston
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, 4343, Australia
| |
Collapse
|
25
|
The Koala Immune Response to Chlamydial Infection and Vaccine Development-Advancing Our Immunological Understanding. Animals (Basel) 2021; 11:ani11020380. [PMID: 33546104 PMCID: PMC7913230 DOI: 10.3390/ani11020380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Chlamydia is a major pathogen of the Australian marsupial, the koala (Phascolarctos cinereus). One approach to improving this situation is to develop a vaccine. Human Chlamydia research suggests that an effective anti-chlamydial response will involve a balance between a cell-mediated Th1 response and a humoral Th2 responses, involving systemic IgG and mucosal IgA. Characterization of koalas with chlamydial disease suggests that increased expression for similar immunological pathways and monitoring of koalas’ post-vaccination can be successful and subsequently lead to improved vaccines. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Abstract Chlamydia is a significant pathogen for many species, including the much-loved Australian marsupial, the koala (Phascolarctos cinereus). To combat this situation, focused research has gone into the development and refinement of a chlamydial vaccine for koalas. The foundation of this process has involved characterising the immune response of koalas to both natural chlamydial infection as well as vaccination. From parallels in human and mouse research, it is well-established that an effective anti-chlamydial response will involve a balance of cell-mediated Th1 responses involving interferon-gamma (IFN-γ), humoral Th2 responses involving systemic IgG and mucosal IgA, and inflammatory Th17 responses involving interleukin 17 (IL-17) and neutrophils. Characterisation of koalas with chlamydial disease has shown increased expression within all three of these major immunological pathways and monitoring of koalas’ post-vaccination has detected further enhancements to these key pathways. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Recent advances in marsupial genetic knowledge and general nucleic acid assay technology have moved koala immunological research a step closer to other mammalian research systems. However, koala-specific reagents to directly assay cytokine levels and cell-surface markers are still needed to progress our understanding of koala immunology.
Collapse
|
26
|
Kaur G, Wright K, Verma S, Haynes A, Dufour JM. The Good, the Bad and the Ugly of Testicular Immune Regulation: A Delicate Balance Between Immune Function and Immune Privilege. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:21-47. [PMID: 34453730 DOI: 10.1007/978-3-030-77779-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The testis is one of several immune privilege sites. These sites are necessary to decrease inflammation and immune responses that could be damaging to the host. For example, inflammation in the brain, eye or placenta could result in loss of cognitive function, vision or rejection of the semi-allogeneic fetus, respectively. In the testis, immune privilege is "good" as it is necessary for protection of the developing auto-immunogenic germ cells. However, there is also a downside or "bad" part of immune privilege, where pathogens and cancers can take advantage of this privilege and persist in the testis as a sanctuary site. Even worse, the "ugly" of privilege is how re-emerging viruses, such as Ebola and Zika viruses, can establish persistence in the testes and be sexually transmitted even months after they have been cleared from the bloodstream. In this review, we will discuss the delicate balance within the testis that provides immune privilege to protect the germ cells while still allowing for immune function to fight off pathogens and tumors.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kandis Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Allan Haynes
- Department of Urology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
27
|
Wilharm A, Brigas HC, Sandrock I, Ribeiro M, Amado T, Reinhardt A, Demera A, Hoenicke L, Strowig T, Carvalho T, Prinz I, Ribot JC. Microbiota-dependent expansion of testicular IL-17-producing Vγ6 + γδ T cells upon puberty promotes local tissue immune surveillance. Mucosal Immunol 2021; 14:242-252. [PMID: 32733025 PMCID: PMC7790758 DOI: 10.1038/s41385-020-0330-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023]
Abstract
γδT cells represent the majority of lymphocytes in several mucosal tissues where they contribute to tissue homoeostasis, microbial defence and wound repair. Here we characterise a population of interleukin (IL) 17-producing γδ (γδ17) T cells that seed the testis of naive C57BL/6 mice, expand at puberty and persist throughout adulthood. We show that this population is foetal-derived and displays a T-cell receptor (TCR) repertoire highly biased towards Vγ6-containing rearrangements. These γδ17 cells were the major source of IL-17 in the testis, whereas αβ T cells mostly provided interferon (IFN)-γ in situ. Importantly, testicular γδ17 cell homoeostasis was strongly dependent on the microbiota and Toll-like receptor (TLR4)/IL-1α/IL-23 signalling. We further found that γδ17 cells contributed to tissue surveillance in a model of experimental orchitis induced by intra-testicular inoculation of Listeria monocytogenes, as Tcrδ-/- and Il17-/- infected mice displayed higher bacterial loads than wild-type (WT) controls and died 3 days after infection. Altogether, this study identified a previously unappreciated foetal-derived γδ17 cell subset that infiltrates the testis at steady state, expands upon puberty and plays a crucial role in local tissue immune surveillance.
Collapse
Affiliation(s)
- Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Helena C Brigas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Miguel Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Amado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa Hoenicke
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
28
|
Zhao H, Yu C, He C, Mei C, Liao A, Huang D. The Immune Characteristics of the Epididymis and the Immune Pathway of the Epididymitis Caused by Different Pathogens. Front Immunol 2020; 11:2115. [PMID: 33117332 PMCID: PMC7561410 DOI: 10.3389/fimmu.2020.02115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023] Open
Abstract
The epididymis is an important male accessory sex organ where sperm motility and fertilization ability develop. When spermatozoa carrying foreign antigens enter the epididymis, the epididymis shows "immune privilege" to tolerate them. It is well-known that a tolerogenic environment exists in the caput epididymis, while pro-inflammatory circumstances prefer the cauda epididymis. This meticulously regulated immune environment not only protects spermatozoa from autoimmunity but also defends spermatozoa against pathogenic damage. Epididymitis is one of the common causes of male infertility. Up to 40% of patients suffer from permanent oligospermia or azoospermia. This is related to the immune characteristics of the epididymis itself. Moreover, epididymitis induced by different pathogenic microbial infections has different characteristics. This article elaborates on the distribution and immune response characteristics of epididymis immune cells, the role of epididymis epithelial cells (EECs), and the epididymis defense against different pathogenic infections (such as uropathogenic Escherichia coli, Chlamydia trachomatis, and viruses to provide therapeutic approaches for epididymitis and its subsequent fertility problems.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu He
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Pagliarani S, Johnston SD, Beagley KW, Dief H, Palmieri C. The occurrence and pathology of chlamydiosis in the male reproductive tract of non-human mammals: A review. Theriogenology 2020; 154:152-160. [PMID: 32622195 DOI: 10.1016/j.theriogenology.2020.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
Organisms belonging to the Family Chlamydiaceae are responsible for a broad range of diseases in humans, livestock, companion animals and non-domestic species. Infection of the reproductive organs can cause a range of syndromes of which sub- and infertility are the most frequently observed clinical manifestations. While the gross and histological lesions associated with the isolation of Chlamydiaceae from the non-human female reproductive tract are well documented, little attention has been given to the pathological effects of this infection in the male genital system. As such, the occurrence and importance of Chlamydia-associated disease in male non-human mammalian species is less well documented. In order to improve our understanding of the significance of chlamydiosis in domestic, laboratory and wild animals, this review provides an up-to-date summary of Chlamydia-associated male reproductive pathology, whether that infection occurs naturally or experimentally. Although most lesions in males are described as incidental and of minor significance, results of recent studies suggest that infection with Chlamydiaceae can adversely impact male fertility and/or be instrumental in disease transmission. Although in humans, bulls and mice Chlamydia infection has been associated with morphological and functional abnormalities of the spermatozoa, this review will focus on the gross and histological findings linked to the colonisation of the genital system by this pathogen. Advances in our understanding of male reproductive chlamydiosis are necessary for diagnostic and therapeutic strategies, as well as epidemiological and conservation studies.
Collapse
Affiliation(s)
- Sara Pagliarani
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia; School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia.
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4001, Australia
| | - Hamdy Dief
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia
| |
Collapse
|
30
|
Immunomodulatory Activities of Selected Essential Oils. Biomolecules 2020; 10:biom10081139. [PMID: 32756359 PMCID: PMC7464830 DOI: 10.3390/biom10081139] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, the application of herbal medicine for the prevention and treatment of diseases has gained increasing attention. Essential oils (EOs) are generally known to exert various pharmacological effects, such as antiallergic, anticancer, anti-inflammatory, and immunomodulatory effects. Current literature involving in vitro and in vivo studies indicates the potential of various herbal essential oils as suitable immunomodulators for the alternative treatment of infectious or immune diseases. This review highlights the cellular effects induced by EOs, as well as the molecular impacts of EOs on cytokines, immunoglobulins, or regulatory pathways. The results reviewed in this article revealed a significant reduction in relevant proinflammatory cytokines, as well as induction of anti-inflammatory markers. Remarkably, very little clinical study data involving the immunomodulatory effects of EOs are available. Furthermore, several studies led to contradictory results, emphasizing the need for a multiapproach system to better characterize EOs. While immunomodulatory effects were reported, the toxic potential of EOs must be clearly considered in order to secure future applications.
Collapse
|
31
|
Peng L, Zhang H, Hu Z, Zhao Y, Liu S, Chen J. Nafamostat mesylate inhibits chlamydial intracellular growth in cell culture and reduces chlamydial infection in the mouse genital tract. Microb Pathog 2020; 147:104413. [PMID: 32712115 DOI: 10.1016/j.micpath.2020.104413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Urogenital Chlamydia trachomatis (C. trachomatis) infection is one of the most common bacterial sexually transmitted diseases worldwide. Untreated C. trachomatis infections that ascend to the upper genital tract lead to a series of severe complications. To search for novel antichlamydial drugs, we evaluated the effect of nafamostat mesylate (NM), a synthetic serine protease inhibitor, on chlamydial infection. NM inhibited chlamydial intracellular growth and reduced both the inclusion size and number in cell culture. NM may mainly target the intracellular reticulate bodies for inhibition. NM was also effective in enhancing chlamydial clearance from mouse genital tract when NM was applied to mice via intravaginal inoculation. The vaginal NM did not significantly alter inflammatory cytokine responses in the mouse genital tract. Thus, we have demonstrated a novel role of NM in inhibiting the obligate intracellular bacterium Chlamydia.
Collapse
Affiliation(s)
- Liang Peng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihao Hu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujie Zhao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianlin Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Duncan SA, Sahu R, Dixit S, Singh SR, Dennis VA. Suppressors of Cytokine Signaling (SOCS)1 and SOCS3 Proteins Are Mediators of Interleukin-10 Modulation of Inflammatory Responses Induced by Chlamydia muridarum and Its Major Outer Membrane Protein (MOMP) in Mouse J774 Macrophages. Mediators Inflamm 2020; 2020:7461742. [PMID: 32684836 PMCID: PMC7333066 DOI: 10.1155/2020/7461742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
The immunopathology of chlamydial diseases is exacerbated by a broad-spectrum of inflammatory mediators, which we reported are inhibited by IL-10 in macrophages. However, the chlamydial protein moiety that induces the inflammatory mediators and the mechanisms by which IL-10 inhibits them are unknown. We hypothesized that Chlamydia major outer membrane protein (MOMP) mediates its disease pathogenesis, and the suppressor of cytokine signaling (SOCS)1 and SOCS3 proteins are mediators of the IL-10 inhibitory actions. Our hypothesis was tested by exposing mouse J774 macrophages to chlamydial stimulants (live Chlamydia muridarum and MOMP) with and without IL-10. MOMP significantly induced several inflammatory mediators (IL-6, IL-12p40, CCL5, CXCL10), which were dose-dependently inhibited by IL-10. Chlamydial stimulants induced the mRNA gene transcripts and protein expression of SOCS1 and SOCS3, with more SOCS3 expression. Notably, IL-10 reciprocally regulated their expression by reducing SOCS1 and increasing SOCS3. Specific inhibitions of MAPK pathways revealed that p38, JNK, and MEK1/2 are required for inducing inflammatory mediators as well as SOCS1 and SOCS3. Chlamydial stimulants triggered an M1 pro-inflammatory phenotype evidently by an enhanced nos2 (M1 marker) expression, which was skewed by IL-10 towards a more M2 anti-inflammatory phenotype by the increased expression of mrc1 and arg1 (M2 markers) and the reduced SOCS1/SOCS3 ratios. Neutralization of endogenously produced IL-10 augmented the secretion of inflammatory mediators, reduced SOCS3 expression, and skewed the chlamydial M1 to an M2 phenotype. Inhibition of proteasome degradation increased TNF but decreased IL-10, CCL5, and CXCL10 secretion by suppressing SOCS1 and SOCS3 expressions and dysregulating their STAT1 and STAT3 transcription factors. Our data show that SOCS1 and SOCS3 are regulators of IL-10 inhibitory actions, and underscore SOCS proteins as therapeutic targets for IL-10 control of inflammation for Chlamydia and other bacterial inflammatory diseases.
Collapse
Affiliation(s)
- Skyla A. Duncan
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Shree R. Singh
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Vida A. Dennis
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| |
Collapse
|
33
|
Seleem MA, Rodrigues de Almeida N, Chhonker YS, Murry DJ, Guterres ZDR, Blocker AM, Kuwabara S, Fisher DJ, Leal ES, Martinefski MR, Bollini M, Monge ME, Ouellette SP, Conda-Sheridan M. Synthesis and Antichlamydial Activity of Molecules Based on Dysregulators of Cylindrical Proteases. J Med Chem 2020; 63:4370-4387. [PMID: 32227948 DOI: 10.1021/acs.jmedchem.0c00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial disease globally and the leading cause of infertility and preventable infectious blindness (trachoma) in the world. Unfortunately, there is no FDA-approved treatment specific for chlamydial infections. We recently reported two sulfonylpyridines that halt the growth of the pathogen. Herein, we present a SAR of the sulfonylpyridine molecule by introducing substituents on the aromatic regions. Biological evaluation studies showed that several analogues can impair the growth of C. trachomatis without affecting host cell viability. The compounds did not kill other bacteria, indicating selectivity for Chlamydia. The compounds presented mild toxicity toward mammalian cell lines. The compounds were found to be nonmutagenic in a Drosophila melanogaster assay and exhibited a promising stability in both plasma and gastric fluid. The presented results indicate this scaffold is a promising starting point for the development of selective antichlamydial drugs.
Collapse
Affiliation(s)
- Mohamed A Seleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Nathalia Rodrigues de Almeida
- Department of Chemistry, College of Arts and Sciences, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Yashpal Singh Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Daryl J Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zaira da Rosa Guterres
- Laboratory of Cytogenetics and Mutagenesis, State University of Mato Grosso do Sul, Mundo Novo, Matto Grasso do Sul, Brazil
| | - Amanda M Blocker
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Shiomi Kuwabara
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Derek J Fisher
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Emilse S Leal
- Centro de Investigaciones en BioNanociencias (CIBION), Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad de Buenos Aires, Argentina
| | - Manuela R Martinefski
- Centro de Investigaciones en BioNanociencias (CIBION), Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad de Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en BioNanociencias (CIBION), Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad de Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en BioNanociencias (CIBION), Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad de Buenos Aires, Argentina
| | - Scot P Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
34
|
Ma C, Du J, He W, Chen R, Li Y, Dou Y, Yuan X, Zhao L, Gong H, Liu P, Liu H. Rapid and accurate diagnosis of Chlamydia trachomatis in the urogenital tract by a dual-gene multiplex qPCR method. J Med Microbiol 2019; 68:1732-1739. [PMID: 31613208 DOI: 10.1099/jmm.0.001084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Chlamydia trachomatis (C. trachomatis, CT) is an obligatory intracellular bacterium that causes urogenital tract infections and leads to severe reproductive consequences. Therefore, a rapid and accurate detection method with high sensitivity and specificity is an urgent requirement for the routine diagnosis of C. trachomatis infections.Aim. In this study, we aimed to develop a multiplex quantitative real-time PCR (qPCR) assay based on two target regions for accurate detection of C. trachomatis in urogenital tract infections.Methodology. Primers and probes based on the conserved regions of the cryptic plasmid and 23S rRNA gene were designed. Then, two qPCR assays were established to screen for the optimal probe and primers for each of the two target regions. Subsequently, the multiplex qPCR method was developed and optimized. For the diagnostic efficiency evaluation, 1284 urogenital specimens were tested by the newly developed multiplex qPCR method, an immunological assay and a singleplex qPCR assay widely used in hospitals.Results. The multiplex qPCR method could amplify both target regions in the range of 1.0×102-1.0×108 copies ml-1 with a strong linear relationship, and lower limits of detection (LODs) for both targets reached 2 copies PCR-1. For the multiplex qPCR method, the diagnostic sensitivity and specificity was 100.0 % (134/134) and 99.3 % (1142/1150), respectively. For the singleplex qPCR assay, the diagnostic sensitivity and specificity was 88.8 % (119/134) and 100.0 % (1150/1150), respectively. For the immunological assay, the diagnostic sensitivity and specificity was 47.0 % (63/134) and 100.0 % (1150/1150), respectively.Conclusion. In this study, a multiplex qPCR assay with high sensitivity and specificity for rapid (≤2.0 h) and accurate diagnosis of C. trachomatis was developed. The qPCR assay has the potential to be used as a routine diagnostic method in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Caifeng Ma
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Jikun Du
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Weina He
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Rui Chen
- Department of Clinical Laboratory, The Second People's Hospital of Futian District, Shenzhen, PR China
| | - Yuxia Li
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Yuhong Dou
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Xiaoxue Yuan
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Lijun Zhao
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Huijiao Gong
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Ping Liu
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Helu Liu
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| |
Collapse
|
35
|
Faris R, Andersen SE, McCullough A, Gourronc F, Klingelhutz AJ, Weber MM. Chlamydia trachomatis Serovars Drive Differential Production of Proinflammatory Cytokines and Chemokines Depending on the Type of Cell Infected. Front Cell Infect Microbiol 2019; 9:399. [PMID: 32039039 PMCID: PMC6988789 DOI: 10.3389/fcimb.2019.00399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Chlamydia trachomatis serovars A-C infect conjunctival epithelial cells and untreated infection can lead to blindness. D-K infect genital tract epithelial cells resulting in pelvic inflammatory disease, ectopic pregnancy, and sterility while L1-L3 infect epithelial cells and macrophages, causing an invasive infection. Despite some strains of Chlamydia sharing high nucleotide sequence similarity, the bacterial and host factors that govern tissue and cellular tropism remain largely unknown. Following introduction of C. trachomatis via intercourse, epithelial cells of the vagina, foreskin, and ectocervix are exposed to large numbers of the pathogen, yet their response to infection and the dynamics of chlamydial growth in these cells has not been well-characterized compared to growth in more permissive cell types that harbor C. trachomatis. We compared intracellular replication and inclusion development of representative C. trachomatis serovars in immortalized human conjunctival epithelial, urogenital epithelial, PMA stimulated THP-1 (macrophages), and HeLa cells. We demonstrate that urogenital epithelial cells of the vagina, ectocervix, and foreskin restrict replication of serovar A while promoting robust replication and inclusion development of serovar D and L2. Macrophages restrict serovars D and A while L2 proliferates in these cells. Furthermore, we show that GM-CSF, RANTES, GROα, IL-1α, IL-1β, IP-10, IL-8, and IL-18 are produced in a cell-type and serovar-specific manner. Collectively we have established a series of human cell lines that represent some of the first cell types to encounter C. trachomatis following exposure and show that differential production of key cytokines early during infection could regulate serovar-host cell specificity.
Collapse
Affiliation(s)
- Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shelby E Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Françoise Gourronc
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
36
|
Thomas PPM, Yadav J, Kant R, Ambrosino E, Srivastava S, Batra G, Dayal A, Masih N, Pandey A, Saha S, Heijmans R, Lal JA, Morré SA. Sexually Transmitted Infections and Behavioral Determinants of Sexual and Reproductive Health in the Allahabad District (India) Based on Data from the ChlamIndia Study. Microorganisms 2019; 7:microorganisms7110557. [PMID: 31726703 PMCID: PMC6920780 DOI: 10.3390/microorganisms7110557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sexually transmitted infections (STIs), like Chlamydia trachomatis and Neisseria gonorrhoeae (CT and NG, respectively) are linked to an important sexual and reproductive health (SRH) burden worldwide. Behavior is an important predictor for SRH, as it dictates the risk for STIs. Assessing the behavior of a population helps to assess its risk profile. METHODS Study participants were recruited at a gynecology outpatient department (OPD) in the Allahabad district in Uttar Pradesh India, and a questionnaire was used to assess demographics, SRH, and obstetric history. Patients provided three samples (urine, vaginal swab, and whole blood). These samples were used to identify CT and NG using PCR/NAAT and CT IgG ELISA. RESULTS A total of 296 women were included for testing; mean age was 29 years. No positive cases of CT and NG were observed using PCR/NAAT. A 7% (22/296) positivity rate for CT was observed using IgG ELISA. No positive association was found between serology and symptoms (vaginal discharge, abdominal pain, dysuria, and dyspareunia) or adverse pregnancy outcomes (miscarriage and stillbirth). Positive relations with CT could be observed with consumption of alcohol, illiteracy, and tenesmus (p-value 0.02-0.03). DISCUSSION STI prevalence in this study was low, but a high burden of SRH morbidity was observed, with a high symptomatic load. High rates of miscarriage (31%) and stillbirth (8%) were also observed among study subjects. No associations could be found between these ailments and CT infection. These rates are high even for low- and middle-income country standards. CONCLUSION This study puts forward high rates of SRH morbidity, and instances of adverse reproductive health outcomes are highlighted in this study, although no associations with CT infection could be found. This warrants more investigation into the causes leading to these complaints in the Indian scenario and potential biases to NAAT testing, such as consumption of over-the-counter antimicrobials.
Collapse
Affiliation(s)
- Pierre P. M. Thomas
- Institute of Public Health Genomics, Genetics and Cell Biology Cluster, GROW Research School for Oncology and Development Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (E.A.); (J.A.L.)
- Correspondence: (P.P.M.T.); (S.A.M.)
| | - Jay Yadav
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007, India; (J.Y.); (R.K.); (N.M.); (A.P.)
| | - Rajiv Kant
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007, India; (J.Y.); (R.K.); (N.M.); (A.P.)
| | - Elena Ambrosino
- Institute of Public Health Genomics, Genetics and Cell Biology Cluster, GROW Research School for Oncology and Development Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (E.A.); (J.A.L.)
| | - Smita Srivastava
- Hayes Memorial Mission Hospital, Shalom Institute of Health and Allied Sciences, SHUATS Allahabad, Uttar Pradesh 211007, India; (S.S.); (G.B.); (A.D.)
| | - Gurpreet Batra
- Hayes Memorial Mission Hospital, Shalom Institute of Health and Allied Sciences, SHUATS Allahabad, Uttar Pradesh 211007, India; (S.S.); (G.B.); (A.D.)
| | - Arvind Dayal
- Hayes Memorial Mission Hospital, Shalom Institute of Health and Allied Sciences, SHUATS Allahabad, Uttar Pradesh 211007, India; (S.S.); (G.B.); (A.D.)
| | - Nidhi Masih
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007, India; (J.Y.); (R.K.); (N.M.); (A.P.)
| | - Akash Pandey
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007, India; (J.Y.); (R.K.); (N.M.); (A.P.)
| | - Saurav Saha
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007, India;
| | - Roel Heijmans
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU Medical Center, 1081 HV Amsterdam, The Netherlands;
| | - Jonathan A. Lal
- Institute of Public Health Genomics, Genetics and Cell Biology Cluster, GROW Research School for Oncology and Development Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (E.A.); (J.A.L.)
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007, India; (J.Y.); (R.K.); (N.M.); (A.P.)
| | - Servaas A. Morré
- Institute of Public Health Genomics, Genetics and Cell Biology Cluster, GROW Research School for Oncology and Development Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (E.A.); (J.A.L.)
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007, India; (J.Y.); (R.K.); (N.M.); (A.P.)
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU Medical Center, 1081 HV Amsterdam, The Netherlands;
- Correspondence: (P.P.M.T.); (S.A.M.)
| |
Collapse
|
37
|
Duncan SA, Dixit S, Sahu R, Martin D, Baganizi DR, Nyairo E, Villinger F, Singh SR, Dennis VA. Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles. NANOMATERIALS 2019; 9:nano9081074. [PMID: 31357440 PMCID: PMC6723354 DOI: 10.3390/nano9081074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
Abstract
Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (−14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - David Martin
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Elijah Nyairo
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA 70560, USA
| | - Shree R Singh
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Vida A Dennis
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA.
| |
Collapse
|
38
|
Bossart GD, Romano TA, Peden-Adams MM, Schaefer AM, Rice CD, Fair PA, Reif JS. Comparative Innate and Adaptive Immune Responses in Atlantic Bottlenose Dolphins ( Tursiops truncatus) With Viral, Bacterial, and Fungal Infections. Front Immunol 2019; 10:1125. [PMID: 31231361 PMCID: PMC6558379 DOI: 10.3389/fimmu.2019.01125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Free-ranging Atlantic bottlenose dolphins (n = 360) from two southeastern U.S. estuarine sites were given comprehensive health examinations between 2003 and 2015 as part of a multi-disciplinary research project focused on individual and population health. The study sites (and sample sizes) included the Indian River Lagoon (IRL), Florida, USA (n = 246) and Charleston harbor and associated rivers (CHS), South Carolina, USA (n = 114). Results of a suite of clinicoimmunopathologic tests revealed that both populations have a high prevalence of infectious and neoplastic disease and a variety of abnormalities of their innate and adaptive immune systems. Subclinical infections with cetacean morbillivirus and Chlamydiaceae were detected serologically. Clinical evidence of orogenital papillomatosis was supported by the detection of a new strain of dolphin papillomavirus and herpesvirus by molecular pathology. Dolphins with cutaneous lobomycosis/lacaziasis were subsequently shown to be infected with a novel, uncultivated strain of Paracoccidioides brasiliensis, now established as the etiologic agent of this enigmatic disease in dolphins. In this review, innate and adaptive immunologic responses are compared between healthy dolphins and those with clinical and/or immunopathologic evidence of infection with these specific viral, bacterial, and fungal pathogens. A wide range of immunologic host responses was associated with each pathogen, reflecting the dynamic and complex interplay between the innate, humoral, and cell-mediated immune systems in the dolphin. Collectively, these studies document the comparative innate and adaptive immune responses to various types of infectious diseases in free-ranging Atlantic bottlenose dolphins. Evaluation of the type, pattern, and degree of immunologic response to these pathogens provides novel insight on disease immunopathogenesis in this species and as a comparative model. Importantly, the data suggest that in some cases infection may be associated with subclinical immunopathologic perturbations that could impact overall individual and population health.
Collapse
Affiliation(s)
- Gregory D. Bossart
- Georgia Aquarium, Atlanta, GA, United States
- Division of Comparative Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tracy A. Romano
- The Mystic Aquarium, a Division of Sea Research Foundation, Inc., Mystic, CT, United States
| | - Margie M. Peden-Adams
- Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas, NV, United States
| | - Adam M. Schaefer
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Ft. Pierce, FL, United States
| | - Charles D. Rice
- Graduate Program in Environmental Toxicology, Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Patricia A. Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - John S. Reif
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
39
|
Human Papilloma Virus and Chlamydia trachomatis: Casual Acquaintances or Partners in Crime? CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Self-Collection and Molecular Diagnosis for Detection of Human Papillomavirus: Why Incorporate It? Curr Infect Dis Rep 2019; 21:13. [PMID: 30888517 DOI: 10.1007/s11908-019-0674-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW Cervical cancer, the third cause of death by cancer among Brazil's women, is associated with human papillomavirus (HPV) infection. In some countries of South America, North America, Europe, and Oceania, initial screening for HPV DNA and subsequent follow-up with HPV-positive patients using colposcopy and cytological testing are used as preventative measures. RECENT FINDINGS For HPV DNA detection, it is necessary to obtain cervical cells by conventional clinical collection method or self-collection of the cells that flake off from the uterine cervix and vaginal canal. Self-collection has been shown to be a viable option for obtaining samples and is a less invasive method that is more accepted by women. Thus, it can potentially decrease the limitations of the conventional clinical collection methods. The efficiency of the self-collection method aligned with the implementation of HPV molecular testing, if adopted by public and private health care systems, may extend the reach of current cervical cancer prevention efforts. In addition, considering all phases from triage to treatment, this method may reduce health care costs and the time spent by patients and health care teams to conduct examinations and collect samples.
Collapse
|
41
|
Sanchez LR, Godoy GJ, Gorosito Serrán M, Breser ML, Fiocca Vernengo F, Engel P, Motrich RD, Gruppi A, Rivero VE. IL-10 Producing B Cells Dampen Protective T Cell Response and Allow Chlamydia muridarum Infection of the Male Genital Tract. Front Immunol 2019; 10:356. [PMID: 30881362 PMCID: PMC6405527 DOI: 10.3389/fimmu.2019.00356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
A significant proportion of individuals develop chronic, persistent and recurrent genital tract infections with Chlamydia trachomatis, which has been attributed to the numerous strategies that the bacterium uses to subvert host immune responses. Animal chlamydia models have demonstrated that protective immune response is mediated by CD4+ Th1 cytokine responses. Herein, we demonstrate that early after infecting the male genital tract, C. muridarum triggers the production of IL-10 by splenic and lymph node cells. In addition, C. muridarum triggers IL-6 and TNFα secretion. Data obtained from in vitro and in vivo experiments revealed B cells as the major IL-10 contributors. Indeed, purified B cells produced high amounts of IL-10 and also exhibited enhanced expression of inhibitory molecules such as CD39, PD-L1 and PD1 after C. muridarum stimulation. In vitro experiments performed with sorted cell subsets revealed that Marginal Zone B cells were the main IL-10 producers. In vitro and in vivo studies using TLR-deficient mice indicated that TLR4 signaling pathway was essential for IL-10 production. In addition, in vivo treatments to neutralize IL-10 or deplete B cells indicated that IL-10 and B cells played a significant role in delaying bacterial clearance ability. Moreover, the latter was confirmed by adoptive cell transfer experiments in which the absence of IL-10-producing B cells conferred the host a greater capability to induce Th1 responses and clear the infection. Interestingly, NOD mice, which were the least efficient in clearing the infection, presented much more Marginal Zone B counts and also enhanced TLR4 expression on Marginal Zone B cells when compared to B6 and BALB/c mice. Besides, treatment with antibodies that selectively deplete Marginal Zone B cells rendered mice more capable of inducing enhanced IFNγ responses and clearing the infection. Our findings suggest that B cells play a detrimental role in C. muridarum infection and that activation by innate receptors like TLR4 and IL-10 production by these cells could be used by Chlamydia spp. as a strategy to modulate the immune response establishing chronic infections in susceptible hosts.
Collapse
Affiliation(s)
- Leonardo R Sanchez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gloria J Godoy
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
42
|
Chlamydia trachomatis Growth and Cytokine mRNA Response in a Prostate Cancer Cell Line. Adv Urol 2019; 2019:6287057. [PMID: 30800160 PMCID: PMC6360031 DOI: 10.1155/2019/6287057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/27/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023] Open
Abstract
In the present paper, we report that C. trachomatis can be efficiently propagated and affect mRNA expression for two major cytokines, relevant to tumor progression, in CWR-R1 cells, a malignant prostate cell line. CWR-R1 and McCoy cells, a classic cell line for chlamydial research, were grown and infected with C. trachomatis under similar conditions. Cell monolayers were harvested for RNA analysis and immunostaining with major outer membrane protein (MOMP) antibody at 24, 48, and 72 hours of the postinfection (hpi) period. It was shown that the infectious cycle of chlamydial pathogen in CWR-R1 cells resembles the progression of C. trachomatis infection in McCoy cells but with a few important differences. First of all, the initial stage of C. trachomatis propagation in CWR-R1 cells (24 hpi) was characterized by larger inclusion bodies and more intense, specific immunofluorescent staining of infected cells as compared with McCoy cells. Moreover, there was a corresponding increase in infective progeny formation in CWR-R1 cells along with mRNA for EUO, a crucial gene controlling the early phase of the chlamydial development cycle (24 hpi). These changes were more minimal and became statistically insignificant at a later time point in the infectious cycle (48 hpi). Altogether, these data suggest that the early phase of C. trachomatis infection in CWR-R1 cells is accompanied by more efficient propagation of the pathogen as compared with the growth of C. trachomatis in McCoy cells. Furthermore, propagation of C. trachomatis in CWR-R1 cells leads to enhanced transcription of interleukin-6 and fibroblast growth factor-2, genes encoding two important proinflammatory cytokines implicated in the molecular mechanisms of chemoresistance of prostate cancer and its ability to metastasize. The possible roles of reactive oxygen species and impaired mitochondrial oxidation in the prostate cancer cell line are discussed as factors promoting the early stages of C. trachomatis growth in CWR-R1 cells.
Collapse
|
43
|
Nyari S, Booth R, Quigley BL, Waugh CA, Timms P. Therapeutic effect of a Chlamydia pecorum recombinant major outer membrane protein vaccine on ocular disease in koalas (Phascolarctos cinereus). PLoS One 2019; 14:e0210245. [PMID: 30615687 PMCID: PMC6322743 DOI: 10.1371/journal.pone.0210245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
Chlamydia pecorum is responsible for causing ocular infection and disease which can lead to blindness in koalas (Phascolarctos cinereus). Antibiotics are the current treatment for chlamydial infection and disease in koalas, however, they can be detrimental for the koala’s gastrointestinal tract microbiota and in severe cases, can lead to dysbiosis and death. In this study, we evaluated the therapeutic effects provided by a recombinant chlamydial major outer membrane protein (MOMP) vaccine on ocular disease in koalas. Koalas with ocular disease (unilateral or bilateral) were vaccinated and assessed for six weeks, evaluating any changes to the conjunctival tissue and discharge. Samples were collected pre- and post-vaccination to evaluate both humoral and cell-mediated immune responses. We further assessed the infecting C. pecorum genotype, host MHC class II alleles and presence of koala retrovirus type (KoRV-B). Our results clearly showed an improvement in the clinical ocular disease state of all seven koalas, post-vaccination. We observed increases in ocular mucosal IgA antibodies to whole C. pecorum elementary bodies, post-vaccination. We found that systemic cell-mediated immune responses to interferon-γ, interleukin-6 and interleukin-17A were not significantly predictive of ocular disease in koalas. Interestingly, one koala did not have as positive a clinical response (in one eye primarily) and this koala was infected with a C. pecorum genotype (E’) that was not used as part of the vaccine formula (MOMP genotypes A, F and G). The predominant MHC class II alleles identified were DAb*19, DAb*21 and DBb*05, with no two koalas identified with the same genetic sequence. Additionally, KoRV-B, which is associated with chlamydial disease outcome, was identified in two (29%) ocular diseased koalas, which still produced vaccine-induced immune responses and clinical ocular improvements post-vaccination. Our findings show promise for the use of a recombinant chlamydial MOMP vaccine for the therapeutic treatment of ocular disease in koalas.
Collapse
Affiliation(s)
- Sharon Nyari
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Rosemary Booth
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Bonnie L. Quigley
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Courtney A. Waugh
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
44
|
Motrich RD, Salazar FC, Breser ML, Mackern-Oberti JP, Godoy GJ, Olivera C, Paira DA, Rivero VE. Implications of prostate inflammation on male fertility. Andrologia 2018; 50:e13093. [DOI: 10.1111/and.13093] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ruben D. Motrich
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Florencia C. Salazar
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Maria L. Breser
- Instituto A.P. de Ciencias Básicas y Aplicadas; Universidad Nacional de Villa María, Ciudad Universitaria; Villa María, Cordoba Argentina
| | - Juan P. Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU-CONICET; Mendoza Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología; Universidad Nacional de Cuyo; Mendoza Argentina
| | - Gloria J. Godoy
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Carolina Olivera
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Daniela A. Paira
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Virginia E. Rivero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
45
|
Li L, Wang C, Wen Y, Hu Y, Xie Y, Xu M, Liang M, Liu W, Liu L, Wu Y. ERK1/2 and the Bcl-2 Family Proteins Mcl-1, tBid, and Bim Are Involved in Inhibition of Apoptosis During Persistent Chlamydia psittaci Infection. Inflammation 2018; 41:1372-1383. [PMID: 29666982 DOI: 10.1007/s10753-018-0785-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chlamydia psittaci is an obligate intracellular pathogen that can cause zoonosis. Persistent C. psittaci infection can inhibit apoptosis in host cells, thus extending their survival and enabling them to complete their growth cycle. In this study, the antiapoptotic effects of persistent C. psittaci infection, induced by treatment with IFN-γ, were found to be associated with both the death receptor and the mitochondrial pathways of apoptosis. These effects were mediated by Bcl-2 family members, as evidenced by the decreased expression of proapoptotic proteins, such as tBid and Bim. Simultaneously, the antiapoptotic protein Mcl-1 was upregulated by persistent C. psittaci infection. Increased phosphorylation of ERK1/2 was observed; however, the expression of Bad, unlike that of other proapoptotic proteins, did not seem to be involved in this process. In summary, persistent chlamydial infection exerts antiapoptotic effects through both the death receptor and the mitochondrial pathways, in a process that is regulated by the ERK1/2 and apoptotic proteins of the Bcl-2 family.
Collapse
Affiliation(s)
- Li Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.,Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Chuan Wang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yating Wen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuming Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Yafeng Xie
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Man Xu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Mingxing Liang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Wei Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Liangzhuan Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yimou Wu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
46
|
Lantos I, Virok DP, Mosolygó T, Rázga Z, Burián K, Endrész V. Growth characteristics of Chlamydia trachomatis in human intestinal epithelial Caco-2 cells. Pathog Dis 2018; 76:4939475. [PMID: 29635314 DOI: 10.1093/femspd/fty024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium causing infections of the eyes, urogenital and respiratory tracts. Asymptomatic, repeat and chronic infections with C. trachomatis are common in the urogenital tract potentially causing severe reproductive pathology. Animal models of infection and epidemiological studies suggested the gastrointestinal tract as a reservoir of chlamydiae and as a source of repeat urogenital infections. Thus, we investigated the growth characteristics of C. trachomatis in human intestinal epithelial Caco-2 cells and the infection-induced defensin production. Immunofluorescence staining and transmission electron microscopy showed the presence of chlamydial inclusions in the cells. Chlamydial DNA and viable C. trachomatis were recovered from Caco-2 cells in similar quantity compared to that detected in the usual in vitro host cell of this bacterium. The kinetics of expression of selected C. trachomatis genes in Caco-2 cells indicated prolonged replication with persisting high expression level of late genes and of heat shock protein gene groEL. Replication of C. trachomatis induced moderate level of β-defensin-2 production by Caco-2 cells, which might contribute to avoidance of immune recognition in the intestine. According to our results, Caco-2 cells support C. trachomatis replication, suggesting that the gastrointestinal tract is a site of residence for these bacteria.
Collapse
Affiliation(s)
- Ildikó Lantos
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Dezso P Virok
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Tímea Mosolygó
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, H-6720, Állomás Str. 2, Hungary
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Valéria Endrész
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| |
Collapse
|
47
|
Arneth B. Comparison of Burnet's clonal selection theory with tumor cell-clone development. Theranostics 2018; 8:3392-3399. [PMID: 29930737 PMCID: PMC6010991 DOI: 10.7150/thno.24083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/10/2018] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence has shown that Darwin's theory of evolution provides vital insights into the emergence and etiology of different types of cancer. On a microscopic scale, cancer stem cells meet the conditions for the Darwinian process of natural selection. In particular, cancer stem cells undergo cell reproduction characterized by the emergence of heritable variability that promotes replication and cell survival. Methods: Evidence from previous studies was gathered to compare Burnet's clonal selection theory with the tumor evolution theory. Results: The findings show that the Darwinian theory offers a general framework for understanding fundamental aspects of cancer. As fundamental theoretical frameworks, Burnet's clonal selection theory and the tumor evolution theory can be used to explain cancer cell evolution and identify the beneficial adaptations that contribute to cell survival in tissue landscapes and tissue ecosystems. Conclusions: In conclusion, this study shows that both Burnet's clonal selection theory and the tumor evolution theory postulate that cancer cells in tissue ecosystems evolve through reiterative processes, such as clonal expansion, clonal selection, and genetic diversification. Therefore, both theories provide insights into the complexities and dynamics of cancer, including its development and progression. Finally, we take into account the occurrence of biologic variation in both tumor cells and lymphocytes. It is important to note that the presence of lymphocyte variations appears to be advantageous in the framework of tumor defense but also dangerous within the framework of autoimmune disease development.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University, Giessen, Giessen Germany
| |
Collapse
|
48
|
Russi RC, Bourdin E, García MI, Veaute CMI. In silico prediction of T- and B-cell epitopes in PmpD: First step towards to the design of a Chlamydia trachomatis vaccine. Biomed J 2018; 41:109-117. [PMID: 29866599 PMCID: PMC6138762 DOI: 10.1016/j.bj.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/30/2018] [Accepted: 04/25/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is the most common sexually transmitted bacterial infection globally. Currently, there are no vaccines available despite the efforts made to develop a protective one. Polymorphic membrane protein D (PmpD) is an attractive immunogen candidate as it is conserved among strains and it is target of neutralizing antibodies. However, its high molecular weight and its complex structure make it difficult to handle by recombinant DNA techniques. Our aim is to predict B-cell and T-cell epitopes of PmpD. METHOD A sequence (Genbank AAK69391.2) having 99-100% identity with various serovars of C. trachomatis was used for predictions. NetMHC and NetMHCII were used for T-cell epitope linked to MHC I or MHC II alleles prediction, respectively. BepiPred predicted linear B-cell epitopes. For three dimensional epitopes, PmpD was homology-modeled by Raptor X. Surface epitopes were predicted on its globular structure using DiscoTope. RESULTS NetMHC predicted 271 T-cell epitopes of 9-12aa with weak affinity, and 70 with strong affinity to MHC I molecules. NetMHCII predicted 2903 T-cell epitopes of 15aa with weak affinity, and 742 with strong affinity to MHC II molecules. Twenty four linear B-cell epitopes were predicted. Raptor X was able to model 91% of the three-dimensional structure whereas 57 residues of discontinuous epitopes were suggested by DiscoTope. Six regions containing B-cell and T-cell epitopes were identified by at least two predictors. CONCLUSIONS PmpD has potential B-cell and T-cell epitopes distributed throughout the sequence. Thus, several fragments were identified as valuable candidates for subunit vaccines against C. trachomatis.
Collapse
Affiliation(s)
- Romina Cecilia Russi
- Basic Immunology Laboratory, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Santa Fe, Argentina
| | - Elian Bourdin
- Independent professional, C1425BME, Buenos Aires, Argentina
| | - María Inés García
- Basic Immunology Laboratory, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Santa Fe, Argentina
| | - Carolina Melania I Veaute
- Basic Immunology Laboratory, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Santa Fe, Argentina.
| |
Collapse
|
49
|
Carrasco SE, Hu S, Imai DM, Kumar R, Sandusky GE, Yang XF, Derbigny WA. Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice. PLoS One 2018; 13:e0195165. [PMID: 29624589 PMCID: PMC5889059 DOI: 10.1371/journal.pone.0195165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chlamydia trachomatis urogenital serovars primarily replicate in epithelial cells lining the reproductive tract. Epithelial cells recognize Chlamydia through cell surface and cytosolic receptors, and/or endosomal innate receptors such as Toll-like receptors (TLRs). Activation of these receptors triggers both innate and adaptive immune mechanisms that are required for chlamydial clearance, but are also responsible for the immunopathology in the reproductive tract. We previously demonstrated that Chlamydia muridarum (Cm) induces IFN-β in oviduct epithelial cells (OE) in a TLR3-dependent manner, and that the synthesis of several cytokines and chemokines are diminished in Cm-challenged OE derived from TLR3-/- 129S1 mice. Furthermore, our in vitro studies showed that Cm replication in TLR3-/- OE is more efficient than in wild-type OE. Because TLR3 modulates the release inflammatory mediators involved in host defense during Cm infection, we hypothesized that TLR3 plays a protective role against Cm-induced genital tract pathology in congenic C57BL/6N mice. Using the Cm mouse model for human Chlamydia genital tract infections, we demonstrated that TLR3-/- mice had increased Cm shedding during early and mid-stage genital infection. In early stage infection, TLR3-/- mice showed a diminished synthesis of IFN-β, IL-1β, and IL-6, but enhanced production of IL-10, TNF-α, and IFN-γ. In mid-stage infection, TLR3-/- mice exhibited significantly enhanced lymphocytic endometritis and salpingitis than wild-type mice. These lymphocytes were predominantly scattered along the endometrial stroma and the associated smooth muscle, and the lamina propria supporting the oviducts. Surprisingly, our data show that CD4+ T-cells are significantly enhanced in the genital tract TLR3-/- mice during mid-stage Chlamydial infection. In late-stage infections, both mouse strains developed hydrosalpinx; however, the extent of hydrosalpinx was more severe in TLR3-/- mice. Together, these data suggest that TLR3 promotes the clearance of Cm during early and mid-stages of genital tract infection, and that loss of TLR3 is detrimental in the development hydrosalpinx.
Collapse
Affiliation(s)
- Sebastian E. Carrasco
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Denise M. Imai
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
50
|
Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J. Recent advances in CD8 + regulatory T cell research. Oncol Lett 2018; 15:8187-8194. [PMID: 29805553 DOI: 10.3892/ol.2018.8378] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/01/2018] [Indexed: 11/05/2022] Open
Abstract
Various subgroups of CD8+ T lymphocytes do not only demonstrate cytotoxic effects, but also serve important regulatory roles in the body's immune response. In particular, CD8+ regulatory T cells (CD8+ Tregs), which possess important immunosuppressive functions, are able to effectively block the overreacting immune response and maintain the body's immune homeostasis. In recent years, studies have identified a small set of special CD8+ Tregs that can recognize major histocompatibility complex class Ib molecules, more specifically Qa-1 in mice and HLA-E in humans, and target the self-reactive CD4+ T ce lls. These findings have generated broad implications in the scientific community and attracted general interest to CD8+ Tregs. The present study reviews the recent research progress on CD8+ Tregs, including their origin, functional classification, molecular markers and underlying mechanisms of action.
Collapse
Affiliation(s)
- Yating Yu
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Xinbo Ma
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Rufei Gong
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jianmeng Zhu
- Department of Chunan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lihua Wei
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jinguang Yao
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|