1
|
Endo HM, Bandeca SCS, Olchanheski LR, Schemczssen-Graeff Z, Pileggi M. Probiotics and the reduction of SARS-CoV-2 infection through regulation of host cell calcium dynamics. Life Sci 2024; 350:122784. [PMID: 38848939 DOI: 10.1016/j.lfs.2024.122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.
Collapse
Affiliation(s)
- Hugo Massami Endo
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | | | - Luiz Ricardo Olchanheski
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil.
| |
Collapse
|
2
|
Green GBH, Williams MB, Brandom JL, Chehade SB, Fay CX, Morrow CD, Lawrence AL, Bej AK, Watts SA. A Bacterial-Sourced Protein Diet Induces Beneficial Shifts in the Gut Microbiome of the Zebrafish, Danio rerio. Curr Dev Nutr 2024; 8:102077. [PMID: 38357379 PMCID: PMC10865222 DOI: 10.1016/j.cdnut.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Background Bacterial-sourced single-cell proteins (SCPs) offer an alternative protein source for diet formulation for Zebrafish (Danio rerio) and other aquaculture models. In addition, the use of a single-cell bacterial protein source derived from multiple species provides a unique insight into the interplay among nutrients in the diet, microbial populations in the diet, and the gut microbiome in D. rerio. Objective Our objective in this study was to evaluate the impact of dietary replacement of fish protein hydrolysate in a standard reference (SR) with a single-cell bacterial protein source on D. rerio gut microbiome. Methods We investigated gut microbial compositions of D. rerio fed an open-formulation standard reference (SR) diet or a bacterial-sourced protein (BP) diet, utilizing microbial taxonomic co-occurrence networks, and predicted functional profiles. Results Microbial communities in the SR diet were primarily composed of Firmicutes. In contrast, the BP diet was mainly composed of Proteobacteria. Alpha diversity revealed significant differences in microbial communities between the 2 diets, and between the guts of D. rerio fed either of the 2 diets. D. rerio fed with the SR diet resulted in abundance of Aeromonas and Vibrio. In contrast, D. rerio fed with a BP diet displayed a large abundance of members from the Rhodobacteraceae family. Taxonomic co-occurrence networks display unique microbial interactions, and key taxons in D. rerio gut samples were dependent on diet and gender. Predicted functional profiling of the microbiome across D. rerio fed SR or BP diets revealed distinct metabolic pathway differences. Female D. rerio fed the BP diet displayed significant upregulation of pathways related to primary and secondary bile acid synthesis. Male D. rerio fed the BP diet revealed similar pathway shifts and, additionally, a significant upregulation of the polyketide sugar unit biosynthesis pathway. Conclusions The use of a BP dramatically affects the composition and activity of the gut microbiome. Future investigations should further address the interplay among biological systems and diet and may offer insights into potential health benefits in preclinical and translational animal models.
Collapse
Affiliation(s)
- George BH Green
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B Williams
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeri L. Brandom
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sophie B Chehade
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian X Fay
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Addison L Lawrence
- Texas A&M AgriLife Extension Agriculture and Life Sciences, TAMU College Station, TX, United States
| | - Asim K Bej
- J. Frank Barefield, Jr. Department of Criminal Justice, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen A Watts
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Watabe T, Yamahira S, Matsuda M, Terai K. Visual quantification of prostaglandin E 2 discharge from a single cell. Cell Struct Funct 2023; 48:241-249. [PMID: 37813623 PMCID: PMC11496778 DOI: 10.1247/csf.23047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.
Collapse
Affiliation(s)
- Tetsuya Watabe
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Shinya Yamahira
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8315, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| |
Collapse
|
4
|
Chen D, Guo C, Ren C, Xia Z, Xu H, Qu H, Wa Y, Guan C, Zhang C, Qian J, Gu R. Screening of Lactiplantibacillus plantarum 67 with Strong Adhesion to Caco-2 Cells and the Effects of Protective Agents on Its Adhesion Ability during Vacuum Freeze Drying. Foods 2023; 12:3604. [PMID: 37835257 PMCID: PMC10572606 DOI: 10.3390/foods12193604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Adhesion to the intestinal tract provides the foundation for Lactobacillus to exert its benefits. Vacuum freeze-drying (VFD) is currently one of the main processing methods for Lactobacillus products. Therefore, the effects of VFD on the adhesion and survival of Lactiplantibacillus plantarum 67 were investigated in this study. The results show that L. plantarum 67 exhibits remarkable tolerance following successive exposure to simulated saliva, gastric juice and intestinal juice, and also has a strong adhesion ability to Caco-2 cells. The adhesion and survival rates of L. plantarum 67 significantly decreased after VFD in phosphate-buffered saline (PBS), whereas they significantly increased in protective agents (PAs) (p < 0.05). Scanning electron microscope observations show that L. plantarum 67 aggregated more to Caco-2 cells in PAs than in PBS, and its shape and size were protected. Proteomics detection findings indicated that differentially expressed proteins (DEPs) related to adhesins and vitality and their pathways in L. plantarum 67 were significantly affected by VFD (p < 0.05). However, the expression of DEPs (such as cold shock protein, cell surface protein, adherence protein, chitin-binding domain and extracellular transglycosylase, membrane-bound protein) was improved by PAs. Compared with PBS, the PAs significantly adjusted the phosphotransferase system and amino sugar and nucleotide sugar metabolism pathways (p < 0.05). VFD decreased the adhesion and vitality of L. plantarum 67, while the PAs could exert protective effects by regulating proteins and pathways related to adhesion and vitality.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
- Jiangsu Yuhang Food Technology Co., Ltd., Yancheng 224000, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenyu Ren
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Zihan Xia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Haiyan Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| |
Collapse
|
5
|
Jia M, Yi B, Chen X, Xu Y, Xu X, Wu Z, Ji J, Tang J, Yu D, Zheng Y, Zhou Q, Zhao Y. Carbon dots induce pathological damage to the intestine via causing intestinal flora dysbiosis and intestinal inflammation. J Nanobiotechnology 2023; 21:167. [PMID: 37231475 PMCID: PMC10210306 DOI: 10.1186/s12951-023-01931-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Carbon dots (CDs), as excellent antibacterial nanomaterials, have gained great attention in treating infection-induced diseases such as periodontitis and stomatitis. Given the eventual exposure of CDs to the intestine, elucidating the effect of CDs on intestinal health is required for the safety evaluation of CDs. RESULTS Herein, CDs extracted from ε-poly-L-lysine (PL) were chosen to explore the modulation effect of CDs on probiotic behavior in vitro and intestinal remodeling in vivo. Results verify that PL-CDs negatively regulate Lactobacillus rhamnosus (L. rhamnosus) growth via increasing reactive oxygen species (ROS) production and reducing the antioxidant activity, which subsequently destroys membrane permeability and integrity. PL-CDs are also inclined to inhibit cell viability and accelerate cell apoptosis. In vivo, the gavage of PL-CDs is verified to induce inflammatory infiltration and barrier damage in mice. Moreover, PL-CDs are found to increase the Firmicutes to Bacteroidota (F/B) ratio and the relative abundance of Lachnospiraceae while decreasing that of Muribaculaceae. CONCLUSION Overall, these evidences indicate that PL-CDs may inevitably result in intestinal flora dysbiosis via inhibiting probiotic growth and simultaneously activating intestinal inflammation, thus causing pathological damage to the intestine, which provides an effective and insightful reference for the potential risk of CDs from the perspective of intestinal remodeling.
Collapse
Affiliation(s)
- Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
| | - Xian Chen
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yongzhi Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Xinkai Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Zhaoxu Wu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
- School of Stomatology, Qingdao University, Qingdao, 266003 China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000 Zhejiang China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
6
|
Long-term administration of Tetragenococcus halophilus No. 1 over generations affects the immune system of mice. PLoS One 2022; 17:e0267473. [PMID: 35472068 PMCID: PMC9041805 DOI: 10.1371/journal.pone.0267473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Japanese people have been consuming miso soup over generations; it is beneficial for health and longevity. In this study, Tetragenococcus halophilus No. 1 in miso was found to possess salient immunomodulatory functions. Recently, we also demonstrated its effect on boosting immunological robustness. Although the consumption of miso is suggested to affect health over generations, such a long-term experiment has not been conducted until now. Thus, we evaluated the effects of miso-derived T. halophilus No. 1 over generations on the immune system of mice. As the generations increase, the proportion of germinal center B cells tends to increase. Furthermore, we found that CD4+ T cells expressing CD69, an activation marker, were increased in the third generation of mice. In addition, the proportion of follicular helper T cells and regulatory T cells tended to increase. Among the subsets of CD4+ T cells in the fourth generation, effector T cells and effector memory T cells tended to increase. In contrast, central memory T cells and naive T cells decreased. Moreover, autoimmunity was suppressed by long-term administration of T. halophilus No. 1. Based on these findings, we believe that the long-term administration of T. halophilus No. 1 over generations promotes immune activation and tolerance and enhances immunological robustness.
Collapse
|
7
|
Nagaishi T, Watabe T, Kotake K, Kumazawa T, Aida T, Tanaka K, Ono R, Ishino F, Usami T, Miura T, Hirakata S, Kawasaki H, Tsugawa N, Yamada D, Hirayama K, Yoshikawa S, Karasuyama H, Okamoto R, Watanabe M, Blumberg RS, Adachi T. Immunoglobulin A-specific deficiency induces spontaneous inflammation specifically in the ileum. Gut 2022; 71:487-496. [PMID: 33963042 PMCID: PMC8809603 DOI: 10.1136/gutjnl-2020-322873] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan .,Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Taro Watabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kunihiko Kotake
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Toshihiko Kumazawa
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Ono
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takako Usami
- Laboratory of Recombinant Animals, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Satomi Hirakata
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Naoya Tsugawa
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Daiki Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Department of Cellular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Richard S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan .,Current address: Department of Precision Health, Medical Research Institute, TMDU, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
8
|
Kotake K, Kumazawa T, Nakamura K, Shimizu Y, Ayabe T, Adachi T. Ingestion of miso regulates immunological robustness in mice. PLoS One 2022; 17:e0261680. [PMID: 35061718 PMCID: PMC8782471 DOI: 10.1371/journal.pone.0261680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
In Japan, there is a long history of consumption of miso, a fermented soybean paste, which possesses beneficial effects on human health. However, the mechanism behind these effects is not fully understood. To clarify the effects of miso on immune cells, we evaluated its immunomodulatory activity in mice. Miso did not alter the percentage of B and T cells in the spleen; however, it increased CD69+ B cells, germinal center B cells and regulatory T cells. Anti-DNA immunoglobulin M antibodies, which prevent autoimmune disease, were increased following ingestion of miso. Transcriptome analysis of mouse spleen cells cultured with miso and its raw material revealed that the expression of genes, including interleukin (IL)-10, IL-22 and CD86, was upregulated. Furthermore, intravital imaging of the small intestinal epithelium using a calcium biosensor mouse line indicated that miso induced Ca2+ signaling in a manner similar to that of probiotics. Thus, ingestion of miso strengthened the immune response and tolerance in mice. These results appear to account, at least in part, to the salubrious effects of miso.
Collapse
Affiliation(s)
- Kunihiko Kotake
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Kumazawa
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiminori Nakamura
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yu Shimizu
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takahiro Adachi
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Zhang C, Li L, Jin B, Xu X, Zuo X, Li Y, Li Z. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art. Front Microbiol 2022; 12:724449. [PMID: 35002992 PMCID: PMC8733716 DOI: 10.3389/fmicb.2021.724449] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
The delivery mode is an important factor driving alteration in the gut microbiota during the neonatal period. Several studies prove that the alteration of gut microbiota induced by cesarean section could influence the activation of intestinal epithelial cells and the development of immune system. Further, some autoimmune and metabolic disorders may be related to the microbiota dysbiosis in infants caused by cesarean section. It is noteworthy that probiotics could promote the intestinal microecology, which may further prevent and treat cesarean section related diseases. This review summarized the great significance of delivery mode on microbiota and health, as well as provided clinically feasible methods for the prevention and treatment of cesarean section related gut diseases.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Biying Jin
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyan Xu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Liu X, Li T, Liu Y, Sun S, Liu D. Nuclear factor erythroid 2-related factor 2 potentiates the generation of inflammatory cytokines by intestinal epithelial cells during hyperoxia by inducing the expression of interleukin 17D. Toxicology 2021; 457:152820. [PMID: 34023435 DOI: 10.1016/j.tox.2021.152820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022]
Abstract
Prolonged exposure to therapeutic hyperoxia can induce severe side effects on intestinal epithelial cells. Meanwhile, interleukin (IL)-17D secreted by intestinal epithelial cells, plays an important role in the mucosal immune system. Therefore, this study aimed to investigate the changes of IL-17D, IL-4 and IL-6 and the regulatory effect of nuclear factor erythroid 2-related factor 2 (Nrf2) on IL-17D, IL-4 and IL-6 under hyperoxia in human intestinal epithelial cells. To achieve this, NCM460 cells were exposed to an atmosphere containing 85 % oxygen (hyperoxia) for 24 h, 48 h, or 72 h; tert-butylhydroquinone (tBHQ) and ML385 were used as an Nrf2 activator and inhibitor, respectively. Immunohistochemical staining, western blot, and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression levels of IL-17D, Nrf2, Kelch-like ECH-associated protein 1 (Keap1), IL-6, and IL-4 in NCM460 cells. Results showed that hyperoxia significantly increased the expression of IL-17D, Nrf2, IL-6, and IL-4, while decreasing that of Keap1. tBHQ further activated Nrf2 and promoted the expression of IL-17D, IL-6, and IL-4. Additionally, tBHQ aggravated hyperoxia-induced inflammation caused by hyperoxia. In contrast, ML385 completely inhibited the expression of Nrf2 and IL-17D, transiently inhibited IL-6 and IL-4 expression, and did not influence Keap1 expression. These results cumulatively demonstrate that hyperoxia aggravates the inflammatory response in intestinal epithelial cells by activating the Nrf2/IL-17D axis.
Collapse
Affiliation(s)
- Xuying Liu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street #36, HePing District, ShenYang, 110000, China
| | - Tianming Li
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street #36, HePing District, ShenYang, 110000, China
| | - Yanping Liu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street #36, HePing District, ShenYang, 110000, China
| | - Siyu Sun
- ShengJing Hospital of China Medical University, Department of Gastroenterology, SanHao Street #36, HePing District, ShenYang, 110000, China.
| | - Dongyan Liu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street #36, HePing District, ShenYang, 110000, China.
| |
Collapse
|
11
|
Ruiz Sella SRB, Bueno T, de Oliveira AAB, Karp SG, Soccol CR. Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit Rev Biotechnol 2021; 41:355-369. [PMID: 33563053 DOI: 10.1080/07388551.2020.1858019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The growing global demand for animal products and processed meat has created a challenge for the livestock sector to enhance animal productivity without compromising product quality. The restriction of antibiotics in animal feeds as growth promoters makes the use of probiotics a natural and safe alternative to obtain functional foods that provide animal health and quality and to maintain food safety for consumers. To incorporate these additives into the diet, detailed studies are required, in which in vitro and in vivo assays are used to prove the efficacy and to ensure the safety of probiotic candidate strains. Studies on the use of Bacillus subtilis natto as a spore-forming probiotic bacterium in animal nutrition have shown no hazardous effects and have demonstrated the effectiveness of its use as a probiotic, mainly due to its proven antimicrobial, anti-inflammatory, antioxidant, enzymatic, and immunomodulatory activity. This review summarizes the recent scientific background on the probiotic effects of B. subtilis natto in animal nutrition. It focuses on its safety assessment, host-associated efficacy, and industrial requirements.
Collapse
Affiliation(s)
- Sandra R B Ruiz Sella
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Departament of Research and Development, Production and Research Centre of Immunobiological Products, Secretaria de Estado da Saúde, Piraquara, Brazil
| | - Tarcila Bueno
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Biotechnology Coordination, Federal Institute of Paraná, Curitiba, Brazil
| | - Angelo A B de Oliveira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
12
|
Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020; 12:nu12113287. [PMID: 33121026 PMCID: PMC7693701 DOI: 10.3390/nu12113287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.
Collapse
|
13
|
Liu X, Zhang D, Cai Q, Liu D, Sun S. Involvement of nuclear factor erythroid 2‑related factor 2 in neonatal intestinal interleukin‑17D expression in hyperoxia. Int J Mol Med 2020; 46:1423-1432. [PMID: 32945417 PMCID: PMC7447302 DOI: 10.3892/ijmm.2020.4697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin 17D (IL-17D) plays an important role in host defense against inflammation and infection. In the present study, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating the production of IL-17D was investigated under hyperoxia. For this purpose, neonatal rats were randomized into two groups; the model group was exposed to hyperoxia (80-85% O2), while the control group was maintained under normoxic conditions (21% O2). Small intestine tissue was collected on postnatal days 3, 7, 10 and 14. IL-17D expression was detected by immunofluorescence, immunohistochemistry and western blotting. The levels of Nrf2 and kelch-like ECH-associated protein 1 (keap1) were detected by immunohistochemistry and western blotting. Results showed that IL-17D expression in intestine epithelial cells increased steadily, reaching a peak on day 7, and decreased gradually on days 10 and 14 under hyperoxia. Nrf2 expression was consis-tent with IL-17D, and it was positively correlated with IL-17D. However, on postnatal days 10 and 14, the number of CD4+ T cells and CD19+ B cells expressing IL-17D was increased, and positive cells of the model group were significantly more than that of the control group. Keap1 levels were lower at the early stage. In conclusion, the expression levels of intestinal IL-17D and Nrf2 were altered simultaneously following neonatal rat development in hyperoxia, indicating that Nrf2 may be involved in regulating the expression of IL-17D in intestinal epithelial cells. Moreover, IL-17D in intestinal epithelial cells may play a unique immunological role during hyperoxia.
Collapse
Affiliation(s)
- Xuying Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyang Zhang
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Qing Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
14
|
Euglena Gracilis and β-Glucan Paramylon Induce Ca 2+ Signaling in Intestinal Tract Epithelial, Immune, and Neural Cells. Nutrients 2020; 12:nu12082293. [PMID: 32751743 PMCID: PMC7468862 DOI: 10.3390/nu12082293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
The intestinal tract contains over half of all immune cells and peripheral nerves and manages the beneficial interactions between food compounds and the host. Paramylon is a β-1,3-glucan storage polysaccharide from Euglena gracilis (Euglena) that exerts immunostimulatory activities by affecting cytokine production. This study investigated the signaling mechanisms that regulate the beneficial interactions between food compounds and the intestinal tract using cell type-specific calcium (Ca2+) imaging in vivo and in vitro. We successfully visualized Euglena- and paramylon-mediated Ca2+ signaling in vivo in intestinal epithelial cells from mice ubiquitously expressing the Yellow Cameleon 3.60 (YC3.60) Ca2+ biosensor. Moreover, in vivo Ca2+ imaging demonstrated that the intraperitoneal injection of both Euglena and paramylon stimulated dendritic cells (DCs) in Peyer’s patches, indicating that paramylon is an active component of Euglena that affects the immune system. In addition, in vitro Ca2+ imaging in dorsal root ganglia indicated that Euglena, but not paramylon, triggers Ca2+ signaling in the sensory nervous system innervating the intestine. Thus, this study is the first to successfully visualize the direct effect of β-1,3-glucan on DCs in vivo and will help elucidate the mechanisms via which Euglena and paramylon exert various effects in the intestinal tract.
Collapse
|
15
|
Aihara Y, Fukuda Y, Takizawa A, Osakabe N, Aida T, Tanaka K, Yoshikawa S, Karasuyama H, Adachi T. Visualization of mechanical stress-mediated Ca 2+ signaling in the gut using intravital imaging. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:209-218. [PMID: 33117619 PMCID: PMC7573108 DOI: 10.12938/bmfh.2019-054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
Mechanosensory systems have been implicated in the maintenance of gut homeostasis, but details on the related mechanisms are scarce. Recently, we generated a conditional Ca2+ biosensor yellow cameleon 3.60 (YC3.60)-expressing transgenic mouse model and established a five-dimensional (5D; x, y, z, time, and Ca2+) intravital imaging system for investigating lymphoid tissues and enteric epithelial cell responses. To validate this gut-sensing system, we visualized responses of enteric nervous system (ENS) cells in Nestin-Cre/YC3.60flox mice with specific YC3.60 expression. The ENS, including the myenteric (Auerbach's) and submucous (Meissner's) plexuses, could be visualized without staining in this mouse line, indicating that the probe produced sufficient fluorescent intensity. Furthermore, the myenteric plexus exhibited Ca2+ signaling during peristalsis without stimulation. Nerve endings on the surface of enteric epithelia also exhibited Ca2+ signaling without stimulation. Mechanical stress induced transient salient Ca2+ flux in the myenteric plexus and in enteric epithelial cells in the Nestin-Cre/YC3.60 and the CAG-Cre/YC3.60 lines, respectively. Furthermore, the potential TRPM7 inhibitors were shown to attenuate mechanical stress-mediated Ca2+ signaling. These data indicate that the present intravital imaging system can be used to visualize mechanosensory Ca2+ signaling in ENS cells and enteric epithelial cells.
Collapse
Affiliation(s)
- Yoshiko Aihara
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yota Fukuda
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Saitama 337-5780, Japan
| | - Akiyoshi Takizawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Saitama 337-5780, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
16
|
Nishimura Y, Fukuda Y, Okonogi T, Yoshikawa S, Karasuyama H, Osakabe N, Ikegaya Y, Sasaki T, Adachi T. Dual real-time in vivo monitoring system of the brain-gut axis. Biochem Biophys Res Commun 2020; 524:340-345. [PMID: 31996305 DOI: 10.1016/j.bbrc.2020.01.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The brain-gut axis which is an interaction between recognition and emotion and the gut sensory system for food and microbiota is important for health. However, there is no real-time monitoring system of the brain and the gut simultaneously so far. We attempted to establish a dual real-time monitoring system for the brain-gut axis by a combination of intravital Ca2+ imaging of the gut and electroencephalogram. Using a conditional Yellow Cameleon 3.60 expression mouse line, we performed intravital imaging of the gut, electrophysiological recordings of the vagus nerve, and electroencephalogram recordings of the various cortical regions simultaneously upon capsaicin stimuli as a positive control. Upon capsaicin administration into the small intestinal lumen, a simultaneous response of Ca2+ signal in the enteric nervous system and cortical local field potentials (LFPs) was successfully observed. Both of them responded immediately upon capsaicin stimuli. Capsaicin triggered a significant increase in the frequency of vagus nerve spikes and a significant decrease in the slow-wave power of cortical LFPs. Furthermore, capsaicin induced delayed and sustained Ca2+ signal in intestinal epithelial cells and then suppressed intestinal motility. The dual real-time monitoring system of the brain and the gut enables to dissect the interaction between the brain and the gut over time with precision.
Collapse
Affiliation(s)
- Yuya Nishimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yota Fukuda
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, 337-5780, Japan; Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Toya Okonogi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan; Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Saitama, Saitama, 337-5780, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, Suita, Osaka, 565-0871, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
17
|
Intravital Two-photon Imaging of Ca 2+ signaling in Secretory Organs of Yellow Cameleon Transgenic Mice. Sci Rep 2018; 8:15880. [PMID: 30367106 PMCID: PMC6203801 DOI: 10.1038/s41598-018-34347-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/06/2018] [Indexed: 01/01/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling regulates physiological functions in most cells. In secretory organs, such as the pancreas, salivary gland, and lacrimal gland (LG), [Ca2+]i elevation in acinar cells triggers fluid secretion, which plays vital roles in the maintenance of functional health across the life-course. It is important to understand the secretory mechanism of secretory organs, but lack of analytic systems available for living animals limits the scope of research to gain deeper insights into the precise mechanism of secretion. We established an intravital imaging system for specific cell types of secretory organs to monitor the [Ca2+]i changes using mouse line expressing Yellow Cameleon 3.60, a genetically encoded Ca2+ indicator. Elevation of [Ca2+]i in specific cell types of secretory organs could be monitored after cholinergic stimulation ex vivo and intravitally. We found that a marked attenuation of LG [Ca2+]i response to cholinergic stimulation was induced under pathological conditions by postganglionic denervation. Intravital Ca2+ imaging in secretory organs will broaden our understanding of the cellular mechanisms in animal models of secretory diseases.
Collapse
|
18
|
Quach D, Britton RA. Gut Microbiota and Bone Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:47-58. [PMID: 29101651 DOI: 10.1007/978-3-319-66653-2_4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The past decade has seen an explosion of research in the area of how the bacteria that inhabit the human body impact health and disease. One of the more surprising concepts to emerge from this work is the ability of the intestinal microbiota to impact virtually all systems in the body. Recently, the role of gut bacteria in bone health and disease has received more significant attention. In this chapter, we review what has been learned about how the gut microbiome impacts bone health and discuss possible mechanisms of how the gut-bone axis may be connected. We also discuss the use of therapeutic microbes in the modulation of bone health. Finally, we propose an emerging field of the gut-brain-bone axis, in which the gut drives bone physiology via regulation of key hormones that are originally synthesized in the brain.
Collapse
Affiliation(s)
- Darin Quach
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert A Britton
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Houston, TX, USA.
| |
Collapse
|
19
|
Murata T, Honda T, Egawa G, Yamamoto Y, Ichijo R, Toyoshima F, Dainichi T, Kabashima K. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification. Sci Rep 2018; 8:6610. [PMID: 29700333 PMCID: PMC5919969 DOI: 10.1038/s41598-018-24899-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca2+]i) is one of the factors predicted to regulate cornification, the dynamics of [Ca2+]i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca2+]i in mouse skin. [Ca2+]i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca2+]i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca2+]i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca2+]i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.
Collapse
Affiliation(s)
- Teruasa Murata
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tetsuya Honda
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Gyohei Egawa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuo Yamamoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Central Pharmaceutical Research Institute, Japan Tobacco, Tokyo, Japan
| | - Ryo Ichijo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, IMMUNOS Building #3-4, Biopolis, 138648, Singapore.
| |
Collapse
|
20
|
Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M, Serra M, Palomba A, Tanca A, Laconi E, Uzzau S. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes 2018; 9:104-114. [PMID: 28891744 PMCID: PMC5989789 DOI: 10.1080/19490976.2017.1371894] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/06/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Previous studies indicated that caloric restricted diet enables to lower significantly the risk of cardiovascular and metabolic diseases. In experimental animal models, life-long lasting caloric restriction (CR) was demonstrated to induce changes of the intestinal microbiota composition, regardless of fat content and/or exercise. To explore the potential impact of short and long-term CR treatment on the gut microbiota, we conducted an analysis of fecal microbiota composition in young and adult Fisher 344 rats treated with a low fat feed under ad libitum (AL) or CR conditions (70%). We report here significant changes of the rat fecal microbiota that arise rapidly in young growing animals after short-term administration of a CR diet. In particular, Lactobacillus increased significantly after 8 weeks of CR treatment and its relative abundance was significantly higher in CR vs AL fed animals after 36 weeks of dietary intervention. Taken together, our data suggest that Lactobacillus intestinal colonization is hampered in AL fed young rats compared to CR fed ones, while health-promoting CR diet intervention enables the expansion of this genus rapidly and persistently up to adulthood.
Collapse
Affiliation(s)
- Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Erika Cadoni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
21
|
Abe K, Misaka T. Food functionality research as a new national project in special reference to improvement of cognitive and locomotive abilities. Biosci Biotechnol Biochem 2018; 82:573-583. [PMID: 29316856 DOI: 10.1080/09168451.2017.1412249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Japan, where a super-aging society is realized, we are most concerned about healthy longevity, which would ascertain the wellness of people by improving their quality of life (QOL). In 2014, the Cabinet Office proposed a strategic innovation promotion programme, launching a national project for the development of the agricultural-forestry-fisheries food products with new functionalities for the next generation. In addition to focusing on a conventional prevention of lifestyle-associated metabolic syndromes, the project targets the scientific evidence of the activation of brain cognitive ability and the improvement of bodily locomotive function. The project also involves the analysis of the foods-sports interrelation of chronic importance, and the development of devices for the verification of QOL-associated maintenance of homeostasis. In this review, we provide an overview of these studies, with special reference to cognition as a case of the gut-brain axis which the author is particularly interested in.
Collapse
Affiliation(s)
- Keiko Abe
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan.,b Group for Food Functionality Assessment , Kanagawa Institute of Industrial Science and Technology (KISTEC) , Kawasaki , Japan
| | - Takumi Misaka
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| |
Collapse
|