1
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Rimmer L, Mann DA, Sayer AA, Amarnath S, Granic A. A silver bullet for ageing medicine?: clinical relevance of T-cell checkpoint receptors in normal human ageing. Front Immunol 2024; 15:1360141. [PMID: 38361938 PMCID: PMC10867193 DOI: 10.3389/fimmu.2024.1360141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Immunosenescence describes dysregulation of the immune system with ageing manifested in both the innate and adaptive immunity, including changes in T-cell checkpoint signaling. Through complex and nuanced process, T-cells lose excitatory signaling pathways and upregulate their inhibitory signaling, leading to ineffective immune responses that contribute to the formation of the ageing phenotype. Here we expand on the expression, function, and clinical potential of targeting the T-cell checkpoint signaling in age and highlight interventions offering the most benefits to older adults' health. Notably, modifications in vaccination such as with mTOR inhibitors show immediate clinical relevance and good tolerability. Other proposed treatments, including therapies with monoclonal antibodies fail to show clinical efficacy or tolerability needed for implementation at present. Although T-cell co-signaling fits a valuable niche for translational scientists to manage immunosenescence, future study would benefit from the inclusion of older adults with multiple long-term conditions and polypharmacy, ensuring better applicability to actual patients seen in clinical settings.
Collapse
Affiliation(s)
- Lucy Rimmer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shoba Amarnath
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Quach HQ, Goergen KM, Grill DE, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. Virus-specific and shared gene expression signatures in immune cells after vaccination in response to influenza and vaccinia stimulation. Front Immunol 2023; 14:1168784. [PMID: 37600811 PMCID: PMC10436507 DOI: 10.3389/fimmu.2023.1168784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background In the vaccine era, individuals receive multiple vaccines in their lifetime. Host gene expression in response to antigenic stimulation is usually virus-specific; however, identifying shared pathways of host response across a wide spectrum of vaccine pathogens can shed light on the molecular mechanisms/components which can be targeted for the development of broad/universal therapeutics and vaccines. Method We isolated PBMCs, monocytes, B cells, and CD8+ T cells from the peripheral blood of healthy donors, who received both seasonal influenza vaccine (within <1 year) and smallpox vaccine (within 1 - 4 years). Each of the purified cell populations was stimulated with either influenza virus or vaccinia virus. Differentially expressed genes (DEGs) relative to unstimulated controls were identified for each in vitro viral infection, as well as for both viral infections (shared DEGs). Pathway enrichment analysis was performed to associate identified DEGs with KEGG/biological pathways. Results We identified 2,906, 3,888, 681, and 446 DEGs in PBMCs, monocytes, B cells, and CD8+ T cells, respectively, in response to influenza stimulation. Meanwhile, 97, 120, 20, and 10 DEGs were identified as gene signatures in PBMCs, monocytes, B cells, and CD8+ T cells, respectively, upon vaccinia stimulation. The majority of DEGs identified in PBMCs were also found in monocytes after either viral stimulation. Of the virus-specific DEGs, 55, 63, and 9 DEGs occurred in common in PBMCs, monocytes, and B cells, respectively, while no DEGs were shared in infected CD8+ T cells after influenza and vaccinia. Gene set enrichment analysis demonstrated that these shared DEGs were over-represented in innate signaling pathways, including cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor, Toll-like receptor signaling, RIG-I-like receptor signaling pathways, cytosolic DNA-sensing pathways, and natural killer cell mediated cytotoxicity. Conclusion Our results provide insights into virus-host interactions in different immune cells, as well as host defense mechanisms against viral stimulation. Our data also highlights the role of monocytes as a major cell population driving gene expression in ex vivo PBMCs in response to viral stimulation. The immune response signaling pathways identified in this study may provide specific targets for the development of novel virus-specific therapeutics and improved vaccines for vaccinia and influenza. Although influenza and vaccinia viruses have been selected in this study as pathogen models, this approach could be applicable to other pathogens.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Krista M. Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Diane E. Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
5
|
Frasca D. Several areas of overlap between obesity and aging indicate obesity as a biomarker of accelerated aging of human B cell function and antibody responses. Immun Ageing 2022; 19:48. [PMID: 36289515 PMCID: PMC9598013 DOI: 10.1186/s12979-022-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Aging and obesity are high risk factors for several conditions and diseases. They are both associated with systemic inflammation and they are both ameliorated by a healthy life style, suggesting that they may share cellular and molecular pathways and underlying mechanisms. A close relationship between aging and obesity is also supported by the observation that the aging overweight/obese population is increasing worldwide, and mechanisms involved will be presented here. A focus of our work is to evaluate if obesity may be considered a good biomarker of accelerated aging of human antibody responses. We will summarize our published results showing the effects of obesity in accelerating age defects in the peripheral B cell pool and how these lead to dysfunctional humoral immunity.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3153, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Chou C, Mohanty S, Kang HA, Kong L, Avila‐Pacheco J, Joshi SR, Ueda I, Devine L, Raddassi K, Pierce K, Jeanfavre S, Bullock K, Meng H, Clish C, Santori FR, Shaw AC, Xavier RJ. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell 2022; 21:e13682. [PMID: 35996998 PMCID: PMC9470889 DOI: 10.1111/acel.13682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Seasonal influenza causes mild to severe respiratory infections and significant morbidity, especially in older adults. Transcriptomic analysis in populations across multiple flu seasons has provided insights into the molecular determinants of vaccine response. Still, the metabolic changes that underlie the immune response to influenza vaccination remain poorly characterized. We performed untargeted metabolomics to analyze plasma metabolites in a cohort of younger and older subjects before and after influenza vaccination to identify vaccine-induced molecular signatures. Metabolomic and transcriptomic data were combined to define networks of gene and metabolic signatures indicative of high and low antibody response in these individuals. We observed age-related differences in metabolic baselines and signatures of antibody response to influenza vaccination and the abundance of α-linolenic and linoleic acids, sterol esters, fatty-acylcarnitines, and triacylglycerol metabolism. We identified a metabolomic signature associated with age-dependent vaccine response, finding increased tryptophan and decreased polyunsaturated fatty acids (PUFAs) in young high responders (HRs), while fatty acid synthesis and cholesteryl esters accumulated in older HRs. Integrated metabolomic and transcriptomic analysis shows that depletion of PUFAs, which are building blocks for prostaglandins and other lipid immunomodulators, in young HR subjects at Day 28 is related to a robust immune response to influenza vaccination. Increased glycerophospholipid levels were associated with an inflammatory response in older HRs to flu vaccination. This multi-omics approach uncovered age-related molecular markers associated with influenza vaccine response and provides insight into vaccine-induced metabolic responses that may help guide development of more effective influenza vaccines.
Collapse
Affiliation(s)
- Chih‐Hung Chou
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | | | - Lingjia Kong
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | | | - Samit R. Joshi
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Ikuyo Ueda
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Lesley Devine
- Department of Laboratory MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Khadir Raddassi
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Kerry Pierce
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | | | - Kevin Bullock
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Hailong Meng
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Clary Clish
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Fabio R. Santori
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Ramnik J. Xavier
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMassachusettsUSA
- Center for Computational and Integrative Biology and Department of Molecular BiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Sorrenti V, Benedetti F, Buriani A, Fortinguerra S, Caudullo G, Davinelli S, Zella D, Scapagnini G. Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals (Basel) 2022; 15:ph15080912. [PMID: 35893737 PMCID: PMC9394378 DOI: 10.3390/ph15080912] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Aging results from the progressive dysregulation of several molecular pathways and mTOR and AMPK signaling have been suggested to play a role in the complex changes in key biological networks involved in cellular senescence. Moreover, multiple factors, including poor nutritional balance, drive immunosenescence progression, one of the meaningful aspects of aging. Unsurprisingly, nutraceutical and pharmacological interventions could help maintain an optimal biological response by providing essential bioactive micronutrients required for the development, maintenance, and the expression of the immune response at all stages of life. In this regard, many studies have provided evidence of potential antiaging properties of resveratrol, as well as rapamycin and metformin. Indeed, in vitro and in vivo models have demonstrated for these molecules a number of positive effects associated with healthy aging. The current review focuses on the mechanisms of action of these three important compounds and their suggested use for the clinical treatment of immunosenescence and aging.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Egidio Meneghetti, 2, 35131 Padova, Italy
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Francesca Benedetti
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | - Alessandro Buriani
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | | | - Giada Caudullo
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Correspondence: (V.S.); (D.Z.); (G.S.)
| |
Collapse
|
8
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
9
|
Haralambieva IH, Eberhard KG, Ovsyannikova IG, Grill DE, Schaid DJ, Kennedy RB, Poland GA. Transcriptional signatures associated with rubella virus-specific humoral immunity after a third dose of MMR vaccine in women of childbearing age. Eur J Immunol 2021; 51:1824-1838. [PMID: 33818775 PMCID: PMC9841595 DOI: 10.1002/eji.202049054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Multiple factors linked to host genetics/inherent biology play a role in interindividual variability in immune response outcomes after rubella vaccination. In order to identify these factors, we conducted a study of rubella-specific humoral immunity before (Baseline) and after (Day 28) a third dose of MMR-II vaccine in a cohort of 109 women of childbearing age. We performed mRNA-Seq profiling of PBMCs after rubella virus in vitro stimulation to delineate genes associated with post-vaccination rubella humoral immunity and to define genes mediating the association between prior immune response status (high or low antibody) and subsequent immune response outcome. Our study identified novel genes that mediated the association between prior immune response and neutralizing antibody titer after a third MMR vaccine dose. These genes included the following: CDC34; CSNK1D; APOBEC3F; RAD18; AAAS; SLC37A1; FAS; and JAK2. The encoded proteins are involved in innate antiviral response, IFN/cytokine signaling, B cell repertoire generation, the clonal selection of B lymphocytes in germinal centers, and somatic hypermutation/antibody affinity maturation to promote optimal antigen-specific B cell immune function. These data advance our understanding of how subjects' prior immune status and/or genetic propensity to respond to rubella/MMR vaccination ultimately affects innate immunity and humoral immune outcomes after vaccination.
Collapse
Affiliation(s)
| | | | | | - Diane E. Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Thymic Aging May Be Associated with COVID-19 Pathophysiology in the Elderly. Cells 2021; 10:cells10030628. [PMID: 33808998 PMCID: PMC8001029 DOI: 10.3390/cells10030628] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic of coronavirus disease 2019 (COVID-19) and particularly exhibits severe symptoms and mortality in elderly individuals. Mounting evidence shows that the characteristics of the age-related clinical severity of COVID-19 are attributed to insufficient antiviral immune function and excessive self-damaging immune reaction, involving T cell immunity and associated with pre-existing basal inflammation in the elderly. Age-related changes to T cell immunosenescence is characterized by not only restricted T cell receptor (TCR) repertoire diversity, accumulation of exhausted and/or senescent memory T cells, but also by increased self-reactive T cell- and innate immune cell-induced chronic inflammation, and accumulated and functionally enhanced polyclonal regulatory T (Treg) cells. Many of these changes can be traced back to age-related thymic involution/degeneration. How these changes contribute to differences in COVID-19 disease severity between young and aged patients is an urgent area of investigation. Therefore, we attempt to connect various clues in this field by reviewing and discussing recent research on the role of the thymus and T cells in COVID-19 immunity during aging (a synergistic effect of diminished responses to pathogens and enhanced responses to self) impacting age-related clinical severity of COVID-19. We also address potential combinational strategies to rejuvenate multiple aging-impacted immune system checkpoints by revival of aged thymic function, boosting peripheral T cell responses, and alleviating chronic, basal inflammation to improve the efficiency of anti-SARS-CoV-2 immunity and vaccination in the elderly.
Collapse
|
11
|
Frasca D, Blomberg BB. Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination. IMMUNITY & AGEING 2020; 17:37. [PMID: 33292323 PMCID: PMC7674578 DOI: 10.1186/s12979-020-00210-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA
| |
Collapse
|
12
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
13
|
Longbrake EE, Mao-Draayer Y, Cascione M, Zielinski T, Bame E, Brassat D, Chen C, Kapadia S, Mendoza JP, Miller C, Parks B, Xing D, Robertson D. Dimethyl fumarate treatment shifts the immune environment toward an anti-inflammatory cell profile while maintaining protective humoral immunity. Mult Scler 2020; 27:883-894. [PMID: 32716690 PMCID: PMC8023410 DOI: 10.1177/1352458520937282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Delayed-release dimethyl fumarate (DMF) demonstrates sustained efficacy and safety for relapsing forms of MS. Absolute lymphocyte count (ALC) is reduced initially, then stabilizes on treatment. Objective: PROCLAIM, a 96-week, prospective, open-label, phase 3b study, assessed lymphocyte subsets and immunoglobulin (Ig) levels during 48 and 96 weeks (W) of DMF treatment. Methods: Patients received 240 mg DMF BID. Endpoints: lymphocyte subset count changes (primary); Ig isotypes and ALC changes (secondary); adverse events and relationship between ALC changes and ARR/EDSS (exploratory); and neurofilament assessment (ad hoc). Results: Of 218 patients enrolled, 158 (72%) completed the study. Median ALC decreased 39% from baseline to W96 (BL–W96), stabilizing above the lower limit of normal (baseline: 1.82 × 109/L; W48: 1.06 × 109/L; W96: 1.05 × 109/L). CD4 + and CD8 + T cells correlated highly with ALC from BL–W96 (p < 0.001). Relative to total T cells, naive CD4 + and CD8 + T cells increased, whereas CD4 + and CD8 + central and effector memory T cells decreased. Total IgA, IgG, IgM, and IgG1–4 subclass levels remained stable. Adverse event rates were similar across ALC subgroups. ARR, EDSS, and neurofilament were not correlated with ALCs. Conclusion: Lymphocyte decreases with DMF were maintained over treatment, yet immunoglobulins remained stable. No increase in infection incidence was observed in patients with or without lymphopenia. Support: Biogen
Collapse
Affiliation(s)
| | - Yang Mao-Draayer
- Autoimmunity Center of Excellence, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | - Derrick Robertson
- Multiple Sclerosis Division, Department of Neurology, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
14
|
Bannister S, Messina NL, Novakovic B, Curtis N. The emerging role of epigenetics in the immune response to vaccination and infection: a systematic review. Epigenetics 2020; 15:555-593. [PMID: 31914857 PMCID: PMC7574386 DOI: 10.1080/15592294.2020.1712814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive research has highlighted the role of infection-induced epigenetic events in the development of cancer. More recently, attention has focused on the ability of non-carcinogenic infections, as well as vaccines, to modify the human epigenome and modulate the immune response. This review explores this rapidly evolving area of investigation and outlines the many and varied ways in which vaccination and natural infection can influence the human epigenome from modulation of the innate and adaptive immune response, to biological ageing and modification of disease risk. The implications of these epigenetic changes on immune regulation and their potential application to the diagnosis and treatment of chronic infection and vaccine development are also discussed.
Collapse
Affiliation(s)
- Samantha Bannister
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Boris Novakovic
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Epigenetics Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
15
|
Emamgolizadeh Gurt Tapeh B, Mosayyebi B, Samei M, Beyrampour Basmenj H, Mohammadi A, Alivand MR, Hassanpour P, Solali S. microRNAs involved in T-cell development, selection, activation, and hemostasis. J Cell Physiol 2020; 235:8461-8471. [PMID: 32324267 DOI: 10.1002/jcp.29689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) characterized by small, noncoding RNAs have a fundamental role in the regulation of gene expression at the post-transcriptional level. Additionally, miRNAs have recently been identified as potential regulators of various genes involved in the pathogenesis of the autoimmune and inflammatory disease. So far, the interaction between miRNAs and T lymphocytes in the immune response as a new and significant topic has not been emphasized substantially. The role of miRNAs in different biological processes including apoptosis, immune checkpoints and the activation of immune cells is still unclear. Aberrant miRNA expression profile affects various aspects of T-cell function. Accordingly, in this literature review, we summarized the role of significant miRNAs in T-cell development processes. Consequently, we demonstrated precise mechanisms that candidate miRNAs interfere in Immune response mediated by different types of T cells. We believe that a good understanding of the interaction between miRNAs and immune response contributes to the new therapeutic strategies in relation to disease with an immunological origin.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Samei
- Department of Immunology, Gorgan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammadi
- Department of cancer and inflammation, University of Southern Denmark, Odense, Denmark
| | - Mohammad R Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Hassanpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Spontaneous HIV controllers might be the key to prevent accelerated immunosenescence of effector CD8+ T cells. AIDS 2019; 33:2253-2255. [PMID: 31688042 DOI: 10.1097/qad.0000000000002343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Rogers LRK, de Los Campos G, Mias GI. Microarray Gene Expression Dataset Re-analysis Reveals Variability in Influenza Infection and Vaccination. Front Immunol 2019; 10:2616. [PMID: 31787983 PMCID: PMC6854009 DOI: 10.3389/fimmu.2019.02616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Influenza, a communicable disease, affects thousands of people worldwide. Young children, elderly, immunocompromised individuals and pregnant women are at higher risk for being infected by the influenza virus. Our study aims to highlight differentially expressed genes in influenza disease compared to influenza vaccination, including variability due to age and sex. To accomplish our goals, we conducted a meta-analysis using publicly available microarray expression data. Our inclusion criteria included subjects with influenza, subjects who received the influenza vaccine and healthy controls. We curated 18 microarray datasets for a total of 3,481 samples (1,277 controls, 297 influenza infection, 1,907 influenza vaccination). We pre-processed the raw microarray expression data in R using packages available to pre-process Affymetrix and Illumina microarray platforms. We used a Box-Cox power transformation of the data prior to our down-stream analysis to identify differentially expressed genes. Statistical analyses were based on linear mixed effects model with all study factors and successive likelihood ratio tests (LRT) to identify differentially-expressed genes. We filtered LRT results by disease (Bonferroni adjusted p < 0.05) and used a two-tailed 10% quantile cutoff to identify biologically significant genes. Furthermore, we assessed age and sex effects on the disease genes by filtering for genes with a statistically significant (Bonferroni adjusted p < 0.05) interaction between disease and age, and disease and sex. We identified 4,889 statistically significant genes when we filtered the LRT results by disease factor, and gene enrichment analysis (gene ontology and pathways) included innate immune response, viral process, defense response to virus, Hematopoietic cell lineage and NF-kappa B signaling pathway. Our quantile filtered gene lists comprised of 978 genes each associated with influenza infection and vaccination. We also identified 907 and 48 genes with statistically significant (Bonferroni adjusted p < 0.05) disease-age and disease-sex interactions, respectively. Our meta-analysis approach highlights key gene signatures and their associated pathways for both influenza infection and vaccination. We also were able to identify genes with an age and sex effect. This gives potential for improving current vaccines and exploring genes that are expressed equally across ages when considering universal vaccinations for influenza.
Collapse
Affiliation(s)
- Lavida R K Rogers
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Gustavo de Los Campos
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
| | - George I Mias
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
19
|
Zimmermann MT, Kabat B, Grill DE, Kennedy RB, Poland GA. RITAN: rapid integration of term annotation and network resources. PeerJ 2019; 7:e6994. [PMID: 31355053 PMCID: PMC6644632 DOI: 10.7717/peerj.6994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background Identifying the biologic functions of groups of genes identified in high-throughput studies currently requires considerable time and/or bioinformatics experience. This is due in part to each resource housed within separate databases, requiring users to know about them, and integrate across them. Time consuming and often repeated for each study, integrating across resources and merging with data under study is an increasingly common bioinformatics task. Methods We developed an open-source R software package for assisting researchers in annotating their genesets with functions, pathways, and their interconnectivity across a diversity of network resources. Results We present rapid integration of term annotation and network resources (RITAN) for the rapid and comprehensive annotation of a list of genes using functional term and pathway resources and their relationships among each other using multiple network biology resources. Currently, and to comply with data redistribution policies, RITAN allows rapid access to 16 term annotations spanning gene ontology, biologic pathways, and immunologic modules, and nine network biology resources, with support for user-supplied resources; we provide recommendations for additional resources and scripts to facilitate their addition to RITAN. Having the resources together in the same system allows users to derive novel combinations. RITAN has a growing set of tools to explore the relationships within resources themselves. These tools allow users to merge resources together such that the merged annotations have a minimal overlap with one another. Because we index both function annotation and network interactions, the combination allows users to expand small groups of genes using links from biologic networks—either by adding all neighboring genes or by identifying genes that efficiently connect among input genes—followed by term enrichment to identify functions. That is, users can start from a core set of genes, identify interacting genes from biologic networks, and then identify the functions to which the expanded list of genes contribute. Conclusion We believe RITAN fills the important niche of bridging the results of high-throughput experiments with the ever-growing corpus of functional annotations and network biology resources. Availability Rapid integration of term annotation and network resources is available as an R package at github.com/MTZimmer/RITAN and BioConductor.org.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo clinic, Rochester, MN, USA
| | - Brian Kabat
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo clinic, Rochester, MN, USA
| | - Diane E Grill
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo clinic, Rochester, MN, USA
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124:110632. [PMID: 31201918 DOI: 10.1016/j.exger.2019.110632] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Immunosenescence contributes to a decreased capacity of the immune system to respond effectively to infections or vaccines in the elderly. The full extent of the biological changes that lead to immunosenescence are unknown, but numerous cell types involved in innate and adaptive immunity exhibit altered phenotypes and function as a result of aging. These manifestations of immunosenescence at the cellular level are mediated by dysregulation at the genetic level, and changes throughout the immune system are, in turn, propagated by numerous cellular interactions. Environmental factors, such as nutrition, also exert significant influence on the immune system during aging. While the mechanisms that govern the onset of immunosenescence are complex, systems biology approaches allow for the identification of individual contributions from each component within the system as a whole. Although there is still much to learn regarding immunosenescence, systems-level studies of vaccine responses have been highly informative and will guide the development of new vaccine candidates, novel adjuvant formulations, and immunotherapeutic drugs to improve vaccine responses among the aging population.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A. Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Res Rev 2019; 49:49-66. [PMID: 30472217 DOI: 10.1016/j.arr.2018.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/07/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
The applications of modern artificial intelligence (AI) algorithms within the field of aging research offer tremendous opportunities. Aging is an almost universal unifying feature possessed by all living organisms, tissues, and cells. Modern deep learning techniques used to develop age predictors offer new possibilities for formerly incompatible dynamic and static data types. AI biomarkers of aging enable a holistic view of biological processes and allow for novel methods for building causal models-extracting the most important features and identifying biological targets and mechanisms. Recent developments in generative adversarial networks (GANs) and reinforcement learning (RL) permit the generation of diverse synthetic molecular and patient data, identification of novel biological targets, and generation of novel molecular compounds with desired properties and geroprotectors. These novel techniques can be combined into a unified, seamless end-to-end biomarker development, target identification, drug discovery and real world evidence pipeline that may help accelerate and improve pharmaceutical research and development practices. Modern AI is therefore expected to contribute to the credibility and prominence of longevity biotechnology in the healthcare and pharmaceutical industry, and to the convergence of countless areas of research.
Collapse
|
22
|
Whitaker JA, von Itzstein MS, Poland GA. Strategies to maximize influenza vaccine impact in older adults. Vaccine 2018; 36:5940-5948. [PMID: 30153995 DOI: 10.1016/j.vaccine.2018.08.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 01/13/2023]
Abstract
Older adults are disproportionately affected by influenza morbidity and mortality. In most high income countries, influenza vaccine policies target persons age ≥65 years for influenza vaccination. Many low-resource settings do not utilize seasonal influenza vaccination. Barriers to influenza prevention among older adults around the globe are multiple and some vary between high- and low-resource settings. To maximize influenza prevention in the older adult population, gaps in influenza vaccination coverage and improvements in vaccine efficacy are needed. The focus of this article is on the data for currently available vaccine strategies to maximize influenza vaccine impact, with a focus on high-resource settings. We also discuss novel influenza vaccine strategies needed for older adults worldwide.
Collapse
Affiliation(s)
| | | | - Gregory A Poland
- Mayo Vaccine Research Group, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Teteloshvili N, Dekkema G, Boots AM, Heeringa P, Jellema P, de Jong D, Terpstra M, Brouwer E, Pawelec G, Kok K, van den Berg A, Kluiver J, Kroesen BJ. Involvement of MicroRNAs in the Aging-Related Decline of CD28 Expression by Human T Cells. Front Immunol 2018; 9:1400. [PMID: 29967621 PMCID: PMC6015875 DOI: 10.3389/fimmu.2018.01400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
Loss of CD28 is a characteristic feature of T cell aging, but the underlying mechanisms of this loss are elusive. As differential expression of microRNAs (miRNAs) has been described between CD28+ and CD28− T cells, we hypothesized that altered miRNA expression contributes to the age-associated downregulation of CD28. To avoid the confounding effects of age-associated changes in the proportions of T cells at various differentiation stages in vivo, an experimental model system was used to study changes over time in the expression of miRNA associated with the loss of CD28 expression in monoclonal T cell populations at a lower or higher number of population doublings (PDs). This approach allows identification of age-associated miRNA expression changes in a longitudinal model. Results were validated in ex vivo samples. The cumulative number of PDs but not the age of the donor of the T cell clone was correlated with decreased expression of CD28. Principal component analysis of 252 expressed miRNAs showed clustering based on low and high PDs, irrespective of the age of the clone donor. Increased expression of miR-9-5p and miR-34a-5p was seen in clones at higher PDs, and miR-9-5p expression inversely correlated with CD28 expression in ex vivo sorted T-cells from healthy subjects. We then examined the involvement of miR-9-5p, miR-34a-5p, and the members of the miR-23a~24-2 cluster, in which all are predicted to bind to the 3′UTR of CD28, in the IL-15-induced loss of CD28 in T cells. Culture of fresh naive CD28+ T cells in the presence of IL-15 resulted in a gradual loss of CD28 expression, while the expression of miR-9-5p, miR-34a-5p, and members of the miR-23a~24-2 cluster increased. Binding of miR-9-5p, miR-34a-5p, miR-24-3p, and miR-27- 3p to the 3′UTR of CD28 was studied using luciferase reporter constructs. Functional binding to the 3′UTR was shown for miR-24-3p and miR-27a-3p. Our results indicate involvement of defined miRNAs in T cells in relation to specific characteristics of T cell aging, i.e., PD and CD28 expression.
Collapse
Affiliation(s)
- Nato Teteloshvili
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerjan Dekkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annemieke M Boots
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn Terpstra
- Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany.,Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Klaas Kok
- Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart-Jan Kroesen
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Gensous N, Franceschi C, Blomberg BB, Pirazzini C, Ravaioli F, Gentilini D, Di Blasio AM, Garagnani P, Frasca D, Bacalini MG. Responders and non-responders to influenza vaccination: A DNA methylation approach on blood cells. Exp Gerontol 2018; 105:94-100. [PMID: 29360511 PMCID: PMC5989724 DOI: 10.1016/j.exger.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Several evidences indicate that aging negatively affects the effectiveness of influenza vaccination. Although it is well established that immunosenescence has an important role in vaccination response, the molecular pathways underlying this process are largely unknown. Given the importance of epigenetic remodeling in aging, here we analyzed the relationship between responsiveness to influenza vaccination and DNA methylation profiles in healthy subjects of different ages. Peripheral blood mononuclear cells were collected from 44 subjects (age range: 19-90 years old) immediately before influenza vaccination. Subjects were subsequently classified as responders or non-responders according to hemagglutination inhibition assay 4-6 weeks after the vaccination. Baseline whole genome DNA methylation in peripheral blood mononuclear cells was analyzed using the Illumina® Infinium 450 k microarray. Differential methylation analysis between the two groups (responders and non-responders) was performed through an analysis of variance, correcting for age, sex and batch. We identified 83 CpG sites having a nominal p-value <.001 and absolute difference in DNA methylation of at least 0.05 between the two groups. For some CpG sites, we observed age-dependent decrease or increase in methylation, which in some cases was specific for the responders and non-responders groups. Finally, we divided the cohort in two subgroups including younger (age < 50) and older (age ≥ 50) subjects and compared DNA methylation between responders and non-responders, correcting for sex and batch in each subgroup. We identified 142 differentially methylated CpG sites in the young subgroup and 305 in the old subgroup, suggesting a larger epigenetic remodeling at older ages. Interestingly, some of the differentially methylated probes mapped in genes involved in immunosenescence (CD40) and in innate immunity responses (CXCL16, ULK1, BCL11B, BTC). In conclusion, the analysis of epigenetic landscape can shed light on the biological basis of vaccine responsiveness during aging, possibly providing new appropriate biomarkers of this process.
Collapse
Affiliation(s)
- Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy; IRCCS Institute of Neurological Sciences, Bologna, Italy.
| | - Bonnie B Blomberg
- Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna, Bologna, Italy.
| | | | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, S-141 86 Stockholm, Sweden; Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna, Bologna, Italy; Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | |
Collapse
|
25
|
Huang CG, Lee LA, Wu YC, Hsiao MJ, Horng JT, Kuo RL, Huang CH, Lin YC, Tsao KC, Chen MC, Chen TC, Shih SR. A pilot study on primary cultures of human respiratory tract epithelial cells to predict patients' responses to H7N9 infection. Oncotarget 2018; 9:14492-14508. [PMID: 29581859 PMCID: PMC5865685 DOI: 10.18632/oncotarget.24537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022] Open
Abstract
Avian influenza A(H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. We aimed to investigate whether primary cultures of human respiratory tract epithelial cells are helpful to understand H7N9 virus pathogenesis and tissue tropism, and to evaluate how patient-related characteristics can affect the host's response to infection. Normal human bronchial epithelial cells (isolated from two different donors) and primary epithelial cells (harvested from 27 patients undergoing airway surgery) were experimentally infected with H7N9 and/or H1N1pdm for 72 h. After virus infection, the culture media were collected for viral RNA quantitation and cytokine detection. Both H7N9 and H1N1pdm viruses replicated and induced a cytokine response differently for each donor in the normal human bronchial epithelial model. H7N9 replicated equivalently in epithelial cells harvested from the inferior turbinate and paranasal sinus, and those from the larynx and bronchus, at 72 h post-infection. Viral RNA quantity at 72 h was significantly higher in patients aged 21-64 years than in patients aged ≥ 65 years; however, no effects of sex, medical comorbidities, and obesity were noted. H7N9-infected cultured cells released multiple cytokines within 72 h. Levels of interleukin-1β, interleukin-6, interleukin-8, interferon-γ, and tumor necrosis factor-α were associated differently with patient-related characteristics (such as age, sex, obesity, and medical comorbidities). In the era of precision medicine, these findings illustrate the potential utility of this primary culture approach to predict a host's response to H7N9 infection or to future infection by newly emerging viral infections, and to dissect viral pathogenesis.
Collapse
Affiliation(s)
- Chung-Guei Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Li-Ang Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC.,Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Yi-Cheng Wu
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan, ROC
| | - Mei-Jen Hsiao
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Chih-Heng Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Ya-Chu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Kuo-Chien Tsao
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Min-Chi Chen
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Public Health and Biostatistics Consulting Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Tse-Ching Chen
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan, ROC
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| |
Collapse
|
26
|
Teresa Aguado M, Barratt J, Beard JR, Blomberg BB, Chen WH, Hickling J, Hyde TB, Jit M, Jones R, Poland GA, Friede M, Ortiz JR. Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22-23 March 2017. Vaccine 2018; 36:921-931. [PMID: 29336923 PMCID: PMC5865389 DOI: 10.1016/j.vaccine.2017.12.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022]
Abstract
Many industrialized countries have implemented routine immunization policies for older adults, but similar strategies have not been widely implemented in low- and middle-income countries (LMICs). In March 2017, the World Health Organization (WHO) convened a meeting to identify policies and activities to promote access to vaccination of older adults, specifically in LMICs. Participants included academic and industry researchers, funders, civil society organizations, implementers of global health interventions, and stakeholders from developing countries with adult immunization needs. These experts reviewed vaccine performance in older adults, the anticipated impact of adult vaccination programs, and the challenges and opportunities of building or strengthening an adult and older adult immunization platforms. Key conclusions of the meeting were that there is a need for discussion of new opportunities for vaccination of all adults as well as for vaccination of older adults, as reflected in the recent shift by WHO to a life-course approach to immunization; that immunization in adults should be viewed in the context of a much broader model based on an individual's abilities rather than chronological age; and that immunization beyond infancy is a global priority that can be successfully integrated with other interventions to promote healthy ageing. As WHO is looking ahead to a global Decade of Healthy Ageing starting in 2020, it will seek to define a roadmap for interdisciplinary collaborations to integrate immunization with improving access to preventive and other healthcare interventions for adults worldwide.
Collapse
Affiliation(s)
| | - Jane Barratt
- International Federation on Ageing, Toronto, Canada.
| | - John R Beard
- Ageing and Life Course, World Health Organization, Geneva, Switzerland.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | - Terri B Hyde
- Vaccine Introduction Team, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom; Modelling and Economics Unit, Public Health England, London, United Kingdom.
| | | | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN, USA.
| | - Martin Friede
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland.
| | - Justin R Ortiz
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
27
|
Cole KS, Martin JM, Horne WT, Lin CJ, Nowalk MP, Alcorn JF, Zimmerman RK. Differential gene expression elicited by children in response to the 2015-16 live attenuated versus inactivated influenza vaccine. Vaccine 2017; 35:6893-6897. [PMID: 29132989 DOI: 10.1016/j.vaccine.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND In recent influenza seasons, the live attenuated influenza vaccine (LAIV) has not demonstrated the same level of vaccine effectiveness as that observed among children who received the inactivated influenza vaccine (IIV). To better understand this difference, this study compared the mRNA sequencing transcription profile (RNA seq) in children who received either IIV or LAIV. METHODS Children 3-17years of age receiving quadrivalent influenza vaccine were enrolled. Blood samples were collected on Day 0 prior to vaccination and again on Day 7 (range 6-10days) following vaccination. Total RNA was isolated from PAXgene tubes and sequenced for a custom panel of 89 transcripts using the TruSeq Targeted RNA Expression method. Fold differences in normalized RNA seq counts from Day 0 to Day 7 were calculated, log2 transformed and compared between the two vaccine groups. RESULTS Of 72 children, 46 received IIV and 26 received LAIV. Following IIV vaccination, 7 genes demonstrated significant differential expression at Day 7 (down-regulated). In contrast, following LAIV vaccination, 8 genes demonstrated significant differential expression at Day 7 (5 up-regulated and 3 down-regulated). Only two genes demonstrated similar patterns of regulation in both groups. CONCLUSIONS Differential regulation of genes was observed between 2015-16 LAIV and IIV recipients. These results help to elucidate the immune response to influenza vaccines and may be related to the difference in vaccine effectiveness observed in recent years between LAIV and IIV.
Collapse
Affiliation(s)
- Kelly Stefano Cole
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Judith M Martin
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William T Horne
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chyongchiou J Lin
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
29
|
Riese P, Guzmán CA. Roads to advanced vaccines: influenza case study. Microb Biotechnol 2017; 10:1036-1040. [PMID: 28809451 PMCID: PMC5609253 DOI: 10.1111/1751-7915.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/30/2022] Open
Abstract
Vaccines represent a cornerstone to ensure healthy lives and promote well‐being for all at all ages. However, there are many diseases for which vaccines are not available, are relatively ineffective or need to be adapted periodically. Advances in microbial biotechnology will contribute to overcoming these roadblocks by laying the groundwork for improving and creating new approaches for developing better vaccines, as illustrated here in the case of influenza.
Collapse
Affiliation(s)
- Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| |
Collapse
|
30
|
Abstract
Annual administration of the seasonal influenza vaccine is strongly recommended to reduce the burden of disease, particularly for persons at the highest risk for the viral infection. Even during years when there is a good match between the vaccine and circulating strains, host-related factors such as age, preexisting immunity, genetic polymorphisms, and the presence of chronic underlying conditions may compromise influenza vaccine responsiveness. The application of new methodologies and large-scale profiling technologies are improving the ability to measure vaccine immunogenicity and our understanding of the immune mechanisms by which vaccines induce protective immunity. This review attempts to summarize the general concepts of how host factors can contribute to the heterogeneity of immune responses induced by influenza vaccines.
Collapse
Affiliation(s)
- Maria R Castrucci
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
31
|
Ageing and latent CMV infection impact on maturation, differentiation and exhaustion profiles of T-cell receptor gammadelta T-cells. Sci Rep 2017; 7:5509. [PMID: 28710491 PMCID: PMC5511140 DOI: 10.1038/s41598-017-05849-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Ageing is a broad cellular process, largely affecting the immune system, especially T-lymphocytes. Additionally to immunosenescence alone, cytomegalovirus (CMV) infection is thought to have major impacts on T-cell subset composition and exhaustion. These impacts have been studied extensively in TCRαβ+ T-cells, with reduction in naive, increase in effector (memory) subsets and shifts in CD4/CD8-ratios, in conjunction with morbidity and mortality in elderly. Effects of both ageing and CMV on the TCRγδ+ T-cell compartment remain largely elusive. In the current study we investigated Vγ- and Vδ-usage, maturation, differentiation and exhaustion marker profiles of both CD4 and CD8 double-negative (DN) and CD8+TCRγδ+ T-cells in 157 individuals, age range 20–95. We observed a progressive decrease in absolute numbers of total TCRγδ+ T-cells in blood, affecting the predominant Vγ9/Vδ2 population. Aged TCRγδ+ T-cells appeared to shift from naive to more (late-stage) effector phenotypes, which appeared more prominent in case of persistent CMV infections. In addition, we found effects of both ageing and CMV on the absolute counts of exhausted TCRγδ+ T-cells. Collectively, our data show a clear impact of ageing and CMV persistence on DN and CD8+TCRγδ+ T-cells, similar to what has been reported in CD8+TCRαβ+ T-cells, indicating that they undergo similar ageing processes.
Collapse
|
32
|
Zimmermann MT, Kennedy RB, Grill DE, Oberg AL, Goergen KM, Ovsyannikova IG, Haralambieva IH, Poland GA. Integration of Immune Cell Populations, mRNA-Seq, and CpG Methylation to Better Predict Humoral Immunity to Influenza Vaccination: Dependence of mRNA-Seq/CpG Methylation on Immune Cell Populations. Front Immunol 2017; 8:445. [PMID: 28484452 PMCID: PMC5399034 DOI: 10.3389/fimmu.2017.00445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
The development of a humoral immune response to influenza vaccines occurs on a multisystems level. Due to the orchestration required for robust immune responses when multiple genes and their regulatory components across multiple cell types are involved, we examined an influenza vaccination cohort using multiple high-throughput technologies. In this study, we sought a more thorough understanding of how immune cell composition and gene expression relate to each other and contribute to interindividual variation in response to influenza vaccination. We first hypothesized that many of the differentially expressed (DE) genes observed after influenza vaccination result from changes in the composition of participants' peripheral blood mononuclear cells (PBMCs), which were assessed using flow cytometry. We demonstrated that DE genes in our study are correlated with changes in PBMC composition. We gathered DE genes from 128 other publically available PBMC-based vaccine studies and identified that an average of 57% correlated with specific cell subset levels in our study (permutation used to control false discovery), suggesting that the associations we have identified are likely general features of PBMC-based transcriptomics. Second, we hypothesized that more robust models of vaccine response could be generated by accounting for the interplay between PBMC composition, gene expression, and gene regulation. We employed machine learning to generate predictive models of B-cell ELISPOT response outcomes and hemagglutination inhibition (HAI) antibody titers. The top HAI and B-cell ELISPOT model achieved an area under the receiver operating curve (AUC) of 0.64 and 0.79, respectively, with linear model coefficients of determination of 0.08 and 0.28. For the B-cell ELISPOT outcomes, CpG methylation had the greatest predictive ability, highlighting potentially novel regulatory features important for immune response. B-cell ELISOT models using only PBMC composition had lower performance (AUC = 0.67), but highlighted well-known mechanisms. Our analysis demonstrated that each of the three data sets (cell composition, mRNA-Seq, and DNA methylation) may provide distinct information for the prediction of humoral immune response outcomes. We believe that these findings are important for the interpretation of current omics-based studies and set the stage for a more thorough understanding of interindividual immune responses to influenza vaccination.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | | | - Diane E Grill
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Krista M Goergen
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|