1
|
Nore KG, Louet C, Bugge M, Gidon A, Jørgensen MJ, Jenum S, Dyrhol-Riise AM, Tonby K, Flo TH. The Cyclooxygenase 2 Inhibitor Etoricoxib as Adjunctive Therapy in Tuberculosis Impairs Macrophage Control of Mycobacterial Growth. J Infect Dis 2024; 229:888-897. [PMID: 37721470 PMCID: PMC10938220 DOI: 10.1093/infdis/jiad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Current tuberculosis treatment regimens could be improved by adjunct host-directed therapies (HDT) targeting host responses. We investigated the antimycobacterial capacity of macrophages from patients with tuberculosis in a phase 1/2 randomized clinical trial (TBCOX2) of the cyclooxygenase-2 inhibitor etoricoxib. METHODS Peripheral blood mononuclear cells from 15 patients with tuberculosis treated with adjunctive COX-2i and 18 controls (standard therapy) were collected on day 56 after treatment initiation. The ex vivo capacity of macrophages to control mycobacterial infection was assessed by challenge with Mycobacterium avium, using an in vitro culture model. Macrophage inflammatory responses were analyzed by gene expression signatures, and concentrations of cytokines were analyzed in supernatants by multiplex. RESULTS Macrophages from patients receiving adjunctive COX-2i treatment had higher M. avium loads than controls after 6 days, suggesting an impaired capacity to control mycobacterial infection compared to macrophages from the control group. Macrophages from the COX-2i group had lower gene expression of TNF, IL-1B, CCL4, CXCL9, and CXCL10 and lowered production of cytokines IFN-β and S100A8/A9 than controls. CONCLUSIONS Our data suggest potential unfavorable effects with impaired macrophage capacity to control mycobacterial growth in patients with tuberculosis receiving COX-2i treatment. Larger clinical trials are required to analyze the safety of COX-2i as HDT in patients with tuberculosis. CLINICAL TRIALS REGISTRATION NCT02503839.
Collapse
Affiliation(s)
- Kristin G Nore
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Bugge
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexandre Gidon
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infection, St Olav's Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Singh S, Allwood BW, Chiyaka TL, Kleyhans L, Naidoo CC, Moodley S, Theron G, Segal LN. Immunologic and imaging signatures in post tuberculosis lung disease. Tuberculosis (Edinb) 2022; 136:102244. [PMID: 36007338 PMCID: PMC10061373 DOI: 10.1016/j.tube.2022.102244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
Post Tuberculosis Lung Disease (PTLD) affects millions of tuberculosis survivors and is a global health burden. The immune mechanisms that drive PTLD are complex and have historically been under investigated. Here, we discuss two immune-mediated paradigms that could drive human PTLD. We review the characteristics of a fibrotic granuloma that favors the development of PTLD via an abundance of T-helper-2 and T-regulatory cells and an upregulation of TGF-β mediated collagen deposition. Next, we discuss the post-primary tuberculosis paradigm and the complex mixture of caseous pneumonia, cavity formation and fibrosis that can also lead to PTLD. We review the delicate balance between cellular subsets and cytokines of the innate and adaptive immune system in conjunction with host-derived proteases that can perpetuate the parenchymal lung damage seen in PTLD. Next, we discuss the role of novel host directed therapies (HDT) to limit the development of PTLD and in particular, the recent repurposing of established medications such as statins, metformin and doxycycline. Finally, we review the emerging role of novel imaging techniques as a non-invasive modality for the early recognition of PTLD. While access to computed tomography imaging is unlikely to be available widely in countries with a high TB burden, its use in research settings can help phenotype PTLD. Due to a lack of disease-specific biomarkers and controlled clinical trials, there are currently no evidence-based recommendations for the management of PTLD. It is likely that an integrated antifibrotic strategy that could simultaneously target inflammatory and pro-fibrotic pathways will probably emerge as a successful way to treat this complex condition. In a disease spectrum as wide as PTLD, a single immunologic or radiographic marker may not be sufficient and a combination is more likely to be a successful surrogate that could aid in the development of successful HDTs.
Collapse
Affiliation(s)
- S Singh
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| | - B W Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Hospital, South Africa.
| | - T L Chiyaka
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L Kleyhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - C C Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - S Moodley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - G Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L N Segal
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| |
Collapse
|
3
|
Brown RE, Hunter RL. Early Lesion of Post-Primary Tuberculosis: Subclinical Driver of Disease and Target for Vaccines and Host-Directed Therapies. Pathogens 2021; 10:pathogens10121572. [PMID: 34959527 PMCID: PMC8708170 DOI: 10.3390/pathogens10121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The characteristic lesion of primary tuberculosis is the granuloma as is widely studied in human tissues and animal models. Post-primary tuberculosis is different. It develops only in human lungs and begins as a prolonged subclinical obstructive lobular pneumonia that slowly accumulates mycobacterial antigens and host lipids in alveolar macrophages with nearby highly sensitized T cells. After several months, the lesions undergo necrosis to produce a mass of caseous pneumonia large enough to fragment and be coughed out to produce a cavity or be retained as the focus of a post-primary granuloma. Bacteria grow massively on the cavity wall where they can be coughed out to infect new people. Here we extend these findings with the demonstration of secreted mycobacterial antigens, but not acid fast bacilli (AFB) of M. tuberculosis in the cytoplasm of ciliated bronchiolar epithelium and alveolar pneumocytes in association with elements of the programmed death ligand 1 (PD-L1), cyclo-oxygenase (COX)-2, and fatty acid synthase (FAS) pathways in the early lesion. This suggests that M. tuberculosis uses its secreted antigens to coordinate prolonged subclinical development of the early lesions in preparation for a necrotizing reaction sufficient to produce a cavity, post-primary granulomas, and fibrocaseous disease.
Collapse
|
4
|
Hunter RL. The Pathogenesis of Tuberculosis-The Koch Phenomenon Reinstated. Pathogens 2020; 9:E813. [PMID: 33020397 PMCID: PMC7601602 DOI: 10.3390/pathogens9100813] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research on the pathogenesis of tuberculosis (TB) has been hamstrung for half a century by the paradigm that granulomas are the hallmark of active disease. Human TB, in fact, produces two types of granulomas, neither of which is involved in the development of adult type or post-primary TB. This disease begins as the early lesion; a prolonged subclinical stockpiling of secreted mycobacterial antigens in foamy alveolar macrophages and nearby highly sensitized T cells in preparation for a massive necrotizing hypersensitivity reaction, the Koch Phenomenon, that produces caseous pneumonia that is either coughed out to form cavities or retained to become the focus of post-primary granulomas and fibrocaseous disease. Post-primary TB progresses if the antigens are continuously released and regresses when they are depleted. This revised paradigm is supported by nearly 200 years of research and suggests new approaches and animal models to investigate long standing mysteries of human TB and vaccines that inhibit the early lesion to finally end its transmission.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
Abstract
Since current strategies for the treatment of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) have low efficacy and highly negative side effects, research on new treatments including novel drugs is essential for curing drug-resistant tuberculosis. Host-directed therapy (HDT) has become a promising idea to modulate host cell responses to enhance protective immunity against pathogens. Bazedoxifene (BZA), which belongs to a new generation of SERMs, shows the ability to inhibit the growth of M. tuberculosis in macrophages and is associated with autophagy. Our findings reveal a previously unrecognized antibacterial function of BZA. We propose that the mechanism of SERMs action in macrophages may provide a new potential measure for host-directed therapies against TB. Tuberculosis (TB) is still the leading killer caused by Mycobacterium tuberculosis infection. There is a clear need for new treatment strategy against TB. It has been reported that tamoxifen, known as a selective estrogen receptor modulator (SERM), exhibits antimycobacterial activity and inhibits M. tuberculosis growth in macrophages. However, it remains unknown whether such antimicrobial activity is a general property of all SERMs and how it works. In this study, we identified that bazedoxifene (BZA), a newer SERM, inhibits intracellular M. tuberculosis growth in macrophages. BZA treatment increases autophagosome formation and LC3B-II protein expression in M. tuberculosis-infected macrophages. We further demonstrated that the enhancement of autophagy by BZA is dependent on increased reactive oxygen species (ROS) production and associated with phosphorylation of Akt/mTOR signaling. In summary, our data reveal a previously unappreciated antimicrobial function of BZA and suggest that future investigation focusing on the mechanism of action of SERMs in macrophages may lead to new host-directed therapies against TB. IMPORTANCE Since current strategies for the treatment of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) have low efficacy and highly negative side effects, research on new treatments including novel drugs is essential for curing drug-resistant tuberculosis. Host-directed therapy (HDT) has become a promising idea to modulate host cell responses to enhance protective immunity against pathogens. Bazedoxifene (BZA), which belongs to a new generation of SERMs, shows the ability to inhibit the growth of M. tuberculosis in macrophages and is associated with autophagy. Our findings reveal a previously unrecognized antibacterial function of BZA. We propose that the mechanism of SERMs action in macrophages may provide a new potential measure for host-directed therapies against TB.
Collapse
|
6
|
Wilson JL, Mayr HK, Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019; 10:2265. [PMID: 31681260 PMCID: PMC6797840 DOI: 10.3389/fimmu.2019.02265] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming is rapidly gaining appreciation in the etiology of immune cell dysfunction in a variety of diseases. Tuberculosis, schistosomiasis, and sarcoidosis represent an important class of diseases characterized by the formation of granulomas, where macrophages are causatively implicated in disease pathogenesis. Recent studies support the incidence of macrophage metabolic reprogramming in granulomas of both infectious and non-infectious origin. These publications identify the mechanistic target of rapamycin (mTOR), as well as the major regulators of lipid metabolism and cellular energy balance, peroxisome proliferator receptor gamma (PPAR-γ) and adenosine monophosphate-activated protein kinase (AMPK), respectively, as key players in the pathological progression of granulomas. In this review, we present a comprehensive breakdown of emerging research on the link between macrophage cell metabolism and granulomas of different etiology, and how parallels can be drawn between different forms of granulomatous disease. In particular, we discuss the role of PPAR-γ signaling and lipid metabolism, which are currently the best-represented metabolic pathways in this context, and we highlight dysregulated lipid metabolism as a common denominator in granulomatous disease progression. This review therefore aims to highlight metabolic mechanisms of granuloma immune cell fate and open up research questions for the identification of potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannah Katharina Mayr
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Buja LM, Barth RF, Krueger GR, Brodsky SV, Hunter RL. The Importance of the Autopsy in Medicine: Perspectives of Pathology Colleagues. Acad Pathol 2019; 6:2374289519834041. [PMID: 30886893 PMCID: PMC6410379 DOI: 10.1177/2374289519834041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
This article presents a perspective on the importance of the autopsy in medical practice and science based on experiences of the authors as physician-scientists involved in autopsy practice. Our perspectives are presented on the seminal contributions of the autopsy in the areas of cardiovascular disease, including congenital heart disease, atherosclerosis, coronary artery disease, and myocardial infarction, and infectious disease, including tuberculosis and viral infections. On the positive side of the future of the autopsy, we discuss the tremendous opportunities for important research to be done by application of advanced molecular biological techniques to formalin-fixed, paraffin-embedded tissue blocks obtained at autopsy. We also note with concern the countervailing forces impacting the influence of pathology in education and clinical practice at our academic medical centers, which also present impediments to increasing autopsy rates. Our challenge as academic pathologists, whose careers have been molded by involvement in the autopsy, is to counter these trends. The challenges are great but the benefits for medicine and society are enormous.
Collapse
Affiliation(s)
- Louis Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rolf F. Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Gerhard R. Krueger
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Sergey V. Brodsky
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
8
|
Hunter RL. The Pathogenesis of Tuberculosis: The Early Infiltrate of Post-primary (Adult Pulmonary) Tuberculosis: A Distinct Disease Entity. Front Immunol 2018; 9:2108. [PMID: 30283448 PMCID: PMC6156532 DOI: 10.3389/fimmu.2018.02108] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022] Open
Abstract
It has long been recognized that tuberculosis (TB) induces both protective and tissue damaging immune responses. This paper reviews nearly two centuries of evidence that protection and tissue damage are mediated by separate disease entities in humans. Primary TB mediates protective immunity to disseminated infection while post-primary TB causes tissue damage that results in formation of cavities. Both are necessary for continued survival of Mycobacterium tuberculosis (MTB). Primary TB has been extensively studied in humans and animals. Post-primary TB, in contrast, is seldom recognized or studied. It begins as an asymptomatic early infiltrate that may resolve or progress by bronchogenic spread to caseous pneumonia that either fragments to produce cavities or is retained to produce post-primary granulomas and fibrocaseous disease. Primary and post-primary TB differ in typical age of onset, histopathology, organ distribution, x-ray appearance, genetic predisposition, immune status of the host, clinical course and susceptibility to protection by BCG. MTB is a highly successful human parasite because it produces both primary and post-primary TB as distinct disease entities in humans. No animal reproduces this sequence of lesions. Recognition of these facts immediately suggests plausible solutions, animal models and testable hypotheses to otherwise inaccessible questions of the immunity and pathogenesis of TB.
Collapse
Affiliation(s)
- Robert L. Hunter
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
9
|
Guerrini V, Prideaux B, Blanc L, Bruiners N, Arrigucci R, Singh S, Ho-Liang HP, Salamon H, Chen PY, Lakehal K, Subbian S, O’Brien P, Via LE, Barry CE, Dartois V, Gennaro ML. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog 2018; 14:e1007223. [PMID: 30161232 PMCID: PMC6117085 DOI: 10.1371/journal.ppat.1007223] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Foam cells are lipid-laden macrophages that contribute to the inflammation and tissue damage associated with many chronic inflammatory disorders. Although foam cell biogenesis has been extensively studied in atherosclerosis, how these cells form during a chronic infectious disease such as tuberculosis is unknown. Here we report that, unlike the cholesterol-laden cells of atherosclerosis, foam cells in tuberculous lung lesions accumulate triglycerides. Consequently, the biogenesis of foam cells varies with the underlying disease. In vitro mechanistic studies showed that triglyceride accumulation in human macrophages infected with Mycobacterium tuberculosis is mediated by TNF receptor signaling through downstream activation of the caspase cascade and the mammalian target of rapamycin complex 1 (mTORC1). These features are distinct from the known biogenesis of atherogenic foam cells and establish a new paradigm for non-atherogenic foam cell formation. Moreover, they reveal novel targets for disease-specific pharmacological interventions against maladaptive macrophage responses.
Collapse
Affiliation(s)
- Valentina Guerrini
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Landry Blanc
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Natalie Bruiners
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Riccardo Arrigucci
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Hsin Pin Ho-Liang
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Hugh Salamon
- Knowledge Synthesis, Berkeley, CA, United States of America
| | - Pei-Yu Chen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Karim Lakehal
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Paul O’Brien
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Laura E. Via
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| |
Collapse
|
10
|
Ufimtseva E, Eremeeva N, Petrunina E, Umpeleva T, Karskanova S, Bayborodin S, Vakhrusheva D, Kravchenko M, Skornyakov S. Ex vivo expansion of alveolar macrophages with Mycobacterium tuberculosis from the resected lungs of patients with pulmonary tuberculosis. PLoS One 2018; 13:e0191918. [PMID: 29401466 PMCID: PMC5798839 DOI: 10.1371/journal.pone.0191918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB), with the Mycobacterium tuberculosis (Mtb) as the causative agent, remains to be a serious world health problem. Traditional methods used for the study of Mtb in the lungs of TB patients do not provide information about the number and functional status of Mtb, especially if Mtb are located in alveolar macrophages. We have developed a technique to produce ex vivo cultures of cells from different parts of lung tissues surgically removed from patients with pulmonary TB and compared data on the number of cells with Mtb inferred by the proposed technique to the results of bacteriological and histological analyses used for examination of the resected lungs. The ex vivo cultures of cells obtained from the resected lungs of all patients were largely composed of CD14-positive alveolar macrophages, foamy or not, with or without Mtb. Lymphocytes, fibroblasts, neutrophils, and multinucleate Langhans giant cells were also observed. We found alveolar macrophages with Mtb in the ex vivo cultures of cells from the resected lungs of even those TB patients, whose sputum smears and lung tissues did not contain acid-fast Mtb or reveal growing Mtb colonies on dense medium. The detection of alveolar macrophages with Mtb in ex vivo culture as soon as 16-18 h after isolation of cells from the resected lungs of all TB patients suggests that the technique proposed for assessing the level of infection in alveolar macrophages of TB patients has higher sensitivity than do prolonged bacteriological or pathomorphological methods. The proposed technique allowed us to rapidly (in two days after surgery) determine the level of infection with Mtb in the cells of the resected lungs of TB patients and, by the presence or absence of Mtb colonies, including those with cording morphology, the functional status of the TB agent at the time of surgery.
Collapse
Affiliation(s)
- Elena Ufimtseva
- Laboratory of Medical Biotechnology, Research Institute of Biochemistry, Novosibirsk, Russia
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Natalya Eremeeva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Ekaterina Petrunina
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Tatiana Umpeleva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Svetlana Karskanova
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Sergey Bayborodin
- Shared Center for Microscopic Analysis of Biological Objects, Federal Research Center Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Diana Vakhrusheva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Marionella Kravchenko
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | - Sergey Skornyakov
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| |
Collapse
|