1
|
Yuan X, Song X, Zhang X, Hu L, Zhou D, Zhang J, Dai C. Unraveling host-pathogen dynamics in a murine Model of septic peritonitis induced by vancomycin-resistant Enterococcus faecium. Virulence 2024; 15:2367659. [PMID: 38951957 PMCID: PMC11221476 DOI: 10.1080/21505594.2024.2367659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (E. faecium) infection is associated with higher mortality rates. Previous studies have emphasized the importance of innate immune cells and signalling pathways in clearing E. faecium, but a comprehensive analysis of host-pathogen interactions is lacking. Here, we investigated the interplay of host and E. faecium in a murine model of septic peritonitis. Following injection with a sublethal dose, we observed significantly increased murine sepsis score and histological score, decreased weight and bacterial burden, neutrophils and macrophages infiltration, and comprehensive activation of cytokine-mediated signalling pathway. In mice receiving a lethal dose, hypothermia significantly improved survival, reduced bacterial burden, cytokines, and CD86 expression of MHC-II+ recruited macrophages compared to the normothermia group. A mathematical model constructed by observational data from 80 animals, recapitulated the host-pathogen interplay, and further verified the benefits of hypothermia. These findings indicate that E. faecium triggers a severe activation of cytokine-mediated signalling pathway, and hypothermia can improve outcomes by reducing bacterial burden and inflammation.
Collapse
Affiliation(s)
- Xin Yuan
- School of Life Sciences, Ludong University, Yantai, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
| | - Chenxi Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
2
|
Mathur R, Elsafy S, Press AT, Brück J, Hornef M, Martin L, Schürholz T, Marx G, Bartneck M, Kiessling F, Metselaar JM, Storm G, Lammers T, Sofias AM, Koczera P. Neutrophil Hitchhiking Enhances Liposomal Dexamethasone Therapy of Sepsis. ACS NANO 2024; 18:28866-28880. [PMID: 39393087 DOI: 10.1021/acsnano.4c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Sepsis is characterized by a dysregulated immune response and is very difficult to treat. In the cecal ligation and puncture (CLP) mouse model, we show that nanomedicines can effectively alleviate systemic and local septic events by targeting neutrophils. Specifically, by decorating the surface of clinical-stage dexamethasone liposomes with cyclic arginine-glycine-aspartic acid (cRGD) peptides, we promote their engagement with neutrophils in the systemic circulation, leading to their prominent accumulation at primary and secondary sepsis sites. cRGD-targeted dexamethasone liposomes potently reduce immature circulating neutrophils and neutrophil extracellular traps in intestinal sepsis induction sites and the liver. Additionally, they mitigate inflammatory cytokines systemically and locally while preserving systemic IL-10 levels, contributing to lower IFN-γ/IL-10 ratios as compared to control liposomes and free dexamethasone. Our strategy addresses sepsis at the cellular level, illustrating the use of neutrophils both as a therapeutic target and as a chariot for drug delivery.
Collapse
Affiliation(s)
- Ritvik Mathur
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Sara Elsafy
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Medical Faculty, Friedrich-Schiller-University, Jena 07747, Germany
| | - Julian Brück
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lukas Martin
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Tobias Schürholz
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Josbert Maarten Metselaar
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Alexandros Marios Sofias
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
3
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Osa S, Enoki Y, Takahashi D, Chuang VTG, Taguchi K, Matsumoto K. T-cell immunosuppression in sepsis is augmented by sciatic denervation-induced skeletal muscle atrophy. FEBS Lett 2024; 598:2581-2591. [PMID: 39118298 DOI: 10.1002/1873-3468.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Skeletal muscle atrophy is a known risk factor for immunosuppressive conditions and for a poor prognosis in sepsis. However, its immunopathology has not been experimentally elucidated. This study investigated the effects of skeletal muscle atrophy on the immunopathology of sepsis. Male C57BL/6J mice were subjected to sciatic denervation (DN) and caecal ligation and puncture (CLP) to induce muscle atrophy or sepsis. The macrophages, myeloid-derived suppressor cells (MDSC), and T-cells in peritoneal and spleen were analysed using flow cytometry. DN-induced muscle atrophy did not affect macrophage and MDSC populations. In contrast, the percentage of cytotoxic T-lymphocyte-associated antigen (CTLA)-4+ CD4+ T-cells, programmed death (PD)-1+ CD8+ T-cells, regulatory T-cells, and the CTLA-4+ regulatory T-cells was statistically significantly higher in DN-CLP mice than in sham-CLP mice. Skeletal muscle atrophy before sepsis triggers excessive T cell immunosuppression, which may contribute to the exacerbation of sepsis under skeletal muscle atrophy.
Collapse
Affiliation(s)
- Sumika Osa
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences and Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Victor Tuan Giam Chuang
- Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
5
|
Martínez de Toda I, Félix J, Díaz-Del Cerro E, De la Fuente M. Intracellular cytokines in peritoneal leukocytes relate to lifespan in aging and long-lived female mice. Biogerontology 2024; 25:837-849. [PMID: 38748335 PMCID: PMC11374870 DOI: 10.1007/s10522-024-10110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/24/2024] [Indexed: 09/05/2024]
Abstract
Peritoneal immune cell function is a reliable indicator of aging and longevity in mice and inflammaging is associated with a shorter lifespan. Nevertheless, it is unknown if the content of cytokines in these immune cells is linked to individual differences in lifespan. Therefore, this work aimed to investigate different peritoneal leukocyte populations and their content in intracellular pro-inflammatory (TNF and IL-6) and anti-inflammatory (IL-10) cytokines by flow cytometry in adult (10 months-old, n = 8) and old (18 months-old, n = 20) female Swiss/ICR mice. In addition, old mice were monitored longitudinally throughout their aging process, and the same markers were analyzed at the very old (24 months-old, n = 8) and long-lived (30 months-old, n = 4) ages. The longitudinal follow-up allowed us to relate the investigated parameters to individual lifespans. The results show that long-lived female mice exhibit an adult-like profile in most parameters investigated but also display specific immune adaptations, such as increased CD4+ and CD8+ T cells containing the pro-inflammatory TNF cytokine and CD4+ T cells and macrophages containing the anti-inflammatory cytokine IL-10. These adaptations may underlie their exceptional longevity. In addition, a negative correlation was obtained between the percentage of cytotoxic T cells, KLRG-1/CD4, large peritoneal macrophages, and the percentage of CD4+ T cells containing IL-6 and macrophages containing IL-10 in old age and lifespan, whereas a positive correlation was found between the CD4/CD8 ratio and the longevity of the animals at the same age. These results highlight the crucial role of peritoneal leukocytes in inflammaging and longevity.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain.
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain.
| | - Judith Félix
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| | - Mónica De la Fuente
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| |
Collapse
|
6
|
Wang H, Yung MM, Xuan Y, Chen F, Chan W, Siu MK, Long R, Jia S, Liang Y, Xu D, Song Z, Tsui SK, Ngan HY, Chan KK, Chan DW. Polyunsaturated fatty acids promote M2-like TAM deposition via dampening RhoA-YAP1 signaling in the ovarian cancer microenvironment. Exp Hematol Oncol 2024; 13:90. [PMID: 39198883 PMCID: PMC11360340 DOI: 10.1186/s40164-024-00558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Peritoneal metastases frequently occur in epithelial ovarian cancer (EOC), resulting in poor prognosis and survival rates. Tumor-associated-macrophages (TAMs) massively infiltrate into ascites spheroids and are multi-polarized as protumoral M2-like phenotype, orchestrating the immunosuppression and promoting tumor progression. However, the impact of omental conditioned medium/ascites (OCM/AS) on TAM polarization and its function in tumor progression remains elusive. METHODS The distribution and polarization of TAMs in primary and omental metastatic EOC patients' tumors and ascites were examined by m-IHC, FACS analysis, and immunofluorescence. QPCR, immunofluorescence, FACS analysis, lipid staining assay, ROS assay, and Seahorse real-time cell metabolic assay characterized TAMs as being polarized in the ascites microenvironment. The oncogenic role of TAMs in tumor cells was demonstrated by co-cultured migration/invasion, proliferation, and spheroid formation assays. Mechanistic studies of the regulations of TAM polarization were performed by using RNA-Seq, GTPase pull-down, G-LISA activation assays, and other biochemical assays. A Yap1 macrophages (MФs) conditional knockout (cKO) mouse model demonstrated the roles of YAP1 in TAM polarization status and its pro-metastatic function. Finally, the anti-metastatic potential of targeting TAMs through restoring YAP1 by pharmacological agonist XMU MP1 was demonstrated in vitro and in vivo. RESULTS Abundant polyunsaturated fatty acids (PUFAs) in OCM/AS suppressed RhoA-GTPase activities, which, in turn, downregulated nuclear YAP1 in MФs, leading to increased protumoral TAM polarization accompanied by elevated OXPHOS metabolism. Abolishment of YAP1 in MФs further confirmed that a higher M2/M1 ratio of TAM polarization could alleviate CD8+ T cell infiltration and cytotoxicity in vivo. Consistently, the loss of YAP1 has been observed in EOC metastatic tissues, suggesting its clinical relevance. On the contrary, restoration of YAP1 expression by pharmaceutical inhibition of MST1/2 induced conversion of M2-to-M1-like polarized MФs, elevating the infiltration of CD8+ T cells and attenuating tumor growth. CONCLUSION This study revealed that PUFAs-enriched OCM/AS of EOC promotes M2-like TAM polarization through RhoA-YAP1 inhibition, where YAP1 downregulation is required for accelerating protumoral M2-like TAM polarization, thereby causing immunosuppression and enhancing tumor progression. Conversion of M2-to-M1-like polarized MФs through Yap1 activation inhibits tumor progression and contributes to developing potential TAMs-targeted immunotherapies in combating EOC peritoneal metastases.
Collapse
Affiliation(s)
- Huogang Wang
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, P.R. China
| | - Mingo Mh Yung
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Yang Xuan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Fushun Chen
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Waisun Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Michelle Ky Siu
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Runying Long
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Shuo Jia
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P.R. China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, P.R. China
| | - Stephen Kw Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Hextan Ys Ngan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Karen Kl Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.
| | - David W Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P.R. China.
| |
Collapse
|
7
|
Sim HB, Sang Son J, Gupta SK, Jeong SH, Choi YJ, Han JY, Ramos SC, Kim H, Park DH, Yoo HJ, Yoo YJ, Chang DJ, Mun SK, Seo YH, Kim JJ. Development of Hsp90 inhibitor to regulate cytokine storms in excessive delayed- and acute inflammation. Int Immunopharmacol 2024; 137:112470. [PMID: 38908085 DOI: 10.1016/j.intimp.2024.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The surplus cytokines remaining after use in the early stages of the inflammatory response stimulate immune cells even after the response is over, causing a secondary inflammatory response and ultimately damaging the host, which is called a cytokine storm. Inhibiting heat shock protein 90 (Hsp90), which has recently been shown to play an important role in regulating inflammation in various cell types, may help control excessive inflammatory responses and cytokine storms. METHODS We discovered an anti-inflammatory compound by measuring the inhibitory effect of CD86 expression on spleen DCs (sDCs) using the chemical compounds library of Hsp90 inhibitors. Subsequently, to select the hit compound, the production of cytokines and expression of surface molecules were measured on the bone marrow-derived DCs (BMDCs) and peritoneal macrophages. Then, we analyzed the response of antigen-specific Th1 cells. Finally, we confirmed the effect of the compound using acute lung injury (ALI) and delayed-type hypersensitivity (DTH) models. RESULTS We identified Be01 as the hit compound, which reduced CD86 expression the most in sDCs. Treatment with Be01 decreased the production of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in BMDC and peritoneal macrophages stimulated by LPS. Under the DTH model, Be01 treatment reduced ear swelling and pro-inflammatory cytokines in the spleen. Similarly, Be01 treatment in the ALI model decreased neutrophil infiltration and lower levels of secreted cytokines (IL-6, TNF-α). CONCLUSIONS Reduction of CD80 and CD86 expression on DCs by Be01 indicates reduced secondary inflammatory response by Th1 cells, and reduced release of pro-inflammatory cytokines by peritoneal macrophages may initially control the cytokine storm.
Collapse
Affiliation(s)
- Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Jun Sang Son
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| | - Seung-Hyun Jeong
- Department of Pharmacy, College of Pharmacy, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Yu-Jeong Choi
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Ji Yeon Han
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Sonny C Ramos
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Dae-Han Park
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Ho Jin Yoo
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Young Joo Yoo
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Dong-Jo Chang
- Department of Pharmacy, College of Pharmacy, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea
| | - Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea.
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Republic of Korea.
| |
Collapse
|
8
|
Shi M, MacLean JA, Hayashi K. The involvement of peritoneal GATA6 + macrophages in the pathogenesis of endometriosis. Front Immunol 2024; 15:1396000. [PMID: 39192982 PMCID: PMC11348394 DOI: 10.3389/fimmu.2024.1396000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.
Collapse
Affiliation(s)
| | | | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Heffernan DS, Chun TT, Monaghan SF, Chung CS, Ayala A. invariant Natural Killer T Cells Modulate the Peritoneal Macrophage Response to Polymicrobial Sepsis. J Surg Res 2024; 300:211-220. [PMID: 38824851 PMCID: PMC11246799 DOI: 10.1016/j.jss.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION A dysregulated immune system is a major driver of the mortality and long-term morbidity from sepsis. With respect to macrophages, it has been shown that phenotypic changes are critical to effector function in response to acute infections, including intra-abdominal sepsis. Invariant natural killer T cells (iNKT cells) have emerged as potential central regulators of the immune response to a variety of infectious insults. Specifically, various iNKT cell:macrophage interactions have been noted across a spectrum of diseases, including acute events such as sepsis. However, the potential for iNKT cells to affect peritoneal macrophages during an abdominal septic event is as yet unknown. METHODS Cecal ligation and puncture (CLP) was performed in both wild type (WT) and invariant natural killer T cell knockout (iNKT-/-) mice. 24 h following CLP or sham operation, peritoneal macrophages were collected for analysis. Analysis of macrophage phenotype and function was undertaken to include analysis of bactericidal activity and cytokine or superoxide production. RESULTS Within iNKT-/- mice, a greater degree of intraperitoneal macrophages in response to the sepsis was noted. Compared to WT mice, within iNKT-/- mice, CLP did induce an increase in CD86+ and CD206+, but no difference in CD11b+. Unlike WT mice, intra-abdominal sepsis within iNKT-/- mice induced an increase in Ly6C-int (5.2% versus 14.9%; P < 0.05) and a decrease in Ly6C-high on peritoneal macrophages. Unlike phagocytosis, iNKT cells did not affect macrophage bactericidal activity. Although iNKT cells did not affect interleukin-6 production, iNKT cells did affect IL-10 production and both nitrite and superoxide production from peritoneal macrophages. CONCLUSIONS The observations indicate that iNKT cells affect specific phenotypic and functional aspects of peritoneal macrophages during polymicrobial sepsis. Given that pharmacologic agents that affect iNKT cell functioning are currently in clinical trial, these findings may have the potential for translation to critically ill surgical patients with abdominal sepsis.
Collapse
Affiliation(s)
- Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island.
| | - Tristen T Chun
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
10
|
Wallings RL, Gillett DA, Staley HA, Mahn S, Mark J, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. ASO-mediated knockdown of GPNMB in mutant- GRN and Grn -deficient peripheral myeloid cells disrupts lysosomal function and immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604676. [PMID: 39211224 PMCID: PMC11361193 DOI: 10.1101/2024.07.22.604676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Increases in GPNMB are detectable in FTD- GRN cerebrospinal fluid (CSF) and post-mortem brain, and brains of aged Grn -deficient mice. Although no upregulation of GPNMB is observed in the brains of young Grn -deficient mice, peripheral immune cells of these mice do exhibit this increase in GPNMB. Importantly, the functional significance of GPNMB upregulation in progranulin-deficient states is currently unknown. Given that GPNMB has been discussed as a potential therapeutic target in GRN -mediated neurodegeneration, it is vital for the field to determine what the normal function of GPNMB is in the immune system, and whether targeting GPNMB will elicit beneficial or deleterious effects. Methods The effects of GPNMB knock-down via antisense oligonucleotide (ASO) were assessed in peripheral blood mononuclear cells (PBMCs) from 25 neurologically healthy controls (NHCs) and age- and sex-matched FTD- GRN patients, as well as peritoneal macrophages (pMacs) from progranulin-deficient ( Grn -/- ) and B6 mice. Lysosomal function, antigen presentation and MHC-II processing and recycling were assessed, as well as cytokine release and transcription. Results We demonstrate here that ASO-mediated knockdown of GPNMB increases lysosomal burden and cytokine secretion in FTD-GRN carrier and neurologically healthy controls (NHCs) monocytes. ASO-mediated knockdown of GPNMB in Grn -deficient macrophages decreased lysosomal pan-cathepsin activity and protein degradation. In addition, ASO-mediated knockdown of GPNMB increased MHC-II surface expression, which was driven by decreased MHC-II uptake and recycling, in macrophages from Grn -deficient females. Finally, ASO-mediated knockdown of GPNMB dysregulated IFNγ-stimulated cytokine transcription and secretion by mouse macrophages due to the absence of regulatory actions of the GPNMB extracellular fragment (ECF). Conclusions Our data herein reveals that GPNMB has a regulatory effect on multiple immune effector functions, including capping inflammation and immune responses in myeloid cells via secretion of its ECF. Therefore, in progranulin-deficient states, the drastic upregulation in GPNMB transcript and protein may represent a compensatory mechanism to preserve lysosomal function in myeloid cells. These novel findings indicate that targeted depletion in FTD- GRN would not be a rational therapeutic strategy because it is likely to dysregulate important immune cell effector functions.
Collapse
|
11
|
da Silva Lira Filho A, Lafleur A, Alvarez F, Piccirillo CA, Olivier M. Implication of the Annexin 1/FPR axis in leishmanial exosome-mediated Leishmania major skin hyperpathogenesis. Front Immunol 2024; 15:1436151. [PMID: 39076982 PMCID: PMC11284082 DOI: 10.3389/fimmu.2024.1436151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
12
|
Liang G, Hu JY, Liu RJ, Chao YP, Hu YF, Zheng H, Pan XY, Li YJ, Gong YH, Lin C, Lin JH, Wang JD, Li TX, Pan JP, Guo DY. α-Ketoglutarate plays an inflammatory inhibitory role by regulating scavenger receptor class a expression through N6-methyladenine methylation during sepsis. Eur J Immunol 2024:e2350655. [PMID: 38973083 DOI: 10.1002/eji.202350655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.
Collapse
Affiliation(s)
- Gang Liang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Zhejiang University school of medicine, Hangzhou, P. R. China
| | - Jia-Yan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Rou-Jun Liu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yu-Peng Chao
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yi-Fan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Hong Zheng
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Xin-Yu Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yuan-Jing Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yang-Hui Gong
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Chi Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Hao Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Dong Wang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Tong-Xin Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jian-Ping Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| | - Dong-Yang Guo
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| |
Collapse
|
13
|
Uzelac A, Klun I, Djurković-Djaković O. Early immune response to Toxoplasma gondii lineage III isolates of different virulence phenotype. Front Cell Infect Microbiol 2024; 14:1414067. [PMID: 38912206 PMCID: PMC11190176 DOI: 10.3389/fcimb.2024.1414067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Toxoplasma gondii is an intracellular parasite of importance to human and veterinary health. The structure and diversity of the genotype population of T. gondii varies considerably with respect to geography, but three lineages, type I, II and III, are distributed globally. Lineage III genotypes are the least well characterized in terms of biology, host immunity and virulence. Once a host is infected with T.gondii, innate immune mechanisms are engaged to reduce the parasite burden in tissues and create a pro-inflammatory environment in which the TH1 response develops to ensure survival. This study investigated the early cellular immune response of Swiss-Webster mice post intraperitoneal infection with 10 tachyzoites of four distinct non-clonal genotypes of lineage III and a local isolate of ToxoDB#1. The virulence phenotype, cumulative mortality (CM) and allele profiles of ROP5, ROP16, ROP18 and GRA15 were published previously. Methods Parasite dissemination in different tissues was analyzed by real-time PCR and relative expression levels of IFNγ, IL12-p40, IL-10 and TBX21 in the cervical lymph nodes (CLN), brain and spleen were calculated using the ΔΔCt method. Stage conversion was determined by detection of the BAG1 transcript in the brain. Results Tissue dissemination depends on the virulence phenotype but not CM, while the TBX21 and cytokine levels and kinetics correlate better with CM than virulence phenotype. The earliest detection of BAG1 was seven days post infection. Only infection with the genotype of high CM (69.4%) was associated with high T-bet levels in the CLN 24 h and high systemic IFNγ expression which was sustained over the first week, while infection with genotypes of lower CM (38.8%, 10.7% and 6.8%) is characterized by down-regulation and/or low systemic levels of IFNγ. The response intensity, as assessed by cytokine levels, to the genotype of high CM wanes over time, while it increases gradually to genotypes of lower CM. Discussion The results point to the conclusion that the immune response is not correlated with the virulence phenotype and/or allele profile, but an early onset, intense pro-inflammatory response is characteristic of genotypes with high CM. Additionally, high IFNγ level in the brain may hamper stage conversion.
Collapse
Affiliation(s)
- Aleksandra Uzelac
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
14
|
Xu W, Yuan Y, Shu Z, Guo T, Liu B, Xiao J, Li L, Yin Y, Zhang X. Streptococcus pneumoniae endopeptidase O induces trained immunity and confers protection against various pathogenic infections. Clin Immunol 2024; 263:110226. [PMID: 38663493 DOI: 10.1016/j.clim.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic resistance and the surge of infectious diseases during the pandemic present significant threats to human health. Trained immunity emerges as a promising and innovative approach to address these infections. Synthetic or natural fungal, parasitic and viral components have been reported to induce trained immunity. However, it is not clear whether bacterial virulence proteins can induce protective trained immunity. Our research demonstrates Streptococcus pneumoniae virulence protein PepO, is a highly potent trained immunity inducer for combating broad-spectrum infection. Our findings showcase that rPepO training confers robust protection to mice against various pathogenic infections by enhancing macrophage functionality. rPepO effectively re-programs macrophages, re-configures their epigenetic modifications and bolsters their immunological responses, which is independent of T or B lymphocytes. In vivo and in vitro experiments confirm that trained macrophage-secreted complement C3 activates peritoneal B lymphocyte and enhances its bactericidal capacity. In addition, we provide the first evidence that granulocyte colony-stimulating factor (G-CSF) derived from trained macrophages plays a pivotal role in shaping central-trained immunity. In summation, our research demonstrates the capability of rPepO to induce both peripheral and central trained immunity in mice, underscoring its potential application in broad-spectrum anti-infection therapy. Our research provides a new molecule and some new target options for infectious disease prevention.
Collapse
Affiliation(s)
- Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibin Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Wallings R, McFarland K, Staley H, Neighbarger N, Schaake S, Brueggemann N, Zittel S, Usnich T, Klein C, Sammler E, Tansey MG. The R1441C-LRRK2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562063. [PMID: 37905053 PMCID: PMC10614788 DOI: 10.1101/2023.10.12.562063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.
Collapse
|
16
|
Herup-Wheeler T, Shi M, Harvey ME, Talwar C, Kommagani R, MacLean JA, Hayashi K. High-fat diets promote peritoneal inflammation and augment endometriosis-associated abdominal hyperalgesia. Front Endocrinol (Lausanne) 2024; 15:1336496. [PMID: 38559689 PMCID: PMC10978581 DOI: 10.3389/fendo.2024.1336496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Immune dysfunction is one of the central components in the development and progression of endometriosis by establishing a chronic inflammatory environment. Western-style high-fat diets (HFD) have been linked to greater systemic inflammation to cause metabolic and chronic inflammatory diseases, and are also considered an environmental risk factor for gynecologic diseases. Here, we aimed to examine how HFD cause an inflammatory environment in endometriosis and discern their contribution to endometriotic-associated hyperalgesia. Our results showed that HFD-induced obesity enhanced abdominal hyperalgesia that was induced by endometriotic lesions. Peritoneal inflammatory macrophages and cytokine levels increased by lesion induction were elevated by chronic exposure to HFD. Increased expression of pain-related mediators in the dorsal root ganglia was observed after lesion induction under the HFD condition. Although HFD did not affect inflammatory macrophages in the peritoneal cavity without lesion induction, the diversity and composition of the gut microbiota were clearly altered by HFD as a sign of low-grade systemic inflammation. Thus, HFD alone might not establish a local inflammatory environment in the pelvic cavity, but it can contribute to further enhancing chronic inflammation, leading to the exacerbation of endometriosis-associated abdominal hyperalgesia following the establishment and progression of the disease.
Collapse
Affiliation(s)
- Tristin Herup-Wheeler
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Mingxin Shi
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Madeleine E. Harvey
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Chandni Talwar
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Ramakrishna Kommagani
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - James A. MacLean
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Kanako Hayashi
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
17
|
Schultze-Rhonhof L, Marzi J, Carvajal Berrio DA, Holl M, Braun T, Schäfer-Ruoff F, Andress J, Bachmann C, Templin M, Brucker SY, Schenke-Layland K, Weiss M. Human tissue-resident peritoneal macrophages reveal resistance towards oxidative cell stress induced by non-invasive physical plasma. Front Immunol 2024; 15:1357340. [PMID: 38504975 PMCID: PMC10949891 DOI: 10.3389/fimmu.2024.1357340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.
Collapse
Affiliation(s)
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Daniel Alejandro Carvajal Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
| | - Myriam Holl
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Theresa Braun
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
- University Development, Research and Transfer, University of Konstanz, Konstanz, Germany
| | - Felix Schäfer-Ruoff
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Jürgen Andress
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Cornelia Bachmann
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Markus Templin
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Martin Weiss
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
18
|
Bashar SJ, Holmes CL, Shelef MA. Macrophage extracellular traps require peptidylarginine deiminase 2 and 4 and are a source of citrullinated antigens bound by rheumatoid arthritis autoantibodies. Front Immunol 2024; 15:1167362. [PMID: 38476240 PMCID: PMC10927735 DOI: 10.3389/fimmu.2024.1167362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis, but the sources of citrullinated antigens as well as which peptidylarginine deiminases (PADs) are required for their production remain incompletely defined. Here, we investigated if macrophage extracellular traps (METs) could be a source of citrullinated proteins bound by APCAs, and if their formation requires PAD2 or PAD4. Methods Thioglycolate-induced peritoneal macrophages from wild-type, PAD2-/-, and PAD4-/- mice or human peripheral blood-derived M1 macrophages were activated with a variety of stimulants, then fixed and stained with DAPI and either anti-citrullinated histone H4 (citH4) antibody or sera from ACPA+ or ACPA- rheumatoid arthritis subjects. METs were visualized by immunofluorescence, confirmed to be extracellular using DNase, and quantified. Results We found that ionomycin and monosodium urate crystals reliably induced murine citH4+ METs, which were reduced in the absence of PAD2 and lost in the absence of PAD4. Also, IgG from ACPA+, but not ACPA-, rheumatoid arthritis sera bound to murine METs, and in the absence of PAD2 or PAD4, ACPA-bound METs were lost. Finally, ionomycin induced human METs that are citH4+ and ACPA-bound. Discussion Thus, METs may contribute to the pool of citrullinated antigens bound by ACPAs in a PAD2- and PAD4-dependent manner, providing new insights into the targets of immune tolerance loss in rheumatoid arthritis.
Collapse
Affiliation(s)
- S. Janna Bashar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Caitlyn L. Holmes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Miriam A. Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- William S. Middleton Memorial Veteran’s Hospital, Madison, WI, United States
| |
Collapse
|
19
|
Tankov S, Petrovic M, Lecoultre M, Espinoza F, El-Harane N, Bes V, Chliate S, Bedoya DM, Jordan O, Borchard G, Migliorini D, Dutoit V, Walker PR. Hypoxic glioblastoma-cell-derived extracellular vesicles impair cGAS-STING activity in macrophages. Cell Commun Signal 2024; 22:144. [PMID: 38389103 PMCID: PMC10882937 DOI: 10.1186/s12964-024-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Solid tumors such as glioblastoma (GBM) exhibit hypoxic zones that are associated with poor prognosis and immunosuppression through multiple cell intrinsic mechanisms. However, release of extracellular vesicles (EVs) has the potential to transmit molecular cargos between cells. If hypoxic cancer cells use EVs to suppress functions of macrophages under adequate oxygenation, this could be an important underlying mechanism contributing to the immunosuppressive and immunologically cold tumor microenvironment of tumors such as GBM. METHODS EVs were isolated by differential ultracentrifugation from GBM cell culture supernatant. EVs were thoroughly characterized by transmission and cryo-electron microscopy, nanoparticle tracking analysis (NTA), and EV marker expression by Western blot and fluorescent NTA. EV uptake by macrophage cells was observed using confocal microscopy. The transfer of miR-25/93 as an EV cargo to macrophages was confirmed by miRNA real-time qPCR. The impact of miR-25/93 on the polarization of recipient macrophages was shown by transcriptional analysis, cytokine secretion and functional assays using co-cultured T cells. RESULTS We show that indirect effects of hypoxia can have immunosuppressive consequences through an EV and microRNA dependent mechanism active in both murine and human tumor and immune cells. Hypoxia enhanced EV release from GBM cells and upregulated expression of miR-25/93 both in cells and in EV cargos. Hypoxic GBM-derived EVs were taken up by macrophages and the miR-25/93 cargo was transferred, leading to impaired cGAS-STING pathway activation revealed by reduced type I IFN expression and secretion by macrophages. The EV-treated macrophages downregulated expression of M1 polarization-associated genes Cxcl9, Cxcl10 and Il12b, and had reduced capacity to attract activated T cells and to reactivate them to release IFN-γ, key components of an efficacious anti-tumor immune response. CONCLUSIONS Our findings suggest a mechanism by which immunosuppressive consequences of hypoxia mediated via miRNA-25/93 can be exported from hypoxic GBM cells to normoxic macrophages via EVs, thereby contributing to more widespread T-cell mediated immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Stoyan Tankov
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Marija Petrovic
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Lecoultre
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Felipe Espinoza
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Nadia El-Harane
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Viviane Bes
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Sylvie Chliate
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Darel Martinez Bedoya
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Valérie Dutoit
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Paul R Walker
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland.
| |
Collapse
|
20
|
Koenis DS, de Matteis R, Rajeeve V, Cutillas P, Dalli J. Efferocyte-Derived MCTRs Metabolically Prime Macrophages for Continual Efferocytosis via Rac1-Mediated Activation of Glycolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304690. [PMID: 38064171 PMCID: PMC10870015 DOI: 10.1002/advs.202304690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Indexed: 02/17/2024]
Abstract
Clearance of multiple rounds of apoptotic cells (ACs) through continual efferocytosis is critical in the maintenance of organ function, the resolution of acute inflammation, and tissue repair. To date, little is known about the nature of mechanisms and factors that govern this fundamental process. Herein, the authors reported that breakdown of ACs leads to upregulation of 12-lipoxygenase in macrophages. This enzyme converts docosahexaenoic acid to maresin conjugates in tissue regeneration (MCTRs). The levels of these autacoids are elevated at sites of high apoptotic burden in vivo and in efferocytosing macrophages in vitro. Abrogation of MCTR production using genetic approaches limits the ability of macrophages to perform continual efferocytosis both in vivo and in vitro, an effect that is rescued by add-back of MCTRs. Mechanistically, MCTR-mediated priming of macrophages for continual efferocytosis is dependent on alterations in Rac1 signalling and glycolytic metabolism. Inhibition of Rac1 abolishes the ability of MCTRs to increase glucose uptake and efferocytosis in vitro, whereas inhibition of glycolysis limits the MCTR-mediated increases in efferocytosis and tissue repair. Together, these findings demonstrate that upregulation of MCTRs by efferocytosing macrophages plays a central role in the regulation of continual efferocytosis via the autocrine and paracrine modulation of metabolic pathways.
Collapse
Affiliation(s)
- Duco Steven Koenis
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Roberta de Matteis
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Vinothini Rajeeve
- Centre for Genomics and Computational BiologyBarts Cancer InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Pedro Cutillas
- Centre for Genomics and Computational BiologyBarts Cancer InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
| | - Jesmond Dalli
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonEC1M 6BQUK
- Centre for Inflammation and Therapeutic InnovationQueen Mary University of LondonLondonEC1M 6BQUK
| |
Collapse
|
21
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli-lipopolysaccharide, whereas it modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. Microbiol Spectr 2024; 12:e0347523. [PMID: 38018982 PMCID: PMC10782955 DOI: 10.1128/spectrum.03475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cell's activation via bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by TLR4. For this reason, scientists have aimed to develop antagonists able to block TLR4 and, thereby the cytokine storm. We report here that a mixture of mu-class isoforms from the F. hepatica GST protein family administered intraperitoneally 1 h prior to a lethal LPS injection can modulate the dynamics and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice while significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock. These results suggest that native F. hepatica glutathione S-transferase is a promising candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Loyda B. Mendez
- School of Sciences and Technologies, University Ana G. Mendez, Carolina, Puerto Rico
| | - Ana M. Espino
- Department of Microbiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
22
|
Makdissi N. Macrophage Development and Function. Methods Mol Biol 2024; 2713:1-9. [PMID: 37639112 DOI: 10.1007/978-1-0716-3437-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages were first described over a hundred years ago. Throughout the years, they were shown to be essential players in their tissue-specific environment, performing various functions during homeostatic and disease conditions. Recent reports shed more light on their ontogeny as long-lived, self-maintained cells with embryonic origin in most tissues. They populate the different tissues early during development, where they help to establish and maintain homeostasis. In this chapter, the history of macrophages is discussed. Furthermore, macrophage ontogeny and core functions in the different tissues are described.
Collapse
Affiliation(s)
- Nikola Makdissi
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Filipczak-Bryniarska I, Nazimek K, Nowak B, Skalska P, Cieślik M, Fedor A, Gębicka M, Kruk G, Pełka-Zakielarz J, Kozlowski M, Bryniarski K. Immunomodulation by tramadol combined with acetaminophen or dexketoprofen: In vivo animal study. Int Immunopharmacol 2023; 125:110985. [PMID: 37866314 DOI: 10.1016/j.intimp.2023.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Among other functions, macrophages remove foreign particles, including medications, from the circulation, making them an important target for immunomodulatory molecules. Currently, growing evidence suggests that analgesics affect the activity of immune cells not directly related to pain, and thus may induce unwanted immunosuppression in patients at risk. However, the immunomodulatory effects resulting from macrophage targeting by these drugs are understudied. Therefore, the current study investigated the immune effects induced in healthy mice by repeated administration of tramadol alone or in combination with acetaminophen or dexketoprofen. We observed that drug administration decreased the percentage of infiltrating macrophages in favor of resident macrophages in peritoneal exudates. While all drugs reduced the number of infiltrating macrophages that phagocytosed sheep red blood cells (SRBC), their administration increased the effectiveness of phagocytosis, and treatment with acetaminophen with or without tramadol elevated the expression of MHC class II by Mac3+ macrophages. Interestingly, SRBC-pulsed macrophages from mice treated with tramadol combined with acetaminophen potently activated SRBC-specific B cells in humoral response, and administration of these drugs to recipients of contact hypersensitivity effector cells augmented the resulting cellular immune response. In addition, tramadol administered alone or with dexketoprofen enhanced the spontaneous release of pro-inflammatory cytokines by macrophages. Our current research findings demonstrate that tramadol therapy in combination with acetaminophen or dexketoprofen has a relatively low risk of causing immunosuppressive side effect because the drugs slightly reduce the inflammatory reaction of macrophages but do not impair their ability to activate the adaptive immune responses.
Collapse
Affiliation(s)
- Iwona Filipczak-Bryniarska
- Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, 2 Jakubowskiego St, PL 30-688 Krakow, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland
| | - Paulina Skalska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland
| | - Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland
| | - Angelika Fedor
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland
| | - Magdalena Gębicka
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland
| | - Gabriela Kruk
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland
| | - Joanna Pełka-Zakielarz
- Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, 2 Jakubowskiego St, PL 30-688 Krakow, Poland
| | - Michael Kozlowski
- Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, 2 Jakubowskiego St, PL 30-688 Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland.
| |
Collapse
|
24
|
Oleszycka E, O’Brien EC, Freeley M, Lavelle EC, Long A. Bile acids induce IL-1α and drive NLRP3 inflammasome-independent production of IL-1β in murine dendritic cells. Front Immunol 2023; 14:1285357. [PMID: 38090554 PMCID: PMC10711081 DOI: 10.3389/fimmu.2023.1285357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Bile acids are amphipathic molecules that are synthesized from cholesterol in the liver and facilitate intestinal absorption of lipids and nutrients. They are released into the small intestine upon ingestion of a meal where intestinal bacteria can modify primary into secondary bile acids. Bile acids are cytotoxic at high concentrations and have been associated with inflammatory diseases such as liver inflammation and Barrett's Oesophagus. Although bile acids induce pro-inflammatory signalling, their role in inducing innate immune cytokines and inflammation has not been fully explored to date. Here we demonstrate that the bile acids, deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) induce IL-1α and IL-1β secretion in vitro in primed bone marrow derived dendritic cells (BMDCs). The secretion of IL-1β was found not to require expression of NLRP3, ASC or caspase-1 activity; we can't rule out all inflammasomes. Furthermore, DCA and CDCA were shown to induce the recruitment of neutrophils and monocytes to the site of injection an intraperitoneal model of inflammation. This study further underlines a mechanistic role for bile acids in the pathogenesis of inflammatory diseases through stimulating the production of pro-inflammatory cytokines and recruitment of innate immune cells.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Eoin C. O’Brien
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael Freeley
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Zhang W, Liu K, Ren GM, Wang Y, Wang T, Liu X, Li DX, Xiao Y, Chen X, Li YT, Zhan YQ, Xiang SS, Chen H, Gao HY, Zhao K, Yu M, Ge CH, Li CY, Ge ZQ, Yang XM, Yin RH. BRISC is required for optimal activation of NF-κB in Kupffer cells induced by LPS and contributes to acute liver injury. Cell Death Dis 2023; 14:743. [PMID: 37968261 PMCID: PMC10651896 DOI: 10.1038/s41419-023-06268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
BRISC (BRCC3 isopeptidase complex) is a deubiquitinating enzyme that has been linked with inflammatory processes, but its role in liver diseases and the underlying mechanism are unknown. Here, we investigated the pathophysiological role of BRISC in acute liver failure using a mice model induced by D-galactosamine (D-GalN) plus lipopolysaccharide (LPS). We found that the expression of BRISC components was dramatically increased in kupffer cells (KCs) upon LPS treatment in vitro or by the injection of LPS in D-GalN-sensitized mice. D-GalN plus LPS-induced liver damage and mortality in global BRISC-null mice were markedly attenuated, which was accompanied by impaired hepatocyte death and hepatic inflammation response. Constantly, treatment with thiolutin, a potent BRISC inhibitor, remarkably alleviated D-GalN/LPS-induced liver injury in mice. By using bone marrow-reconstituted chimeric mice and cell-specific BRISC-deficient mice, we demonstrated that KCs are the key effector cells responsible for protection against D-GalN/LPS-induced liver injury in BRISC-deficient mice. Mechanistically, we found that hepatic and circulating levels of TNF-α, IL-6, MCP-1, and IL-1β, as well as TNF-α- and MCP-1-producing KCs, in BRISC-deleted mice were dramatically decreased as early as 1 h after D-GalN/LPS challenge, which occurred prior to the elevation of the liver injury markers. Moreover, LPS-induced proinflammatory cytokines production in KCs was significantly diminished by BRISC deficiency in vitro, which was accompanied by potently attenuated NF-κB activation. Restoration of NF-κB activation by two small molecular activators of NF-κB p65 effectively reversed the suppression of cytokines production in ABRO1-deficient KCs by LPS. In conclusion, BRISC is required for optimal activation of NF-κB-mediated proinflammatory cytokines production in LPS-treated KCs and contributes to acute liver injury. This study opens the possibility to develop new strategies for the inhibition of KCs-driven inflammation in liver diseases.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Kai Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ting Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Dong-Xu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yang Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xu Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ya-Ting Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shen-Si Xiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Qiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
26
|
Favor OK, Rajasinghe LD, Wierenga KA, Maddipati KR, Lee KSS, Olive AJ, Pestka JJ. Crystalline silica-induced proinflammatory eicosanoid storm in novel alveolar macrophage model quelled by docosahexaenoic acid supplementation. Front Immunol 2023; 14:1274147. [PMID: 38022527 PMCID: PMC10665862 DOI: 10.3389/fimmu.2023.1274147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Phagocytosis of inhaled crystalline silica (cSiO2) particles by tissue-resident alveolar macrophages (AMs) initiates generation of proinflammatory eicosanoids derived from the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) that contribute to chronic inflammatory disease in the lung. While supplementation with the ω-3 PUFA docosahexaenoic acid (DHA) may influence injurious cSiO2-triggered oxylipin responses, in vitro investigation of this hypothesis in physiologically relevant AMs is challenging due to their short-lived nature and low recovery numbers from mouse lungs. To overcome these challenges, we employed fetal liver-derived alveolar-like macrophages (FLAMs), a self-renewing surrogate that is phenotypically representative of primary lung AMs, to discern how DHA influences cSiO2-induced eicosanoids. Methods We first compared how delivery of 25 µM DHA as ethanolic suspensions or as bovine serum albumin (BSA) complexes to C57BL/6 FLAMs impacts phospholipid fatty acid content. We subsequently treated FLAMs with 25 µM ethanolic DHA or ethanol vehicle (VEH) for 24 h, with or without LPS priming for 2 h, and with or without cSiO2 for 1.5 or 4 h and then measured oxylipin production by LC-MS lipidomics targeting for 156 oxylipins. Results were further related to concurrent proinflammatory cytokine production and cell death induction. Results DHA delivery as ethanolic suspensions or BSA complexes were similarly effective at increasing ω-3 PUFA content of phospholipids while decreasing the ω-6 PUFA arachidonic acid (ARA) and the ω-9 monounsaturated fatty acid oleic acid. cSiO2 time-dependently elicited myriad ARA-derived eicosanoids consisting of prostaglandins, leukotrienes, thromboxanes, and hydroxyeicosatetraenoic acids in unprimed and LPS-primed FLAMs. This cSiO2-induced eicosanoid storm was dramatically suppressed in DHA-supplemented FLAMs which instead produced potentially pro-resolving DHA-derived docosanoids. cSiO2 elicited marked IL-1α, IL-1β, and TNF-α release after 1.5 and 4 h of cSiO2 exposure in LPS-primed FLAMs which was significantly inhibited by DHA. DHA did not affect cSiO2-triggered death induction in unprimed FLAMs but modestly enhanced it in LPS-primed FLAMs. Discussion FLAMs are amenable to lipidome modulation by DHA which suppresses cSiO2-triggered production of ARA-derived eicosanoids and proinflammatory cytokines. FLAMs are a potential in vitro alternative to primary AMs for investigating interventions against early toxicant-triggered inflammation in the lung.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | | | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
27
|
Podolnikova NP, Lishko VK, Roberson R, Koh Z, Derkach D, Richardson D, Sheller M, Ugarova TP. Platelet factor 4 improves survival in a murine model of antibiotic-susceptible and methicillin-resistant Staphylococcus aureus peritonitis. Front Cell Infect Microbiol 2023; 13:1217103. [PMID: 37868353 PMCID: PMC10585365 DOI: 10.3389/fcimb.2023.1217103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Valeryi K. Lishko
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Robert Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zhiqian Koh
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | | | - Michael Sheller
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Tatiana P. Ugarova
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
28
|
Podolnikova NP, Lishko VK, Roberson R, Koh Z, Derkach D, Richardson D, Sheller M, Ugarova TP. PLATELET FACTOR 4 (PF4) IMPROVES SURVIVAL IN A MURINE MODEL OF ANTIBIOTIC-SUSCEPTIBLE AND METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS PERITONITIS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554865. [PMID: 37662328 PMCID: PMC10473751 DOI: 10.1101/2023.08.25.554865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | | | - Robert Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Zhqian Koh
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | | | - Michael Sheller
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
29
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli -lipopolysaccharide whereas modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552847. [PMID: 37609327 PMCID: PMC10441391 DOI: 10.1101/2023.08.10.552847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The helminth Fasciola hepatica is known as a master of immunomodulation. It suppresses antigen specific Th1 responses in concurrent bacterial infections while promoting the Th2/Treg regulatory responses, thus demonstrating its anti-inflammatory ability in vivo . We have recently demonstrated that a single intraperitoneal injection with native F. hepatica Glutathione S -Transferase (nFhGST), mostly comprised of mu-class isoforms, can suppresses the cytokine storm and increasing the survival rate in a mouse model of septic shock (1). Knowing that the peritoneal macrophages in response to microbial stimuli play essential roles in the defense, tissue repairment, and maintenance of homeostasis, the present study aimed to determine whether nFhGST could modulate the amount and dynamic of these cells concurrently to the suppression of pro-inflammatory cytokines. The remarkable findings described in this article are, (i) nFhGST suppresses serum IL-12, TNF-α, and IFN-γ in BALB/c mice challenged with a lethal dose of LPS, (ii) Although nFhGST does not elicit IL-10, it was able to significantly suppress the high levels of LPS-induced IL-10, which is considered a key cytokine in the pathophysiology of sepsis (2). iii) nFhGST prevent the disappearance of large peritoneal macrophages (LPM) whereas significantly increasing this population in the peritoneal cavity (PerC) of LPS treated animals, (iv) nFhGST promotes the alternative activation of macrophages whereas suppress the classical activation of macrophages in vitro by expressing high levels of Ym-1, a typical M2-type marker, secreting the production of IL-37, and preventing the production of TNF-α, iNOS2 and nitric oxide, which are typical markers of M1-type macrophages, (v) nFhGST suppress the bacterial phagocytosis of macrophages, a role that plays both, M1-and M2-macrophages, thus partially affecting the capacity of macrophages in destroying microbial pathogens. These findings present the first evidence that nFhGST is an excellent modulator of the PerC content in vivo, reinforcing the capacity of nFhGST as an anti-inflammatory drug against sepsis in animal models. Importance Sepsis is an infection that can lead to a life-threatening complication. Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cells' activation by bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by toll-like receptor 4 (TLR4). For this reason, scientists aimed to develop antagonists able to block the cytokine storm by blocking TLR4. We report here that a mixture of mu-class isoforms from the F. hepatica glutathione S-transferase (nFhGST) protein family administered intraperitoneally 1 h after a lethal LPS injection, is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock whereas modulate the dynamic and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice. These results suggest that nFhGST is a prominent candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
|
30
|
Cornet-Gomez A, Moreira LR, Gomez-Samblás M, Osuna A. Extracellular vesicles of Trypanosoma cruzi and immune complexes they form with sialylated and non-sialylated IgGs increase small peritoneal macrophage subpopulation and elicit different cytokines profiles. Front Immunol 2023; 14:1215913. [PMID: 37600828 PMCID: PMC10434529 DOI: 10.3389/fimmu.2023.1215913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
American trypanosomiasis, or Chagas disease, is caused by the protozoan parasite Trypanosoma cruzi and is characterized by the presence of cardiac or gastrointestinal symptoms in a large number of patients during the chronic phase of the disease. Although the origin of the symptoms is not clear, several mechanisms have been described involving factors related to T. cruzi and the host immune response. In this sense, the extracellular vesicles (EVs) secreted by the parasite and the immune complexes (ICs) formed after their recognition by host IgGs (EVs-IgGs) may play an important role in the immune response during infection. The aim of the present work is to elucidate the modulation of the immune response exerted by EVs and the ICs they form by analyzing the variation in the subpopulations of small and large peritoneal macrophages after intraperitoneal inoculation in mice and to evaluate the role of the sialylation of the host IgGs in this immunomodulation. Both macrophage subpopulations were purified and subjected to cytokine expression analysis by RT-qPCR. The results showed an increase in the small peritoneal macrophage subpopulation after intraperitoneal injection of parasite EVs, but a greater increase in this subpopulation was observed when sialylated and non-sialylated ICs were injected, which was similar to inoculation with the trypomastigote stage of the parasite. The cytokine expression results showed the ability of both subpopulations to express inflammatory and non-inflammatory cytokines. These results suggest the role of free EVs in the acute phase of the disease and the possible role of immune complexes in the immune response in the chronic phase of the disease, when the levels of antibodies against the parasite allow the formation of immune complexes. The differential expression of interleukins showed after the inoculation of immune complexes formed with sialylated and non-sialylated IgGs and the interleukins expression induced by EVs, demonstrates that the IgG glycosilation is involved in the type of immune response that dominates in each of the phases of the Chagas disease.
Collapse
Affiliation(s)
- Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Lissette Retana Moreira
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Mercedes Gomez-Samblás
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| |
Collapse
|
31
|
Prat M, Coulson K, Blot C, Jacquemin G, Romano M, Renoud ML, AlaEddine M, Le Naour A, Authier H, Rahabi MC, Benmoussa K, Salon M, Parny M, Delord JP, Ferron G, Lefèvre L, Couderc B, Coste A. PPARγ activation modulates the balance of peritoneal macrophage populations to suppress ovarian tumor growth and tumor-induced immunosuppression. J Immunother Cancer 2023; 11:e007031. [PMID: 37586764 PMCID: PMC10432661 DOI: 10.1136/jitc-2023-007031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Ovarian adenocarcinoma (OVAD) frequently metastasizes to the peritoneal cavity and manifests by the formation of ascites, which constitutes a tumor-promoting microenvironment. In the peritoneal cavity, two developmentally, phenotypically and functionally distinct macrophage subsets, immunocompetent large peritoneal macrophages (LPM) and immunosuppressive small peritoneal macrophages (SPM), coexist. Because peroxisome proliferator-activated receptor γ (PPARγ) is a critical factor participating in macrophage differentiation and cooperates with CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor essential for SPM-to-LPM differentiation, PPARγ could be also involved in the regulation of SPM/LPM balance and could be a promising therapeutic target. METHODS To evaluate the 15(S)-hydroxyeicosatetraenoic acid (HETE), a PPARγ endogenous ligand, impact on ovarian tumor growth, we intraperitoneally injected 15(S)-HETE into a murine ovarian cancer model. This experimental model consists in the intraperitoneally injection of ID8 cells expressing luciferase into syngeneic C57BL/6 female mice. This ID8 orthotopic mouse model is a well-established experimental model of end-stage epithelial OVAD. Tumor progression was monitored using an in vivo imaging system. Peritoneal immune cells in ascites were analyzed by flow cytometry and cell sorting. To determine whether the impact of 15(S)-HETE in tumor development is mediated through the macrophages, these cells were depleted by injection of liposomal clodronate. To further dissect how 15(S)-HETE mediated its antitumor effect, we assessed the tumor burden in tumor-bearing mice in which the PPARγ gene was selectively disrupted in myeloid-derived cells and in mice deficient of the recombination-activating gene Rag2. Finally, to validate our data in humans, we isolated and treated macrophages from ascites of individuals with OVAD. RESULTS Here we show, in the murine experimental model of OVAD, that 15(S)-HETE treatment significantly suppresses the tumor growth, which is associated with the differentiation of SPM into LPM and the LPM residency in the peritoneal cavity. We demonstrate that C/EBPβ and GATA6 play a central role in SPM-to-LPM differentiation and in LPM peritoneal residence through PPARγ activation during OVAD. Moreover, this SPM-to-LPM switch is associated with the increase of the effector/regulatory T-cell ratio. Finally, we report that 15(S)-HETE attenuates immunosuppressive properties of human ovarian tumor-associated macrophages from ascites. CONCLUSION Altogether, these results promote PPARγ as a potential therapeutic target to restrain OVAD development and strengthen the use of PPARγ agonists in anticancer therapy.
Collapse
Affiliation(s)
- Mélissa Prat
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Kimberley Coulson
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Clément Blot
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Godefroy Jacquemin
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mathilde Romano
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie-Laure Renoud
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mohamad AlaEddine
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Augustin Le Naour
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
| | - Hélène Authier
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mouna Chirine Rahabi
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Khaddouj Benmoussa
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie Salon
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mélissa Parny
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | | | - Gwenaël Ferron
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Lise Lefèvre
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Bettina Couderc
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Agnès Coste
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| |
Collapse
|
32
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
|
33
|
Wallings RL, Mark JR, Staley HA, Gillett DA, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. Totally tubular: ASO-mediated knock-down of G2019S -Lrrk2 modulates lysosomal tubule-associated antigen presentation in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549028. [PMID: 37503274 PMCID: PMC10370014 DOI: 10.1101/2023.07.14.549028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD-therapeutics with LRRK2 antisense oligonucleotides (ASOs) now in clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Furthermore, the precise role of LRRK2 in immune cells is currently unknown, although it has been suggested that LRRK2-mediated lysosomal function may be crucial to immune responses. Here, it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knock down of mutant Lrrk 2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targetting therapies may have therapeutic value with regards to mutant LRRK2 but deleterious effects on the peripheral immune system, such as altered pathogen control and infection resolution.
Collapse
|
34
|
D'Urso A, Oltolina F, Borsotti C, Prat M, Colangelo D, Follenzi A. Macrophage Reprogramming via the Modulation of Unfolded Protein Response with siRNA-Loaded Magnetic Nanoparticles in a TAM-like Experimental Model. Pharmaceutics 2023; 15:1711. [PMID: 37376159 DOI: 10.3390/pharmaceutics15061711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an irregular unfolded protein response (UPR) in their endoplasmic reticulum (ER) to endure environmental stress and ensure anti-cancer immunity. Therefore, nanotechnology could be an attractive tool to modulate the UPR in TAMs, providing an alternative strategy for TAM-targeted repolarization therapy. Herein, we developed and tested polydopamine-coupled magnetite nanoparticles (PDA-MNPs) functionalized with small interfering RNAs (siRNA) to downregulate the protein kinase R (PKR)-like ER kinase (PERK) expression in TAM-like macrophages derived from murine peritoneal exudate (PEMs). After the evaluation of the cytocompatibility, the cellular uptake, and the gene silencing efficiency of PDA-MNPs/siPERK in PEMs, we analyzed their ability to re-polarize in vitro these macrophages from M2 to the M1 inflammatory anti-tumor phenotype. Our results indicate that PDA-MNPs, with their magnetic and immunomodulator features, are cytocompatible and able to re-educate TAMs toward the M1 phenotype by PERK inhibition, a UPR effector contributing to TAM metabolic adaptation. These findings can provide a novel strategy for the development of new tumor immunotherapies in vivo.
Collapse
Affiliation(s)
- Annarita D'Urso
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Francesca Oltolina
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Maria Prat
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
35
|
Ardavín C, Alvarez‐Ladrón N, Ferriz M, Gutiérrez‐González A, Vega‐Pérez A. Mouse Tissue-Resident Peritoneal Macrophages in Homeostasis, Repair, Infection, and Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206617. [PMID: 36658699 PMCID: PMC10104642 DOI: 10.1002/advs.202206617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Large peritoneal macrophages (LPMs) are long-lived, tissue-resident macrophages, formed during embryonic life, developmentally and functionally confined to the peritoneal cavity. LPMs provide the first line of defense against life-threatening pathologies of the peritoneal cavity, such as abdominal sepsis, peritoneal metastatic tumor growth, or peritoneal injuries caused by trauma, or abdominal surgery. Apart from their primary phagocytic function, reminiscent of primitive defense mechanisms sustained by coelomocytes in the coelomic cavity of invertebrates, LPMs fulfill an essential homeostatic function by achieving an efficient clearance of apoptotic, that is crucial for the maintenance of self-tolerance. Research performed over the last few years, in mice, has unveiled the mechanisms by which LPMs fulfill a crucial role in repairing peritoneal injuries and controlling microbial and parasitic infections, reflecting that the GATA6-driven LPM transcriptional program can be modulated by extracellular signals associated with pathological conditions. In contrast, recent experimental evidence supports that peritoneal tumors can subvert LPM metabolism and function, leading to the acquisition of a tumor-promoting potential. The remarkable functional plasticity of LPMs can be nevertheless exploited to revert tumor-induced LPM protumor potential, providing the basis for the development of novel immunotherapeutic approaches against peritoneal tumor metastasis based on macrophage reprogramming.
Collapse
Affiliation(s)
- Carlos Ardavín
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Natalia Alvarez‐Ladrón
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Margarita Ferriz
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | | | - Adrián Vega‐Pérez
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
- Present address:
Sandra and Edward Meyer Cancer CenterWeill Cornell Medicine1300 York AvenueNew YorkNY10065USA
| |
Collapse
|
36
|
Fabrik I, Bilkei-Gorzo O, Öberg M, Fabrikova D, Fuchs J, Sihlbom C, Göransson M, Härtlova A. Lung macrophages utilize unique cathepsin K-dependent phagosomal machinery to degrade intracellular collagen. Life Sci Alliance 2023; 6:e202201535. [PMID: 36697252 PMCID: PMC9877437 DOI: 10.26508/lsa.202201535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Resident tissue macrophages are organ-specialized phagocytes responsible for the maintenance and protection of tissue homeostasis. It is well established that tissue diversity is reflected by the heterogeneity of resident tissue macrophage origin and phenotype. However, much less is known about tissue-specific phagocytic and proteolytic macrophage functions. Here, using a quantitative proteomics approach, we identify cathepsins as key determinants of phagosome maturation in primary peritoneum-, lung-, and brain-resident macrophages. The data further uncover cathepsin K (CtsK) as a molecular marker for lung phagosomes required for intracellular protein and collagen degradation. Pharmacological blockade of CtsK activity diminished phagosomal proteolysis and collagenolysis in lung-resident macrophages. Furthermore, profibrotic TGF-β negatively regulated CtsK-mediated phagosomal collagen degradation independently from classical endocytic-proteolytic pathways. In humans, phagosomal CtsK activity was reduced in COPD lung macrophages and non-COPD lung macrophages exposed to cigarette smoke extract. Taken together, this study provides a comprehensive map of how peritoneal, lung, and brain tissue environment shapes phagosomal composition, revealing CtsK as a key molecular determinant of lung phagosomes contributing to phagocytic collagen clearance in lungs.
Collapse
Affiliation(s)
- Ivo Fabrik
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Orsolya Bilkei-Gorzo
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Öberg
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniela Fabrikova
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Melker Göransson
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anetta Härtlova
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Defining and targeting tumor-associated macrophages in malignant mesothelioma. Proc Natl Acad Sci U S A 2023; 120:e2210836120. [PMID: 36821580 PMCID: PMC9992826 DOI: 10.1073/pnas.2210836120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/pleural macrophages (SPM), and the tissue-resident large peritoneal/pleural macrophages (LPM). SPM rapidly increased in tumor microenvironment after tumor challenge and contributed to the vast majority of M2-like TAM. The selective depletion of M2-like TAM by conditional deletion of the Dicer1 gene in myeloid cells (D-/-) promoted tumor rejection. Sorted SPM M2-like TAM initiated tumorigenesis in vivo and in vitro, confirming their capacity to support tumor development. The transcriptomic and single-cell RNA sequencing analysis demonstrated that both SPM and LPM contributed to the tumor microenvironment by promoting the IL-2-STAT5 signaling pathway, inflammation, and epithelial-mesenchymal transition. However, while SPM preferentially activated the KRAS and TNF-α/NFkB signaling pathways, LPM activated the IFN-γ response. The importance of LPM in the immune response was confirmed by depleting LPM with intrapleural clodronate liposomes, which abrogated the antitumoral memory immunity. SPM gene signature could be identified in pleural effusion and tumor from patients with untreated mesothelioma. Five genes, TREM2, STAB1, LAIR1, GPNMB, and MARCO, could potentially be specific therapeutic targets. Accordingly, Trem2 gene deletion led to reduced SPM M2-like TAM with compensatory increase in LPM and slower tumor growth. Overall, these experiments demonstrate that SPM M2-like TAM play a key role in mesothelioma development, while LPM more specifically contribute to the immune response. Therefore, selective targeting of monocyte-derived TAM may enhance antitumor immunity through compensatory expansion of tissue-resident TAM.
Collapse
|
38
|
Co-Treatment with Human Leukocyte Extract and Albendazole Stimulates Drug's Efficacy and Th1 Biased Immune Response in Mesocestoides vogae (Cestoda) Infection via Modulation of Transcription Factors, Macrophage Polarization, and Cytokine Profiles. Pharmaceutics 2023; 15:pharmaceutics15020541. [PMID: 36839863 PMCID: PMC9962889 DOI: 10.3390/pharmaceutics15020541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The model flatworm Mesocestoides vogae proliferating stage of infection elicits immunosuppression in the host. It was used to investigate the effects of human leukocyte extract (DLE) alone and in combination with anthelmintic albendazole (ABZ) on the reduction in peritoneal infection, peritoneal exudate cells (PECs), their adherent counterparts, and peritoneal exudates after the termination of therapy. Balb/c mice were infected with the larvae of M. vogae. PECs and adherent macrophages were studied via flow cytometry, mRNA transcript levels, and immunofluorescence. The cytokine levels were measured via ELISA and larvae were counted. ABZ significantly reduced larval counts (581.2 ± 65, p < 0.001), but the highest reduction was observed after combined treatment with ABZ and DLE (389.2 ± 119, p < 0.001) in comparison with the control. Compared to an infected group, the proportions of CD11b+CD19- myeloid cells with suppressive ability decreased after albendazole (ABZ) in combination with DLE, which was the most effective in the elevation of B cells and CD11b+F4/80mid/highMHCIIhigh macrophages/monocytes (22.2 ± 5.4%). Transcripts of the M2 macrophage markers (arginase 1, FIZZ-1, and Ym-1) were downregulated after DLE and combined therapy but not after ABZ, and the opposite trend was seen for iNOS. This contrasts with reduced ex vivo NO production by LPS-stimulated PECs from DLE and ABZ+DLE groups, where adherent macrophages/monocytes had elevated transcripts of the INF-γ receptor and STAT1 and reduced expression of STAT3, STAT6, and IL-10. Each therapy differentially modulated transcription profiles and concentrations of IFN-γ, TNF-α, IL-12p40, IL-6, IL-10, and TGF-β cytokines. DLE strongly ameliorated ABZ-induced suppression of INF-γ and IL-12 and preserved downregulation for IL-4, IL-10, and TGF-β. Epigenetic study on adherent macrophages from infected mice showed that ABZ, ABZ-sulfoxide, and DLE could interact with the mRNA of examined markers in a dose-dependent pattern. Co-administration of DLE with ABZ seemed to augment the drug's larvicidal effect via modulation of immunity. In comparison with ABZ, combined therapy was the most effective in alleviating parasite-induced Th2/Treg/STAT3/STA6 directed immunosuppression by stimulating the Th1 cytokines, M1 macrophage polarization, and activation of the IFNγ/STAT1 signaling pathway.
Collapse
|
39
|
Shimizu M, Hojo M, Ikushima K, Yamamoto Y, Maeno A, Sakamoto Y, Ishimaru N, Taquahashi Y, Kanno J, Hirose A, Suzuki J, Inomata A, Nakae D. Continuous infiltration of small peritoneal macrophages in the mouse peritoneum through CCR2-dependent and -independent routes during fibrosis and mesothelioma development induced by a multiwalled carbon nanotube, MWNT-7. J Toxicol Sci 2023; 48:617-639. [PMID: 38044124 DOI: 10.2131/jts.48.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.
Collapse
Affiliation(s)
- Motomu Shimizu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University
| |
Collapse
|
40
|
Geng H, Wu Y, Chen Y. C-Terminal Fibronectin Exerts Beneficial Effects in Reducing Tissue Damage and Modulating Macrophage Function in a Murine Septic Model. J Inflamm Res 2023; 16:1509-1521. [PMID: 37064753 PMCID: PMC10103781 DOI: 10.2147/jir.s398282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Background Fibronectin (FN) can improve organ function and slow the progression of sepsis, but full-length FN is hard to be exacted as a therapeutic. Objective This study aimed to investigate the beneficial effects of C-terminal heparin-binding domain polypeptide of FN (rhFNHC-36) in a cecal ligation and puncture (CLP)-mediated murine septic model and explore its regulatory effects on macrophages. Methods Mice were randomly assigned to four groups: unoperated control (Normal), sham operation control (Sham), CLP-operation with intravenous injection of phosphate-buffered saline (CLP+PBS), and CLP-operation with rhFNHC-36 treatment (CLP+rhFNHC-36). Blood and abdominal fluid samples were subjected to bacterial colony formation assays. Organs (liver, spleen, and lung) were undergone histopathological analyses and/or weighed to obtain organ indices. Serum interleukin-6 (IL-6) levels, nitric oxide (NO) release from isolated abdominal macrophages, and chemotactic effect of macrophages were measured with commercial kits. Surface programmed death ligand 1 (PD-L1) expression on macrophages was measured by flow cytometry. Results Mice in the CLP+PBS group showed a lower survival rate than that in the CLP+rhFNHC-36 group. Improved survival was associated with better clearance of bacterial pathogens, as evidenced by colony formation assays. The CLP-induced decrease in thymus and spleen indices was attenuated by rhFNHC-36 treatments. rhFNHC-36 alleviated sepsis-associated tissue damage in liver, spleen, and lung. CLP-mediated increases in plasma IL-6 levels were reversed by rhFNHC-36 treatment. NO levels in peritoneal macrophages after lipopolysaccharides (LPS)-stimulation in the CLP+rhFNHC-36 group were lower than that in the CLP+PBS group. Notably, macrophages from the CLP+rhFNHC-36 group retained better chemotaxis ability. After LPS challenge, these macrophages had a reduced percentage of PD-L1-positive cells compared to those in the CLP+PBS group. Conclusion rhFNHC-36 improved survival of mice with CLP-induced sepsis by reducing tissue damage and modulating macrophage function. Our work provides critical insight for developing FN-based and macrophages-targeted therapeutics for treating sepsis.
Collapse
Affiliation(s)
- Haili Geng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Yuanzhong Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- Correspondence: Yuanzhong Chen, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, People’s Republic of China, Tel +86-13306908368, Email ;
| |
Collapse
|
41
|
Lachaud CC, Cobo-Vuilleumier N, Fuente-Martin E, Diaz I, Andreu E, Cahuana GM, Tejedo JR, Hmadcha A, Gauthier BR, Soria B. Umbilical cord mesenchymal stromal cells transplantation delays the onset of hyperglycemia in the RIP-B7.1 mouse model of experimental autoimmune diabetes through multiple immunosuppressive and anti-inflammatory responses. Front Cell Dev Biol 2023; 11:1089817. [PMID: 36875761 PMCID: PMC9976335 DOI: 10.3389/fcell.2023.1089817] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder specifically targeting pancreatic islet beta cells. Despite many efforts focused on identifying new therapies able to counteract this autoimmune attack and/or stimulate beta cells regeneration, TD1M remains without effective clinical treatments providing no clear advantages over the conventional treatment with insulin. We previously postulated that both the inflammatory and immune responses and beta cell survival/regeneration must be simultaneously targeted to blunt the progression of disease. Umbilical cord-derived mesenchymal stromal cells (UC-MSC) exhibit anti-inflammatory, trophic, immunomodulatory and regenerative properties and have shown some beneficial yet controversial effects in clinical trials for T1DM. In order to clarify conflicting results, we herein dissected the cellular and molecular events derived from UC-MSC intraperitoneal administration (i.p.) in the RIP-B7.1 mouse model of experimental autoimmune diabetes. Intraperitoneal (i.p.) transplantation of heterologous mouse UC-MSC delayed the onset of diabetes in RIP-B7.1 mice. Importantly, UC-MSC i. p. transplantation led to a strong peritoneal recruitment of myeloid-derived suppressor cells (MDSC) followed by multiple T-, B- and myeloid cells immunosuppressive responses in peritoneal fluid cells, spleen, pancreatic lymph nodes and the pancreas, which displayed significantly reduced insulitis and pancreatic infiltration of T and B Cells and pro-inflammatory macrophages. Altogether, these results suggest that UC-MSC i. p. transplantation can block or delay the development of hyperglycemia through suppression of inflammation and the immune attack.
Collapse
Affiliation(s)
- C C Lachaud
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - N Cobo-Vuilleumier
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - E Fuente-Martin
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - I Diaz
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - E Andreu
- Institute of Bioengineering and Health Research Institute (ISABIAL), Dr. Balmis University Hospital (HGUA), Miguel Hernández University School of Medicine, Alicante, Spain.,Department of Applied Physics, University Miguel Hernández, Alicante, Spain
| | - G M Cahuana
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - J R Tejedo
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - A Hmadcha
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Instituto de Investigación Biosanitaria, Universidad Internacional de Valencia (VIU), Valencia, Spain
| | - B R Gauthier
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - B Soria
- Institute of Bioengineering and Health Research Institute (ISABIAL), Dr. Balmis University Hospital (HGUA), Miguel Hernández University School of Medicine, Alicante, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
42
|
Abstract
In light of the demonstrated antagonism of Wnt5A signaling toward the growth of several bacterial pathogens, it was important to study the influence of Wnt5A on gut-resident bacteria and its outcome. Here, we demonstrate that in contrast to inhibiting the survival of the established gut pathogen Salmonella enterica, Wnt5A clearly promotes the survival of the common gut commensals Enterococcus faecalis and Lactobacillus rhamnosus within macrophages through a self-perpetuating Wnt5A-actin axis. A Wnt5A-actin axis furthermore regulates the subsistence of the natural bacterial population of the Peyer's patches, as is evident from the diminution in the countable bacterial CFU therein through the application of Wnt5A signaling and actin assembly inhibitors. Wnt5A dependency of the gut-resident bacterial population is also manifested in the notable difference between the bacterial diversities associated with the feces and Peyer's patches of Wnt5A heterozygous mice, which lack a functional copy of the Wnt5A gene, and their wild-type counterparts. Alterations in the gut commensal bacterial population resulting from either the lack of a copy of the Wnt5A gene or inhibitor-mediated attenuation of Wnt5A signaling are linked with significant differences in cell surface major histocompatibility complex (MHC) II levels and regulatory versus activated CD4 T cells associated with the Peyer's patches. Taken together, our findings reveal the significance of steady state Wnt5A signaling in shaping the gut commensal bacterial population and the T cell repertoire linked to it, thus unveiling a crucial control device for the maintenance of gut bacterial diversity and T cell homeostasis. IMPORTANCE Gut commensal bacterial diversity and T cell homeostasis are crucial entities of the host innate immune network, yet the molecular details of host-directed signaling pathways that sustain the steady state of gut bacterial colonization and T cell activation remain unclear. Here, we describe the protective role of a Wnt5A-actin axis in the survival of several gut bacterial commensals and its necessity in shaping gut bacterial colonization and the associated T cell repertoire. This study opens up new avenues of investigation into the role of the Wnt5A-actin axis in protection of the gut from dysbiosis-related inflammatory disorders.
Collapse
|
43
|
Mycobacterium tuberculosis ketol-acid reductoisomerase down-regulation affects its ability to persist, and its survival in macrophages and in mice. Microbes Infect 2022; 24:105000. [DOI: 10.1016/j.micinf.2022.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
44
|
Sahputra R, Dejyong K, Woolf AS, Mack M, Allen JE, Rückerl D, Herrick SE. Monocyte-derived peritoneal macrophages protect C57BL/6 mice against surgery-induced adhesions. Front Immunol 2022; 13:1000491. [PMID: 36275765 PMCID: PMC9583908 DOI: 10.3389/fimmu.2022.1000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/13/2022] [Indexed: 02/02/2023] Open
Abstract
Peritoneal adhesions commonly occur after abdominal or pelvic surgery. These scars join internal organs to each other or to the cavity wall and can present with abdominal or pelvic pain, and bowel obstruction or female infertility. The mechanisms underlying adhesion formation remain unclear and thus, effective treatments are not forthcoming. Peritoneal macrophages accumulate after surgery and previous studies have attributed either pro- or anti-scarring properties to these cells. We propose that there are complex and nuanced responses after surgery with respect to both resident and also monocyte-derived peritoneal macrophage subpopulations. Moreover, we contend that differences in responses of specific macrophage subpopulations in part explain the risk of developing peritoneal scars. We characterized alterations in peritoneal macrophage subpopulations after surgery-induced injury using two strains of mice, BALB/c and C57BL/6, with known differences in macrophage response post-infection. At 14 days post-surgery, BALB/c mice displayed more adhesions compared with C57BL/6 mice. This increase in scarring correlated with a lower influx of monocyte-derived macrophages at day 3 post-surgery. Moreover, BALB/c mice showed distinct macrophage repopulation dynamics after surgery. To confirm a role for monocyte-derived macrophages, we used Ccr2-deficient mice as well as antibody-mediated depletion of CCR2 expressing cells during initial stages of adhesion formation. Both Ccr2-deficient and CCR2-depleted mice showed a significant increase in adhesion formation associated with the loss of peritoneal monocyte influx. These findings revealed an important protective role for monocyte-derived cells in reducing adhesion formation after surgery.
Collapse
Affiliation(s)
- Rinal Sahputra
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Krittee Dejyong
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Royal Manchester Children’s Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Matthias Mack
- Department of Nephrology, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Judith E. Allen
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sarah E. Herrick
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Kim KH, Park J, Cho Y, Cho SY, Lee B, Jeong H, Lee Y, Yi JW, Oh Y, Lee JJ, Wang TC, Lim KM, Nam KT. Histamine Signaling Is Essential for Tissue Macrophage Differentiation and Suppression of Bacterial Overgrowth in the Stomach. Cell Mol Gastroenterol Hepatol 2022; 15:213-236. [PMID: 36167263 PMCID: PMC9672892 DOI: 10.1016/j.jcmgh.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Histamine in the stomach traditionally is considered to regulate acid secretion but also has been reported to participate in macrophage differentiation, which plays an important role in tissue homeostasis. Therefore, this study aimed to uncover the precise role of histamine in mediating macrophage differentiation and in maintaining stomach homeostasis. METHODS Here, we expand on this role using histidine decarboxylase knockout (Hdc-/-) mice with hypertrophic gastropathy. In-depth in vivo studies were performed in Hdc-/- mice, germ-free Hdc-/- mice, and bone-marrow-transplanted Hdc-/- mice. The stomach macrophage populations and function were characterized by flow cytometry. To identify stomach macrophages and find the new macrophage population, we performed single-cell RNA sequencing analysis on Hdc+/+ and Hdc-/- stomach tissues. RESULTS Single-cell RNA sequencing and flow cytometry of the stomach cells of Hdc-/- mice showed alterations in the ratios of 3 distinct tissue macrophage populations (F4/80+Il1bhigh, F4/80+CD93+, and F4/80-MHC class IIhighCD74high). Tissue macrophages of the stomachs of Hdc-/- mice showed impaired phagocytic activity, increasing the bacterial burden of the stomach and attenuating hypertrophic gastropathy in germ-free Hdc-/- mice. The transplantation of bone marrow cells of Hdc+/+ mice to Hdc-/- mice recovered the normal differentiation of stomach macrophages and relieved the hypertrophic gastropathy of Hdc-/- mice. CONCLUSIONS This study showed the importance of histamine signaling in tissue macrophage differentiation and maintenance of gastric homeostasis through the suppression of bacterial overgrowth in the stomach.
Collapse
Affiliation(s)
- Kwang H. Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Young Cho
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Buhyun Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ja-Woon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yeseul Oh
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Jae Lee
- Department of Life Science, Hallym University, Chuncheon, Republic of Korea
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Center, Columbia University, New York, New York
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Boroumand P, Prescott DC, Mukherjee T, Bilan PJ, Wong M, Shen J, Tattoli I, Zhou Y, Li A, Sivasubramaniyam T, Shi N, Zhu LY, Liu Z, Robbins C, Philpott DJ, Girardin SE, Klip A. Bone marrow adipocytes drive the development of tissue invasive Ly6C high monocytes during obesity. eLife 2022; 11:65553. [PMID: 36125130 PMCID: PMC9512398 DOI: 10.7554/elife.65553] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
During obesity and high fat-diet (HFD) feeding in mice, sustained low-grade inflammation includes not only increased pro-inflammatory macrophages in the expanding adipose tissue, but also bone marrow (BM) production of invasive Ly6Chigh monocytes. As BM adiposity also accrues with HFD, we explored the relationship between the gains in BM white adipocytes and invasive Ly6Chigh monocytes by in vivo and ex vivo paradigms. We find a temporal and causal link between BM adipocyte whitening and the Ly6Chigh monocyte surge, preceding the adipose tissue macrophage rise during HFD in mice. Phenocopying this, ex vivo treatment of BM cells with conditioned media from BM adipocytes or bona fide white adipocytes favoured Ly6Chigh monocyte preponderance. Notably, Ly6Chigh skewing was preceded by monocyte metabolic reprogramming towards glycolysis, reduced oxidative potential and increased mitochondrial fission. In sum, short-term HFD changes BM cellularity, resulting in local adipocyte whitening driving a gradual increase and activation of invasive Ly6Chigh monocytes.
Collapse
Affiliation(s)
| | - David C Prescott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Philip J Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Michael Wong
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Jeff Shen
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Ivan Tattoli
- Department of Laboratory Medicine and Pathopysiology, University of Toronto, Toronto, Canada
| | - Yuhuan Zhou
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Angela Li
- Research Institute, Toronto General Hospital, Toronto, Canada
| | | | - Nan Shi
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Lucie Y Zhu
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Zhi Liu
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Clinton Robbins
- Department of Laboratory Medicine and Pathophysiology, University of Toronto, Toronto, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
47
|
Abou-Fadel J, Jiang X, Padarti A, Goswami DG, Smith M, Grajeda B, Bhalli M, Le A, Walker WE, Zhang J. mPR-Specific Actions Influence Maintenance of the Blood–Brain Barrier (BBB). Int J Mol Sci 2022; 23:ijms23179684. [PMID: 36077089 PMCID: PMC9456378 DOI: 10.3390/ijms23179684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC) to mediate angiogenic signaling. Disruption of the CSC will result in hemorrhagic CCMs, a consequence of compromised blood–brain barrier (BBB) integrity. Due to their characteristically incomplete penetrance, the majority of CCM mutation carriers (presumed CCM patients) are largely asymptomatic, but when symptoms occur, the disease has typically reached a clinical stage of focal hemorrhage with irreversible brain damage. We recently reported that the CSC couples both classic (nuclear; nPRs) and nonclassic (membrane; mPRs) progesterone (PRG)-receptors-mediated signaling within the CSC-mPRs-PRG (CmP) signaling network in nPR(−) breast cancer cells. In this report, we demonstrate that depletion of any of the three CCM genes or treatment with mPR-specific PRG actions (PRG/mifepristone) results in the disruption of the CmP signaling network, leading to increased permeability in the nPR(−) endothelial cells (ECs) monolayer in vitro. Finally, utilizing our in vivo hemizygous Ccm mutant mice models, we demonstrate that depletion of any of the three CCM genes, in combination with mPR-specific PRG actions, is also capable of leading to defective homeostasis of PRG in vivo and subsequent BBB disruption, allowing us to identify a specific panel of etiological blood biomarkers associated with BBB disruption. To our knowledge, this is the first report detailing the etiology to predict the occurrence of a disrupted BBB, an indication of early hemorrhagic events.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Dinesh G. Goswami
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Alexander Le
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Wendy E. Walker
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
- Correspondence: ; Tel.: +1-915-215-4197
| |
Collapse
|
48
|
Olson WJ, Jakic B, Labi V, Woelk J, Derudder E, Baier G, Hermann-Kleiter N. A role for the nuclear receptor NR2F6 in peritoneal B cell homeostasis. Front Immunol 2022; 13:845235. [PMID: 36052079 PMCID: PMC9425112 DOI: 10.3389/fimmu.2022.845235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
B cells are key mediators of humoral immunity. Mature B cells fall into various sub-classes that can be separated by their ontogeny, expression of cell surface markers, anatomical location, and function. B1 subsets play important roles in natural immunity and constitute the majority of B cells in newborns. In the adult, B1 cells predominate in the pleural and peritoneal cavities, while the mature B2 follicular subset makes up the major fraction of B cells in lymphoid tissue, although important subsets of antibody-secreting B1 cells are also present at these sites. B1 cells are the main producers of natural IgM but can also contribute to elimination of some pathogens, while B2 cells primarily mediate response to foreign antigens. The differential molecular underpinning of the B1 and B2 subsets remains incompletely understood. Here we demonstrate that germline-deficiency of the orphan nuclear receptor NR2F6 causes a partial loss of B1b and B2 B cells in the peritoneum while leaving peritoneal B1a cells unaltered. A competitive bone marrow chimera in Nr2f6+/+ host mice produced similar numbers of Nr2f6+/+ and Nr2f6-/- peritoneal B1b and B2 cells. The proliferation of Nr2f6-/- peritoneal B cells was not altered, while the migration marker CXCR5 was reduced on all subsets but Beta7-integrin was reduced only on peritoneal B1b and B2 cells. Similarly, B1b and B2 but not B1a cells, exhibited significantly reduced survival.
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- *Correspondence: William J. Olson, ; Natascha Hermann-Kleiter,
| | - Bojana Jakic
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Woelk
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: William J. Olson, ; Natascha Hermann-Kleiter,
| |
Collapse
|
49
|
Cruz Borbely KS, Marques ALX, Porto FL, Mendonça BS, Smaniotto S, Dos Santos Reis MD. Growth Hormone Stimulates Murine Macrophage Migration during Aging. Curr Aging Sci 2022; 15:266-273. [PMID: 35430985 DOI: 10.2174/1874609815666220415132815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Age-related impairments in macrophage functions have important consequences for the health of the elderly population. The aging process is also accompanied by a reduction in several hormones, including growth hormone (GH). Previous studies have shown that this hormone can affect macrophage activity in young individuals; however, the biological effects of GH stimulation on macrophages during aging have not yet been elucidated. OBJECTIVE The aim of this work was to investigate the in vitro effects of GH on peritoneal macrophages from aged mice. METHODS Peritoneal macrophages isolated from young (4 months-old) and old (12-15 months-old) mice were treated in vitro with 100 ng/mL of GH for 24 hours. After treatment, cells were analysed for cell morphology, reactive oxygen species (ROS) production, expression of integrins, cell adhesion to extracellular matrix molecules, and migration in transwell chambers. RESULTS Although GH-treated cells from old mice exhibited decreased ROS production, we did not observe the effects of GH on macrophage morphology or macrophage phagocytic activity in young and old mice-derived cell cultures. Macrophages from old mice had increased adhesion to laminin and fibronectin substrates, as did cells obtained from young mice treated with GH, but no change was observed in the expression of integrin receptors. Furthermore, cells from old mice exhibited increased migration compared to young mice and a significant increase in macrophage migration was observed under GH stimulation. CONCLUSION Our results showed that GH can interfere with the motility of macrophages from old mice, advancing our understanding of the interactions between the immune and neuroendocrine systems during aging.
Collapse
Affiliation(s)
| | - Aldilane Lays Xavier Marques
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Alagoas, Brazil
| | - Beatriz Santana Mendonça
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Alagoas, Brazil
| | - Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Alagoas, Brazil
| |
Collapse
|
50
|
Chen D, Nemazanyy I, Peulen O, Shostak K, Xu X, Tang SC, Wathieu C, Turchetto S, Tielens S, Nguyen L, Close P, Desmet C, Klein S, Florin A, Büttner R, Petrellis G, Dewals B, Chariot A. Elp3-mediated codon-dependent translation promotes mTORC2 activation and regulates macrophage polarization. EMBO J 2022; 41:e109353. [PMID: 35920020 PMCID: PMC9475509 DOI: 10.15252/embj.2021109353] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1‐activating signals in myeloid cells, where it limits the production of pro‐inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2‐activating signals upregulate Elp3 expression through a PI3K‐ and STAT6‐dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon‐dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt‐driven tumor initiation in the intestine by maintaining a pool of tumor‐associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.
Collapse
Affiliation(s)
- Dawei Chen
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Olivier Peulen
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Metastasis Research Laboratory (MRL), GIGA Cancer, University of Liege, Liège, Belgium
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Xinyi Xu
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Seng Chuan Tang
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Caroline Wathieu
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Silvia Turchetto
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Liege, Belgium
| | - Sylvia Tielens
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Liege, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Laboratory of Cancer Signaling, University of Liege, Liege, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium
| | - Christophe Desmet
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Cellular and Molecular Immunology, GIGA-I3, University of Liege, Liège, Belgium
| | - Sebastian Klein
- Institute for Pathology-University Hospital Cologne, Köln, Germany
| | - Alexandra Florin
- Institute for Pathology-University Hospital Cologne, Köln, Germany
| | - Reinhard Büttner
- Institute for Pathology-University Hospital Cologne, Köln, Germany
| | - Georgios Petrellis
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liège, Belgium
| | - Benjamin Dewals
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium
| |
Collapse
|