1
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni AB. Transcriptome analysis of rheumatoid arthritis uncovers genes linked to inflammation-induced pain. Sci Rep 2024; 14:25893. [PMID: 39472517 PMCID: PMC11522505 DOI: 10.1038/s41598-024-77212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. Overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- U. Penn, Philadelphia, PA, 19104, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- , Dartmouth, Hanover, NH, 03755, USA
| | - Christian Judkins
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Millipore Sigma, Rockville, MD, 20850, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Saber Tadros
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Yao Z, Liang Y, Pan C, Zeng K, Qu Z. Lonicerin alleviates intestinal myenteric neuron injury induced by hypoxia/reoxygenation treated macrophages by downregulating EZH2. J Biochem Mol Toxicol 2024; 38:e23810. [PMID: 39163614 DOI: 10.1002/jbt.23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Intestinal ischemia-reperfusion (IR) injury is a common gastrointestinal disease that induces severe intestinal dysfunction. Intestinal myenteric neurons participate in maintaining the intestinal function, which will be severely injured by IR. Macrophages are widely reported to be involved in the pathogenesis of organ IR injury, including intestine, which is activated by NLRP3 signaling. Lonicerin (LCR) is a natural extracted monomer with inhibitory efficacy against the NLRP3 pathway in macrophages. The present study aims to explore the potential protective function of LCR in intestinal IR injury. Myenteric neurons were extracted from mice. RAW 264.7 cells were stimulated by H/R with or without 10 μM and 30 μM LCR. Remarkable increased release of IL-6, MCP-1, and TNF-α were observed in H/R treated RAW 264.7 cells, along with an upregulation of NLRP3, cleaved-caspase-1, IL-1β, and EZH2, which were sharply repressed by LCR. Myenteric neurons were cultured with the supernatant collected from each group. Markedly decreased neuron number and shortened length of neuron axon were observed in the H/R group, which were signally reversed by LCR. RAW 264.7 cells were stimulated by H/R, followed by incubated with 30 μM LCR with or without pcDNA3.1-EZH2. The inhibition of LCR on NLRP3 signaling in H/R treated RAW 264.7 cells was abolished by EZH2 overexpression. Furthermore, the impact of LCR on neuron number and neuron axon length in myenteric neurons in the H/R group was abated by EZH2 overexpression. Collectively, LCR alleviated intestinal myenteric neuron injury induced by H/R treated macrophages via downregulating EZH2.
Collapse
Affiliation(s)
- Zhiguang Yao
- Department of Surgical District 2, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Yuan Liang
- Department of Pediatrics, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Chunyan Pan
- Department of Health Management, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Kun Zeng
- Department of Science and Education, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Zhibo Qu
- Department of Surgical District 2, Eighth People's Hospital of Dongguan City, Dongguan, China
| |
Collapse
|
3
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni A. Transcriptome Analysis of Rheumatoid Arthritis Uncovers Genes Linked to Inflammation-Induced Pain. RESEARCH SQUARE 2024:rs.3.rs-4218885. [PMID: 38712195 PMCID: PMC11071542 DOI: 10.21203/rs.3.rs-4218885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic Inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing Inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | | | - Emma Macdonald
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Margaret Cassidy
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Megan Doty
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Christian Judkins
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | | | - Saber Tadros
- National Cancer Institute, National Institutes of Health
| | | | | | | | - Ashok Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| |
Collapse
|
4
|
Jung YS, Radhakrishnan K, Kim HJ, Kim YH, Lee CH, Choi HS. Macrophage stimulating protein is a novel transcriptional target of estrogen related receptor gamma in alcohol-intoxicated mice. Cell Signal 2024; 116:111059. [PMID: 38237793 DOI: 10.1016/j.cellsig.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Macrophage stimulating protein (MSP) is a multifunctional serum protein produced in the liver, belonging to the plasminogen-related kringle protein family. It exerts diverse biological functions by activating a transmembrane receptor protein-tyrosine kinase known as RON in humans and SKT in mice. MSP plays a pivotal role in innate immunity and is involved in various activities such as cell survival, migration, and phagocytosis. Elucidating the regulatory mechanisms governing MSP gene expression is of great importance. In this study, we comprehensively elucidate the molecular mechanism underlying hepatic MSP gene expression in response to alcoholism. Exposure to ethanol specifically upregulated the expression of ERRγ and MSP in the liver, while not in other organs. Liver-specific knockout of the cannabinoid receptor type 1 (CB1R), an upstream regulator of ERRγ, inhibited the alcohol-induced upregulation of MSP expression. Overexpression of ERRγ alone was sufficient to enhance MSP expression in hepatic cell lines and in mice. Conversely, knockdown of ERRγ in cell lines or liver-specific knockout of ERRγ in mice reversed ethanol-induced MSP gene expression. Promoter studies revealed the direct binding of ERRγ to the MSP gene promoter at the ERR response element (ERRE), resulting in the positive regulation of MSP gene expression in response to alcohol. This finding was further supported by ERRE-mutated MSP-luciferase reporter assays. Notably, treatment with GSK5182, an ERRγ-specific inverse agonist, significantly suppressed alcohol-induced hepatic MSP expression. Collectively, we exposed a novel mechanistic understanding of how alcohol-induced ERRγ controls the transcriptional regulation of MSP gene expression in the liver.
Collapse
Affiliation(s)
- Yoon Seok Jung
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyo-Jin Kim
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
Liu FC, Yu HP, Lee HC, Chen CY, Liao CC. The Modulation of Phospho-Extracellular Signal-Regulated Kinase and Phospho-Protein Kinase B Signaling Pathways plus Activity of Macrophage-Stimulating Protein Contribute to the Protective Effect of Stachydrine on Acetaminophen-Induced Liver Injury. Int J Mol Sci 2024; 25:1484. [PMID: 38338766 PMCID: PMC10855734 DOI: 10.3390/ijms25031484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Bögel G, Murányi J, Szokol B, Kukor Z, Móra I, Kardon T, Őrfi L, Hrabák A. Production of NOS2 and inflammatory cytokines is reduced by selected protein kinase inhibitors with partial repolarization of HL-60 derived and human blood macrophages. Heliyon 2022; 8:e08670. [PMID: 35028455 PMCID: PMC8741463 DOI: 10.1016/j.heliyon.2021.e08670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/10/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
JAK/STAT pathway plays a well-known role in macrophage polarization, but other signaling routes may also be involved. The aim of this study was to identify new signaling pathways and repolarize macrophages by selected protein kinase inhibitors. HL-60 derived macrophages were chosen as model cells and human blood macrophages were used for comparison. M1 and M2 polarization of HL60 derived and human blood macrophages was promoted by LPS + IFNγ (LIF) and IL-4 treatments, respectively. In HL-60 derived macrophages, M1 polarization was mediated by Erk1/2 and p38 phosphorylation, while HSP27 phosphorylation was involved in M2 polarization. The inhibition of both MAPK and JAK/STAT pathways reduced the expression of NOS2, IP-10 and TNFα, IL-8 production was decreased by the inhibition of AMPK and PKD, the upstream kinase of HSP27. HSP27 phosphorylation was inhibited by NB 142, a PKD inhibitor. The expression of CD80 (M1 marker) was reduced by MAPK and JAK/STAT inhibitors, without increasing CD206 (M2 marker). On the other hand, CD206 was reduced by PKD and AMPK inhibitors, without increasing CD80 marker. Phagocytic capacity of HL-60 derived macrophages was higher in M1 macrophages and decreased by trametinib and a p38 inhibitor, while in human blood macrophages, where AT 9283, a JAK/STAT inhibitor also caused a significant decrease in M1 polarized macrophages, no difference was observed between M1 and M2 macrophages. Our results suggest that the repolarization of macrophages cannot be achieved by inhibiting their signaling pathways; nevertheless, the expression of certain polarization markers was decreased, therefore a "depolarization" could be observed both in M1 and M2 polarized cells. Selected protein kinase inhibitors of M1 polarization, decreasing NOS 2 and inflammatory cytokines may be potential candidates for therapeutical trials against inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Bögel
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
- MTA-SE Pathobiochemistry Research Group, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - István Móra
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
- MTA-SE Pathobiochemistry Research Group, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - Tamás Kardon
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, H-1092, Hőgyes E. u. 9., Hungary
| | - András Hrabák
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094, Tűzoltó u. 37-43, Hungary
| |
Collapse
|
7
|
Lai SCA, Gundlapalli H, Ekiz HA, Jiang A, Fernandez E, Welm AL. Blocking Short-Form Ron Eliminates Breast Cancer Metastases through Accumulation of Stem-Like CD4+ T Cells That Subvert Immunosuppression. Cancer Discov 2021; 11:3178-3197. [PMID: 34330779 PMCID: PMC8800951 DOI: 10.1158/2159-8290.cd-20-1172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy has potential to prevent and treat metastatic breast cancer, but strategies to enhance immune-mediated killing of metastatic tumors are urgently needed. We report that a ligand-independent isoform of Ron kinase (SF-Ron) is a key target to enhance immune infiltration and eradicate metastatic tumors. Host-specific deletion of SF-Ron caused recruitment of lymphocytes to micrometastases, augmented tumor-specific T-cell responses, and nearly eliminated breast cancer metastasis in mice. Lack of host SF-Ron caused stem-like TCF1+ CD4+ T cells with type I differentiation potential to accumulate in metastases and prevent metastatic outgrowth. There was a corresponding increase in tumor-specific CD8+ T cells, which were also required to eliminate lung metastases. Treatment of mice with a Ron kinase inhibitor increased tumor-specific CD8+ T cells and protected from metastatic outgrowth. These data provide a strong preclinical rationale to pursue small-molecule Ron kinase inhibitors for the prevention and treatment of metastatic breast cancer. SIGNIFICANCE The discovery that SF-Ron promotes antitumor immune responses has significant clinical implications. Therapeutic antibodies targeting full-length Ron may not be effective for immunotherapy; poor efficacy of such antibodies in trials may be due to their inability to block SF-Ron. Our data warrant trials with inhibitors targeting SF-Ron in combination with immunotherapy. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - H. Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Amanda Jiang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elvelyn Fernandez
- Genomics Summer Research for Minorities (GSRM) Program, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
9
|
Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, Zou Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 2020; 236:3445-3465. [PMID: 33200401 DOI: 10.1002/jcp.30139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) in solid tumors exert protumor activities by releasing cytokines or growth factors into the tumor microenvironment. Increasing studies have also shown that TAMs play a key role in tumor progression, such as tumor angiogenesis, immunosuppression, cell proliferation, migration, invasion, and metastasis. A large body of evidence shows that the abundance of TAMs in solid tumors is correlated with poor disease prognosis and resistance to therapies. Therefore, targeting TAMs in solid tumors is considered to be a promising immunotherapeutic strategy. At present, the therapeutic strategies of targeting macrophages mainly include limiting monocyte recruitment, depletion strategies, promoting macrophage phagocytic activity, and induction of macrophage reprogramming. Additionally, targeting TAMs in combination with conventional therapies has been demonstrated to be a promising therapeutic strategy in solid tumors. In the present review, we summarized various TAMs-targeting therapeutic strategies for treating solid tumors. This review also discusses the challenges for targeting TAMs as tumor treatments, the obstacles in clinical trials, and the perspective for the future development of TAMs-targeting therapies for various cancers.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
10
|
Zhou B, Liu J, Zeng L, Zhu S, Wang H, Billiar TR, Kroemer G, Klionsky DJ, Zeh HJ, Jiang J, Tang D, Kang R. Extracellular SQSTM1 mediates bacterial septic death in mice through insulin receptor signalling. Nat Microbiol 2020; 5:1576-1587. [PMID: 33077977 DOI: 10.1038/s41564-020-00795-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Sepsis is the most common cause of death for patients in intensive care worldwide due to a dysregulated host response to infection. Here, we investigate the role of sequestosome-1 (SQSTM1/p62), an autophagy receptor that functions as a regulator of innate immunity, in sepsis. We find that lipopolysaccharide elicits gasdermin D-dependent pyroptosis to enable passive SQSTM1 release from macrophages and monocytes, whereas transmembrane protein 173-dependent TANK-binding kinase 1 activation results in the phosphorylation of SQSTM1 at Ser403 and subsequent SQSTM1 secretion from macrophages and monocytes. Moreover, extracellular SQSTM1 binds to insulin receptor, which in turn activates a nuclear factor kappa B-dependent metabolic pathway, leading to aerobic glycolysis and polarization of macrophages. Intraperitoneal injection of anti-SQSTM1-neutralizing monoclonal antibodies or conditional depletion of Insr in myeloid cells using the Cre-loxP system protects mice from lethal sepsis (caecal ligation and puncture or infection by Escherichia coli or Streptococcus pneumoniae) and endotoxaemia. We also report that circulating SQSTM1 and the messenger RNA expression levels of SQSTM1 and INSR in peripheral blood mononuclear cells are related to the severity of sepsis in 40 patients. Thus, extracellular SQSTM1 has a pathological role in sepsis and could be targeted to develop therapies for sepsis.
Collapse
Affiliation(s)
- Borong Zhou
- The Third Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China.
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Huang L, Fang X, Shi D, Yao S, Wu W, Fang Q, Yao H. MSP-RON Pathway: Potential Regulator of Inflammation and Innate Immunity. Front Immunol 2020; 11:569082. [PMID: 33117355 PMCID: PMC7577085 DOI: 10.3389/fimmu.2020.569082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophage-stimulating protein (MSP), a soluble protein mainly synthesized by the liver, is the only known ligand for recepteur d'origine nantais (RON), which is a member of the MET proto-oncogene family. Recent studies show that the MSP-RON signaling pathway not only was important in tumor behavior but also participates in the occurrence or development of many immune system diseases. Activation of RON in macrophages results in the inhibition of nitric oxide synthesis as well as lipopolysaccharide (LPS)-induced inflammatory response. MSP-RON is also associated with chronic inflammatory responses, especially chronic liver inflammation, and might serve as a novel regulator of inflammation, which may affect the metabolism in the body. Another study provided evidence of the relationship between MSP-RON and autoimmune diseases, suggesting a potential role for MSP-RON in the development of drugs for autoimmune diseases. Moreover, MSP-RON plays an important role in maintaining the stability of the tissue microenvironment and contributes to immune escape in the tumor immune microenvironment. Here, we summarize the role of MSP-RON in immunity, based on recent findings, and lay the foundation for further research.
Collapse
Affiliation(s)
- Lingtong Huang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuhao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, China
| | - Weifang Wu
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Allen JN, Dey A, Cai J, Zhang J, Tian Y, Kennett M, Ma Y, Liang TJ, Patterson AD, Hankey-Giblin PA. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling. Metabolites 2020; 10:metabo10080326. [PMID: 32796650 PMCID: PMC7464030 DOI: 10.3390/metabo10080326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) represents the progressive sub-disease of non-alcoholic fatty liver disease that causes chronic liver injury initiated and sustained by steatosis and necroinflammation. The Ron receptor is a tyrosine kinase of the Met proto-oncogene family that potentially has a beneficial role in adipose and liver-specific inflammatory responses, as well as glucose and lipid metabolism. Since its discovery two decades ago, the Ron receptor has been extensively investigated for its differential roles on inflammation and cancer. Previously, we showed that Ron expression on tissue-resident macrophages limits inflammatory macrophage activation and promotes a repair phenotype, which can retard the progression of NASH in a diet-induced mouse model. However, the metabolic consequences of Ron activation have not previously been investigated. Here, we explored the effects of Ron receptor activation on major metabolic pathways that underlie the development and progression of NASH. Mice lacking apolipoprotein E (ApoE KO) and double knockout (DKO) mice that lack ApoE and Ron were maintained on a high-fat high-cholesterol diet for 18 weeks. We observed that, in DKO mice, the loss of ligand-dependent Ron signaling aggravated key pathological features in steatohepatitis, including steatosis, inflammation, oxidation stress, and hepatocyte damage. Transcriptional programs positively regulating fatty acid (FA) synthesis and uptake were upregulated in the absence of Ron receptor signaling, whereas lipid disposal pathways were downregulated. Consistent with the deregulation of lipid metabolism pathways, the DKO animals exhibited increased accumulation of FAs in the liver and decreased level of bile acids. Altogether, ligand-dependent Ron receptor activation provides protection from the deregulation of major metabolic pathways that initiate and aggravate non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Joselyn N. Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| |
Collapse
|
13
|
Kulshrestha R, Dhanda H, Pandey A, Singh A, Kumar R. Immunopathogenesis and therapeutic potential of macrophage influx in diffuse parenchymal lung diseases. Expert Rev Respir Med 2020; 14:917-928. [PMID: 32600077 DOI: 10.1080/17476348.2020.1776117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The diffuse parenchymal lung diseases (DPLD)/interstitial lung diseases (ILD) are progressive lung disorders with usually unclear etiology, poor long-term survival and no effective treatment. Their pathogenesis is characterized by alveolar epithelial cell injury, inflammation, epithelial-mesenchymal transition, and parenchymal fibrosis. Macrophages play diverse roles in their development, both in the acute phase and in tissue repair. AREAS COVERED In this review, we summarize the current state of knowledge regarding the role of macrophages and their phenotypes in the immunopathogenesis of DPLDs; CVD-ILD, UIP, NSIP, DIP, RB-ILD, AIP, HP, Sarcoidosis, etc. Our goal is to update the understanding of the immune mechanisms underlying the initiation and progression of fibrosis in DPLDs. This will help in identification of biomarkers and in developing novel therapeutic strategies for DPLDs. A thorough literature search of the published studies in PubMed (from 1975 to 2020) was done. EXPERT OPINION The macrophage associated inflammatory markers needs to be explored for their potential as biomarkers of disease activity and progression. Pharmacological targeting of macrophage activation may reduce the risk of macrophage activation syndrome (MAS) and help improving the survival and prognosis of these patients.
Collapse
Affiliation(s)
| | - Himanshu Dhanda
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Apoorva Pandey
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Amit Singh
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Raj Kumar
- Department of Pulmonary Medicine, V.P.Chest Institute , New Delhi, India
| |
Collapse
|
14
|
Hao C, Cui Y, Chang S, Huang J, Birkin E, Hu M, Zhi X, Li W, Zhang L, Cheng S, Jiang WG. OPN promotes the aggressiveness of non-small-cell lung cancer cells through the activation of the RON tyrosine kinase. Sci Rep 2019; 9:18101. [PMID: 31792339 PMCID: PMC6889187 DOI: 10.1038/s41598-019-54843-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Osteopontin (OPN) is identified as a diagnostic and prognostic biomarker of tumor progression and metastasis. In non-small-cell lung cancer (NSCLC), the functions of OPN have not been well characterized. The current study sought to investigate the clinical implications of OPN expression in NSCLC and the role of OPN in the aggressiveness of the lung cancer cells. Using a proteomics approach, we identified that phospho-RON (p-RON) was one of the most remarkably up-regulated proteins in OPN-overexpressing cells. The levels of OPN and RON transcripts were unveiled as independent prognostic indicators of survival in NSCLC (p = 0.001). Higher levels of OPN, RON and p-RON proteins were observed in tumor tissues. Knock down of the OPN gene suppressed the migration and invasion abilities of the A549 lung cancer cells which endogenously expresses OPN. While ectopic expression of OPN in the SK-MES-1 lung cancer cells increased levels of cellular invasion and migration. In addition, these changes were accompanied by a phosphorylated activation of RON. Small-molecule inhibition of RON or siRNA silencing of RON significantly reduced OPN-induced migration and invasion of lung cancer cells and had an inhibitory effect on the OPN-mediated cell epithelial-mesenchymal transition. Our study suggests that in NSCLC, the aberrant expression of OPN can be considered as an independent survival indicator and is associated with disease progression. OPN plays a crucial role in promoting migration and invasion properties of lung cancer cells through its phosphorylation activation of the RON signaling pathway, implying its potential as a therapeutic target in the treatment of NSCLC.
Collapse
Affiliation(s)
- Chengcheng Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Siyuan Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Jing Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Emily Birkin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Mu Hu
- Department of Thoracic Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lijian Zhang
- Department of Thoracic Surgery, Peking University School of Oncology and Beijing Cancer Hospital & Institute, Beijing, 100142, P.R. China
| | - Shan Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China.
| | - Wen G Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China.
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
15
|
Li H, Jiang T, Li MQ, Zheng XL, Zhao GJ. Transcriptional Regulation of Macrophages Polarization by MicroRNAs. Front Immunol 2018; 9:1175. [PMID: 29892301 PMCID: PMC5985397 DOI: 10.3389/fimmu.2018.01175] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/11/2018] [Indexed: 01/26/2023] Open
Abstract
Diversity and plasticity are the hallmarks of cells from the monocyte-macrophage lineage. Macrophages undergo classical M1 or alternative M2 activation in response to the microenvironment signals. Several transcription factors, such as peroxisome proliferator-activated receptors, signal transducers and activators of transcription, CCAAT-enhancer-binding proteins, interferon regulatory factors, Kruppel-like factors, GATA binding protein 3, nuclear transcription factor-κB, and c-MYC, were found to promote the expression of specific genes, which dictate the functional polarization of macrophages. Importantly, these transcription factors can be regulated by microRNAs (miRNAs), a group of small non-coding RNAs, which regulate gene expression through translation repression or mRNA degradation. Recent studies have also revealed that miRNAs control macrophage polarization by regulating transcription factors in response to the microenvironment signals. This review will summarize recent progress of miRNAs in the transcriptional regulation of macrophage polarization and provide the insights into the development of macrophage-centered diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Heng Li
- The Clinic Medical College, Guilin Medical University, Guilin, Guangxi, China
| | - Ting Jiang
- Department of Practice Educational, Office of Academic Affairs, Guilin Medical University, Guilin, Guangxi, China
| | - Meng-Qi Li
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, AB, Canada.,Key Laboratory of Molecular Targets and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guo-Jun Zhao
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, AB, Canada
| |
Collapse
|
16
|
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9:335. [PMID: 29670543 PMCID: PMC5893816 DOI: 10.3389/fphys.2018.00335] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by its sudden manifestation, rapid progression, poor prognosis, and limited therapeutic options. Genetic alterations in key signaling pathways found in early pancreatic lesions are pivotal for the development and progression of pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90% of PDAC tumors harbor driver mutations in K-Ras that activate various downstream effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway. The PI3K pathway also responds to stimuli from various growth factor receptors present on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus, the inositide signaling acts as a central node in the complex cellular signaling networks to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling modifies the tumor microenvironment to dictate disease outcome. The high incidence of mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe the role of PI3K signaling in pancreatic cancer development and progression. We also discuss the crosstalk between PI3K and other major cellular signaling cascades, and potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
17
|
Qingchang Wenzhong Decoction Attenuates DSS-Induced Colitis in Rats by Reducing Inflammation and Improving Intestinal Barrier Function via Upregulating the MSP/RON Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4846876. [PMID: 29234405 PMCID: PMC5660811 DOI: 10.1155/2017/4846876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease for which an effective treatment is lacking. Our previous study found that Qingchang Wenzhong Decoction (QCWZD) can significantly improve the clinical symptoms of UC and ameliorate dextran sulphate sodium- (DSS-) induced ulcerative colitis in rats by downregulating the IP10/CXCR3 axis-mediated inflammatory response. The purpose of the present study was to further explore the mechanism of QCWZD for UC in rats models, which were established by 7-day administration of 4.5% dextran sulphate sodium solution. QCWZD was administered daily for 7 days; then we determined the serum macrophage-stimulating protein concentration (MSP) and recepteur d'origine nantais (RON) expression and its downstream proteins (protein kinase B [Akt], phosphorylated [p] Akt, occludin, zona occluden- [ZO-] 1, and claudin-2) in colon tissue using Western blotting and quantitative polymerase chain reaction. In DSS-induced UC, QCWZD significantly alleviated colitis-associated inflammation, upregulated serum MSP expression and RON expression in the colon, reduced the pAkt levels, promoted colonic occluding and ZO-1 expression, and depressed claudin-2 expression. In conclusion, the MSP/RON signalling pathway plays an important role in the pathogenesis of UC by involving the inflammatory response and improving intestinal barrier function. QCWZD appears to attenuate DSS-induced UC in rats by upregulating the MSP/RON signalling pathway.
Collapse
|
18
|
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017; 114:206-221. [PMID: 28449873 DOI: 10.1016/j.addr.2017.04.010] [Citation(s) in RCA: 513] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
As an essential innate immune population for maintaining body homeostasis and warding off foreign pathogens, macrophages display high plasticity and perform diverse supportive functions specialized to different tissue compartments. Consequently, aberrance in macrophage functions contributes substantially to progression of several diseases including cancer, fibrosis, and diabetes. In the context of cancer, tumor-associated macrophages (TAMs) in tumor microenvironment (TME) typically promote cancer cell proliferation, immunosuppression, and angiogenesis in support of tumor growth and metastasis. Oftentimes, the abundance of TAMs in tumor is correlated with poor disease prognosis. Hence, significant attention has been drawn towards development of cancer immunotherapies targeting these TAMs; either depleting them from tumor, blocking their pro-tumoral functions, or restoring their immunostimulatory/tumoricidal properties. This review aims to introduce readers to various aspects in development and evaluation of TAM-targeted therapeutics in pre-clinical and clinical stages.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Heather H Gustafson
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
19
|
Buqué A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5:e1149674. [PMID: 27471617 PMCID: PMC4938376 DOI: 10.1080/2162402x.2016.1149674] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Collapse
Affiliation(s)
- Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
20
|
Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 2016; 113:3317-22. [PMID: 26951679 DOI: 10.1073/pnas.1523436113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multiple factors, including host genetics, environmental factors, and Epstein-Barr virus (EBV) infection, contribute to nasopharyngeal carcinoma (NPC) development. To identify genetic susceptibility genes for NPC, a whole-exome sequencing (WES) study was performed in 161 NPC cases and 895 controls of Southern Chinese descent. The gene-based burden test discovered an association between macrophage-stimulating 1 receptor (MST1R) and NPC. We identified 13 independent cases carrying the MST1R pathogenic heterozygous germ-line variants, and 53.8% of these cases were diagnosed with NPC aged at or even younger than 20 y, indicating that MST1R germline variants are relevant to disease early-age onset (EAO) (age of ≤20 y). In total, five MST1R missense variants were found in EAO cases but were rare in controls (EAO vs. control, 17.9% vs. 1.2%, P = 7.94 × 10(-12)). The validation study, including 2,160 cases and 2,433 controls, showed that the MST1R variant c.G917A:p.R306H is highly associated with NPC (odds ratio of 9.0). MST1R is predominantly expressed in the tissue-resident macrophages and is critical for innate immunity that protects organs from tissue damage and inflammation. Importantly, MST1R expression is detected in the ciliated epithelial cells in normal nasopharyngeal mucosa and plays a role in the cilia motility important for host defense. Although no somatic mutation of MST1R was identified in the sporadic NPC tumors, copy number alterations and promoter hypermethylation at MST1R were often observed. Our findings provide new insights into the pathogenesis of NPC by highlighting the involvement of the MST1R-mediated signaling pathways.
Collapse
|
21
|
Wang T, Chen X, Zhang W, Xiang X, Leng C, Jia Q. Roles of macrophage stimulating protein and tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8797-8808. [PMID: 26464622 PMCID: PMC4583854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the roles of macrophage stimulating protein (MSP) and its tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. METHODS Inhalation of combustion smoke was administered in rats to induce airway inflammation. Alveolar macrophages (AM) of healthy and smoking rats were isolated at different time points, cultured and then treated with different concentrations of MSP for 24 h. RESULTS When compared with healthy rats, MSP increased in the serum and bronchoalveolar lavage fluid (BALF) of smoking rats in a time dependent manner. In smoking rats, the RON expression in the lung and AM was higher than in healthy rats, and these increases were time dependent. MSP stimulated the production of malondialdehyde (MDA) and reduced superoxide dismutase (SOD) activity in rat AM cells in a dose dependent manner. MSP also stimulated the release of inflammatory factors TNF-α, IL-8, IL-1β and IL-10 in rat AM in a dose-dependent manner. Moreover, at the same MSP concentration, the contents of MDA, TNF-α, IL-8 and IL-1β in the AM of smoking rates were higher than in healthy rats, while the IL-10 content and SOD activity were lower than in healthy rats. CONCLUSION MSP and its receptor RON are involved in the smoke-induced airway inflammation in rats via promoting AM to release inflammatory cytokines and inducing the increase of oxygen free radical.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaoju Chen
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Wenbo Zhang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaojun Xiang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Changyan Leng
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Qinyao Jia
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| |
Collapse
|
22
|
Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, Roy S. Monocyte and macrophage plasticity in tissue repair and regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2596-606. [PMID: 26118749 DOI: 10.1016/j.ajpath.2015.06.001] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Heterogeneity and high versatility are the characteristic features of the cells of monocyte-macrophage lineage. The mononuclear phagocyte system, derived from the bone marrow progenitor cells, is primarily composed of monocytes, macrophages, and dendritic cells. In regenerative tissues, a central role of monocyte-derived macrophages and paracrine factors secreted by these cells is indisputable. Macrophages are highly plastic cells. On the basis of environmental cues and molecular mediators, these cells differentiate to proinflammatory type I macrophage (M1) or anti-inflammatory or proreparative type II macrophage (M2) phenotypes and transdifferentiate into other cell types. Given a central role in tissue repair and regeneration, the review focuses on the heterogeneity of monocytes and macrophages with current known mechanisms of differentiation and plasticity, including microenvironmental cues and molecular mediators, such as noncoding RNAs.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mithun Sinha
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Soma Datta
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Motaz Abas
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Scott Chaffee
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
23
|
Mills CD, Lenz LL, Ley K. Macrophages at the fork in the road to health or disease. Front Immunol 2015; 6:59. [PMID: 25762997 PMCID: PMC4329822 DOI: 10.3389/fimmu.2015.00059] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/30/2015] [Indexed: 01/04/2023] Open
Affiliation(s)
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|