1
|
Mercuri FA, Anderson GP, Miller BE, Demaison C, Tal-Singer R. Discovery and development of INNA-051, a TLR2/6 agonist for the prevention of complications resulting from viral respiratory infections. Antiviral Res 2025; 234:106063. [PMID: 39733845 DOI: 10.1016/j.antiviral.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Viral respiratory infection is associated with significant morbidity and mortality. The diversity of viruses implicated, coupled with their propensity for mutation, ignited an interest in host-directed antiviral therapies effective across a wide range of viral variants. Toll-like receptors (TLRs) are potential targets for the development of broad-spectrum antivirals given their central role in host immune defenses. Synthetic agonists of TLRs have been shown to boost protective innate immune responses against respiratory viruses. However, clinical success was hindered by short duration of benefit and/or induction of systemic adverse effects. INNA-051, a TLR2/6 agonist, is in development as an intranasal innate immune enhancer for prophylactic treatment in individuals at risk of complications resulting from respiratory viral infections. In vivo animal studies demonstrated the efficacy as prophylaxis against multiple viruses including SARS-CoV-2, influenza, and rhinovirus. Early clinical trials demonstrated an acceptable safety and tolerability profile. Intranasal delivery to the primary site of infection in humans induced a local innate host defense response characterized by innate immune cell infiltration into the nasal epithelium and activation and antiviral response genes. Taken together, the preclinical and clinical data on INNA-051 support further investigation of its use in community infection settings.
Collapse
Affiliation(s)
| | - Gary P Anderson
- Department of Biochemistry and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, VIC, Australia; Lung Health Research Centre, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, VIC, Australia
| | - Bruce E Miller
- ENA Respiratory Pty Ltd, Melbourne, Australia; BEM Consulting LLC, Phoenixville, PA, USA
| | | | | |
Collapse
|
2
|
Mercuri FA, White S, McQuilten HA, Lemech C, Mynhardt S, Hari R, Zhang P, Kruger N, McLachlan G, Miller BE, West NP, Tal-Singer R, Demaison C. Evaluation of intranasal TLR2/6 agonist INNA-051: safety, tolerability and proof of pharmacology. ERJ Open Res 2024; 10:00199-2024. [PMID: 39655168 PMCID: PMC11626610 DOI: 10.1183/23120541.00199-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/25/2024] [Indexed: 12/12/2024] Open
Abstract
Background Local priming of the innate immune system with a Toll-like receptor (TLR)2/6 agonist may reduce morbidity and mortality associated with viral respiratory tract infections, particularly for the elderly and those with chronic diseases. The objectives of the present study were to understand the potential of prophylactic treatment with a TLR2/6 agonist as an enhancer of innate immunity pathways leading to accelerated respiratory virus clearance from the upper airways. Methods Two randomised, double-blind, placebo-controlled clinical trials were conducted in healthy adult participants. The first dose-escalation study assessed safety, tolerability and mechanistic biomarkers following single and repeated intranasal administrations of INNA-051. The second was an influenza A viral challenge study assessing the impact of treatment on host defence biomarkers and viral load. Results INNA-051 was well tolerated in both studies, with no dose-limiting toxicities identified. Mechanistic biomarkers assessed in both studies demonstrated the expected engagement of pharmacology, including innate immune pathways. There were lower than anticipated rates of infection. Post hoc analysis conducted in laboratory-confirmed infected participants with low or no antibody titre against the challenge virus showed INNA-051 treatment led to a significantly shorter duration of infection and increased expression of genes and pathways associated with host defence responses against influenza. Conclusions The safety and pharmacology profile of INNA-051 confirms preclinical studies. INNA-051 increased expression of genes and pathways associated with host defence responses against influenza and was associated with a shorter duration of infection. These studies support further clinical assessment in the context of natural viral respiratory tract infections in individuals at increased risk of severe illness.
Collapse
Affiliation(s)
| | - Scott White
- ENA Respiratory, Melbourne, VIC, Australia
- These authors contributed equally
| | | | - Charlotte Lemech
- Scientia Clinical Research Ltd, Randwick, NSW, Australia
- Prince of Wales Clinical School, UNSW, Sydney, NSW, Australia
| | | | - Rana Hari
- Scientia Clinical Research Ltd, Randwick, NSW, Australia
| | - Ping Zhang
- Griffith Biostatistics Unit, Griffith Health, Griffith University Gold Coast Campus, QLD, Australia
| | | | | | | | - Nicholas P. West
- School of Pharmacy and Medical Science and the Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | | | | |
Collapse
|
3
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights into the Molecular Mechanisms of the Toll-like Receptor Response to Influenza Virus Infection. Int J Mol Sci 2024; 25:5909. [PMID: 38892096 PMCID: PMC11172706 DOI: 10.3390/ijms25115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Influenza A viruses (IAVs) pose a significant global threat to human health. A tightly controlled host immune response is critical to avoid any detrimental effects of IAV infection. It is critical to investigate the association between the response of Toll-like receptors (TLRs) and influenza virus. Because TLRs may act as a double-edged sword, a balanced TLR response is critical for the overall benefit of the host. Consequently, a thorough understanding of the TLR response is essential for targeting TLRs as a novel therapeutic and prophylactic intervention. To date, a limited number of studies have assessed TLR and IAV interactions. Therefore, further research on TLR interactions in IAV infection should be conducted to determine their role in host-virus interactions in disease causation or clearance of the virus. Although influenza virus vaccines are available, they have limited efficacy, which should be enhanced to improve their efficacy. In this study, we discuss the current status of our understanding of the TLR response in IAV infection and the strategies adopted by IAVs to avoid TLR-mediated immune surveillance, which may help in devising new therapeutic or preventive strategies. Furthermore, recent advances in the use of TLR agonists as vaccine adjuvants to enhance influenza vaccine efficacy are discussed.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Girkin JLN, Bryant NE, Loo SL, Hsu A, Kanwal A, Williams TC, Maltby S, Turville SG, Wark PAB, Bartlett NW. Upper Respiratory Tract OC43 Infection Model for Investigating Airway Immune-Modifying Therapies. Am J Respir Cell Mol Biol 2023; 69:614-622. [PMID: 37603788 DOI: 10.1165/rcmb.2023-0202ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023] Open
Abstract
Respiratory virus infections initiate and transmit from the upper respiratory tract (URT). Coronaviruses, including OC43, are a major cause of respiratory infection and disease. Failure to mount an effective antiviral immune response in the nasal mucosa increases the risk of severe disease and person-to-person transmission, highlighting the need for URT infection models to support the development of nasal treatments that improve coronavirus antiviral immunity. We aimed to determine if OC43 productively infected the mouse URT and would therefore be a suitable model to assess the efficacy and mechanism of action of nasal-targeting immune-modifying treatments. We administered OC43 via intranasal inoculation to wild-type Balb/c mice and assessed virus airway tropism (by comparing total respiratory tract vs. URT-only virus exposure) and characterized infection-induced immunity by quantifying specific antiviral cytokines and performing gene array assessment of immune genes. We then assessed the effect of immune-modulating therapies, including an immune-stimulating TLR2/6 agonist (INNA-X) and the immune-suppressing corticosteroid fluticasone propionate (FP). OC43 replicated in nasal respiratory epithelial cells, with peak viral RNA observed 2 days after infection. Prophylactic treatment with INNA-X accelerated expression of virus-induced IFN-λ and IFN-stimulated genes. In contrast, intranasal FP treatment increased nasal viral load by 2.4 fold and inhibited virus-induced IFN and IFN-stimulated gene expression. Prior INNA-X treatment reduced the immune-suppressive effect of FP. We demonstrate that the mouse nasal epithelium is permissive to OC43 infection and strengthen the evidence that TLR2 activation is a β-coronavirus innate immune determinant and therapeutic target.
Collapse
Affiliation(s)
- Jason L N Girkin
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nathan E Bryant
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Su-Ling Loo
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan Hsu
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Amama Kanwal
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Teresa C Williams
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Steven Maltby
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Stuart G Turville
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Nathan W Bartlett
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
Girkin JLN, Maltby S, Bartlett NW. Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. Eur Respir Rev 2022; 31:210274. [PMID: 35508333 PMCID: PMC9488969 DOI: 10.1183/16000617.0274-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Respiratory virus infections initiate in the upper respiratory tract (URT). Innate immunity is critical for initial control of infection at this site, particularly in the absence of mucosal virus-neutralising antibodies. If the innate immune response is inadequate, infection can spread to the lower respiratory tract (LRT) causing community-acquired pneumonia (as exemplified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019). Vaccines for respiratory viruses (influenza and SARS-CoV-2) leverage systemic adaptive immunity to protect from severe lung disease. However, the URT remains vulnerable to infection, enabling viral transmission and posing an ongoing risk of severe disease in populations that lack effective adaptive immunity.Innate immunity is triggered by host cell recognition of viral pathogen-associated molecular patterns via molecular sensors such as Toll-like receptors (TLRs). Here we review the role of TLRs in respiratory viral infections and the potential of TLR-targeted treatments to enhance airway antiviral immunity to limit progression to severe LRT disease and reduce person-to-person viral transmission. By considering cellular localisation and antiviral mechanisms of action and treatment route/timing, we propose that cell surface TLR agonist therapies are a viable strategy for preventing respiratory viral diseases by providing immediate, durable pan-viral protection within the URT.
Collapse
Affiliation(s)
- Jason L N Girkin
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
6
|
Proud PC, Tsitoura D, Watson RJ, Chua BY, Aram MJ, Bewley KR, Cavell BE, Cobb R, Dowall S, Fotheringham SA, Ho CMK, Lucas V, Ngabo D, Rayner E, Ryan KA, Slack GS, Thomas S, Wand NI, Yeates P, Demaison C, Zeng W, Holmes I, Jackson DC, Bartlett NW, Mercuri F, Carroll MW. Prophylactic intranasal administration of a TLR2/6 agonist reduces upper respiratory tract viral shedding in a SARS-CoV-2 challenge ferret model. EBioMedicine 2021; 63:103153. [PMID: 33279857 PMCID: PMC7711201 DOI: 10.1016/j.ebiom.2020.103153] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The novel human coronavirus SARS-CoV-2 is a major ongoing global threat with huge economic burden. Like all respiratory viruses, SARS-CoV-2 initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. METHODS SARS-CoV-2 Victoria/01/2020 was passaged in Vero/hSLAM cells and virus titre determined by plaque assay. Challenge virus was delivered by intranasal instillation to female ferrets at 5.0 × 106 pfu/ml. Treatment groups received intranasal INNA-051, developed by Ena Respiratory. SARS-CoV-2 RNA was detected using the 2019-nCoV CDC RUO Kit and QuantStudio™ 7 Flex Real-Time PCR System. Histopathological analysis was performed using cut tissues stained with haematoxylin and eosin (H&E). FINDINGS We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. After 5 days post-exposure to SARS-CoV-2, INNA-051 significantly reduced virus in throat swabs (p=<0.0001) by up to a 24 fold (96% reduction) and in nasal wash (p=0.0107) up to a 15 fold (93% reduction) in comparison to untreated animals. INTERPRETATION The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT, to reduce SARS-CoV-2 transmission and provide protection against COVID-19. FUNDING This work was funded by Ena Respiratory, Melbourne, Australia.
Collapse
Affiliation(s)
- Pamela C Proud
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Daphne Tsitoura
- Ena Respiratory, Level 9, 31 Queen St, Melbourne, Victoria, 3000, Australia
| | - Robert J Watson
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Marilyn J Aram
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Kevin R Bewley
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Breeze E Cavell
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Rebecca Cobb
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Stuart Dowall
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Susan A Fotheringham
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Catherine M K Ho
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Vanessa Lucas
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Didier Ngabo
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Emma Rayner
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Kathryn A Ryan
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Gillian S Slack
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Stephen Thomas
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Nadina I Wand
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Paul Yeates
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | | | - Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Ian Holmes
- Ena Respiratory, Level 9, 31 Queen St, Melbourne, Victoria, 3000, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease group and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Francesca Mercuri
- Ena Respiratory, Level 9, 31 Queen St, Melbourne, Victoria, 3000, Australia.
| | - Miles W Carroll
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG; Nuffield Dept of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
7
|
Kumar A, Singh S. Editorial: Influenza Virus Vaccines and Immunotherapies. Front Immunol 2015; 6:599. [PMID: 26635813 PMCID: PMC4657188 DOI: 10.3389/fimmu.2015.00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Affiliation(s)
- Arun Kumar
- GlaxoSmithKline Vaccines, Research Center , Siena , Italy
| | - Shakti Singh
- Department of Surgery, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|