1
|
Li SY, Kumar S, Gu X, DeFalco T. Testicular immunity. Mol Aspects Med 2024; 100:101323. [PMID: 39591799 PMCID: PMC11624985 DOI: 10.1016/j.mam.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sudeep Kumar
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
2
|
Li K, Li M, Luo Y, Zou D, Li Y, Mang X, Zhang Z, Li P, Lu Y, Miao S, Song W. Adeno-associated-virus-mediated delivery of CRISPR-CasRx induces efficient RNA knockdown in the mouse testis. Theranostics 2024; 14:3827-3842. [PMID: 38994027 PMCID: PMC11234267 DOI: 10.7150/thno.95633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: In male mammals, many developmental-stage-specific RNA transcripts (both coding and noncoding) are preferentially or exclusively expressed in the testis, where they play important roles in spermatogenesis and male fertility. However, a reliable platform for efficiently depleting various types of RNA transcripts to study their biological functions during spermatogenesis in vivo has not been developed. Methods: We used an adeno-associated virus serotype nine (AAV9)-mediated CRISPR-CasRx system to knock down the expression of exogenous and endogenous RNA transcripts in the testis. Virus particles were injected into the seminiferous tubules via the efferent duct. Using an autophagy inhibitor, 3-methyladenine (3-MA), we optimized the AAV9 transduction efficiency in germ cells in vivo. Results: AAV9-mediated delivery of CRISPR-CasRx effectively and specifically induces RNA transcripts (both coding and noncoding) knockdown in the testis in vivo. In addition, we showed that the co-microinjection of AAV9 and 3-MA into the seminiferous tubules enabled long-term transgene expression in the testis. Finally, we found that a promoter of Sycp1 gene induced CRISPR-CasRx-mediated RNA transcript knockdown in a germ-cell-type-specific manner. Conclusion: Our results demonstrate the efficacy and versatility of the AAV9-mediated CRISPR-CasRx system as a flexible knockdown platform for studying gene function during spermatogenesis in vivo. This approach may advance the development of RNA-targeting therapies for conditions affecting reproductive health.
Collapse
Affiliation(s)
- Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yanyun Luo
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yahui Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
3
|
Wang F, Shao X, Bao B, Yang Y, Wang Y, Zhang J, Wang S, Chen Y, Han D. Cytotoxic and viricidal effects of human semen on mumps virus-infected lymphocytes: In vitro studies. J Med Virol 2024; 96:e29733. [PMID: 38874268 DOI: 10.1002/jmv.29733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Viruses in human semen may be sexually transmitted via free and cell-mediated viral infection. The potential effects of semen on the infection and sexual transmission of most viruses in semen remain largely unclear. The present study elucidated the inhibitory effects of human seminal plasma (SP) on Jurkat cell (JC)-mediated mumps virus (MuV) infection. We demonstrated that MuV efficiently infected JCs and that the JCs infected by MuV (JC-MuV) mediated MuV infection of HeLa cells. Remarkably, SP was highly cytotoxic to JCs and inhibited JC-MuV infection of HeLa cells. The cytotoxic factor possessed a molecular weight of less than 3 kDa, whereas that of the viricidal factor was over 100 kDa. The cooperation of cytotoxic and viricidal factors was required for the SP inhibition of JC-MuV infection, and prostatic fluid (PF) was responsible for both the cytotoxic and viricidal effects of SP. The cytotoxic effects we observed were resistant to the treatment of PF with boiling water, proteinase K, RNase A, and DNase I. Our results provide novel insights into the antiviral properties of SP, which may limit cell-mediated sexual viral transmission.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xinyi Shao
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Binghao Bao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Yixuan Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Siqi Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yongmei Chen
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Yang D, Wu W, Lu Q, Mou Y, Chen W, Wan S, Zhang M, Wang C, Du X, Li N, Hua J. A multi-omics analysis of viral nucleic acid poly(I:C) responses to mammalian testicular stimulation. STRESS BIOLOGY 2024; 4:9. [PMID: 38300431 PMCID: PMC10834394 DOI: 10.1007/s44154-023-00146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
The male reproductive system has a standard immune response regulatory mechanism, However, a variety of external stimuli, including viruses, bacteria, heat, and medications can damage the testicles and cause orchitis and epididymitis. It has been shown that various RNA viruses are more likely to infect the testis than DNA viruses, inducing orchitis and impairing testicular function. It was found that local injection of the viral RNA analog poly(I:C) into the testes markedly disrupted the structure of the seminiferous tubules, accompanied by apoptosis and inflammation. Poly(I:C) mainly inhibited the expression of testosterone synthesis-associated proteins, STAR and MGARP, and affected the synthesis and metabolism of amino acids and lipids in the testis. This led to the disruption of the metabolite levels in the testis of mice, thus affecting the normal spermatogenesis process. The present study analyzed the acute inflammatory response of the testis to viral infection using a multi-omics approach. It provides insights into how RNA virus infection impairs testicular function and offers a theoretical basis for future studies on immune homeostasis and responses under stress conditions in male reproduction.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wenping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaling Mou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wenbo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Shicheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Congliang Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaomin Du
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Wang F, Zhang J, Wang Y, Chen Y, Han D. Viral tropism for the testis and sexual transmission. Front Immunol 2022; 13:1040172. [PMID: 36439102 PMCID: PMC9682072 DOI: 10.3389/fimmu.2022.1040172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 10/17/2023] Open
Abstract
The mammalian testis adopts an immune privileged environment to protect male germ cells from adverse autoimmune reaction. The testicular immune privileged status can be also hijacked by various microbial pathogens as a sanctuary to escape systemic immune surveillance. In particular, several viruses have a tropism for the testis. To overcome the immune privileged status and mount an effective local defense against invading viruses, testicular cells are well equipped with innate antiviral machinery. However, several viruses may persist an elongated duration in the testis and disrupt the local immune homeostasis, thereby impairing testicular functions and male fertility. Moreover, the viruses in the testis, as well as other organs of the male reproductive system, can shed to the semen, thus allowing sexual transmission to partners. Viral infection in the testis, which can impair male fertility and lead to sexual transmission, is a serious concern in research on known and on new emerging viruses. To provide references for our scientific peers, this article reviews research achievements and suggests future research focuses in the field.
Collapse
Affiliation(s)
| | | | | | - Yongmei Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Akhigbe RE, Dutta S, Hamed MA, Ajayi AF, Sengupta P, Ahmad G. Viral Infections and Male Infertility: A Comprehensive Review of the Role of Oxidative Stress. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:782915. [PMID: 36303638 PMCID: PMC9580820 DOI: 10.3389/frph.2022.782915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Viral infections have been a part of human existence to date, though viruses have posed a huge threat with various outbreaks lately. These threats are associated with reproductive health challenges, especially male infertility. The prime focus of this review is to highlight the mechanisms associated with viral infection-induced male infertility/subfertility and identify new treatment strategies with the aim to preserve male fertility. The reviewed data showed that viral infections stimulate inflammatory responses, resulting in the release of proinflammatory cytokines, which induces oxidative stress. This oxido-inflammatory cycle could continue in a vicious cycle and threaten male fertility. Existing data from human and experimental studies show that viral infection-induced oxido-inflammatory response results in testicular damage, atrophy of the seminiferous tubules and Sertoli cells, and reduced Leydig cell mass. This is accompanied by reduced circulatory testosterone, impaired spermatogenesis, reduced sperm motility, lipid peroxidation, DNA fragmentation and apoptosis of the sperm cells. Based on the available pieces of evidence, antioxidant therapy, in vivo and in vitro, may be beneficial and protects against the potential risk of male infertility from viral infection. It is, however recommended that more clinical studies be conducted to demonstrate the possible protective roles of antioxidants used as adjuvant therapy in viral infections, and in the in vitro treatment of semen samples for those utilizing semen washing and artificial reproductive techniques.
Collapse
Affiliation(s)
- Roland E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Nigeria
- Brainwill Laboratories, Osogbo, Nigeria
| | - Ayodeji F. Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jenjarom, Malaysia
- *Correspondence: Pallav Sengupta
| | - Gulfam Ahmad
- Redox Biology Group, Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Gulfam Ahmad
| |
Collapse
|
7
|
Wang MW, Yang Z, Chen X, Zhou SH, Huang GL, Sun JN, Jiang H, Xu WM, Lin HC, Yu X, Sun JP. Activation of PTH1R alleviates epididymitis and orchitis through Gq and β-arrestin-1 pathways. Proc Natl Acad Sci U S A 2021; 118:e2107363118. [PMID: 34740971 PMCID: PMC8609314 DOI: 10.1073/pnas.2107363118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the epididymis and testis contributes significantly to male infertility. Alternative therapeutic avenues treating epididymitis and orchitis are expected since current therapies using antibiotics have limitations associated to side effects and are commonly ineffective for inflammation due to nonbacterial causes. Here, we demonstrated that type 1 parathyroid hormone receptor (PTH1R) and its endogenous agonists, parathyroid hormone (PTH) and PTH-related protein (PTHrP), were mainly expressed in the Leydig cells of testis as well as epididymal epithelial cells. Screening the secretin family G protein-coupled receptor identified that PTH1R in the epididymis and testis was down-regulated in mumps virus (MuV)- or lipopolysaccharide (LPS)-induced inflammation. Remarkably, activation of PTH1R by abaloparatide (ABL), a Food and Drug Administration-approved treatment for postmenopausal osteoporosis, alleviated MuV- or LPS-induced inflammatory responses in both testis and epididymis and significantly improved sperm functions in both mouse model and human samples. The anti-inflammatory effects of ABL were shown to be regulated mainly through the Gq and β-arrestin-1 pathway downstream of PTH1R as supported by the application of ABL in Gnaq± and Arrb1-/- mouse models. Taken together, our results identified an important immunoregulatory role for PTH1R signaling in the epididymis and testis. Targeting to PTH1R might have a therapeutic effect for the treatment of epididymitis and orchitis or other inflammatory disease in the male reproductive system.
Collapse
Affiliation(s)
- Ming-Wei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Xu Chen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Shu-Hua Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Ge-Lin Huang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Ning Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-Ming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, China;
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China;
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China;
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100091, China
| |
Collapse
|
8
|
Yu X, Chen R, Wang F, Liu W, Zhang W, Gong M, Wu H, Liu A, Han R, Chen Y, Han D. Pattern recognition receptor-initiated innate immune responses in mouse prostatic epithelial cells‡. Biol Reprod 2021; 105:113-127. [PMID: 33899078 DOI: 10.1093/biolre/ioab076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Three major pathogenic states of the prostate, including benign prostatic hyperplasia, prostate cancer, and prostatitis, are related to the local inflammation. However, the mechanisms underlying the initiation of prostate inflammation remain largely unknown. Given that the innate immune responses of the tissue-specific cells to microbial infection or autoantigens contribute to local inflammation, this study focused on pattern recognition receptor (PRR)-initiated innate immune responses in mouse prostatic epithelial cells (PECs). Primary mouse PECs abundantly expressed Toll-like receptor 3 (TLR3), TLR4, TLR5, melanoma differentiation-associated protein 5 (MDA5), and IFN-inducible protein 16 (p204 in mouse). These PRRs can be activated by their respective ligands: lipopolysaccharide (LPS) and flagellin of Gram-negative bacteria for TLR4 and TLR5, polyinosinic-polycytidylic acid (poly(I:C)) for TLR3 and MDA5, and herpes simplex virus DNA analog (HSV60) for p204. LPS and flagellin predominantly induced the expression of inflammatory cytokines, including tumor necrosis factor alpha (TNFA), interleukin 6 (IL6), chemokines monocyte chemoattractant protein-1 (MCP1), and C-X-C motif chemokine 10 (CXCL10). Poly(I:C) and HSV60 predominantly induced the expression of type 1 interferons (IFNA and IFNB) and antiviral proteins: Mx GTPase 1, 2',5'-oligoadenylate synthetase 1, and IFN-stimulated gene 15. The replication of mumps virus in PECs was inhibited by type 1 IFN signaling. These findings provide insights into the mechanisms underlying innate immune response in the prostate.
Collapse
Affiliation(s)
- Xiaoqin Yu
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Chen
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Wang
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weihua Liu
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenjing Zhang
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Maolei Gong
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Wu
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Aijie Liu
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruiqin Han
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongmei Chen
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Daishu Han
- School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Patel DP, Punjani N, Guo J, Alukal JP, Li PS, Hotaling JM. The impact of SARS-CoV-2 and COVID-19 on male reproduction and men's health. Fertil Steril 2021; 115:813-823. [PMID: 33509629 PMCID: PMC7775791 DOI: 10.1016/j.fertnstert.2020.12.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Many couples initially deferred attempts at pregnancy or delayed fertility care due to concerns about coronavirus disease 2019 (COVID-19). One significant fear during the COVID-19 pandemic was the possibility of sexual transmission. Many couples have since resumed fertility care while accepting the various uncertainties associated with severe acute respiratory syndrome coronavirus 2, including the evolving knowledge related to male reproductive health. Significant research has been conducted exploring viral shedding, tropism, sexual transmission, the impact of male reproductive hormones, and possible implications to semen quality. However, to date, limited definitive evidence exists regarding many of these aspects, creating a challenging landscape for both patients and physicians to obtain and provide the best clinical care. This review provides a comprehensive assessment of the evolving literature concerning COVID-19 and male sexual and reproductive health, and guidance for patient counseling.
Collapse
Affiliation(s)
- Darshan P Patel
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Nahid Punjani
- Center for Male Reproductive Medicine and Microsurgery, Department of Urology, Weill Cornell Medicine of Cornell University, New York, New York
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Joseph P Alukal
- Department of Urology, Columbia University Medical Center, New York, New York
| | - Philip S Li
- Center for Male Reproductive Medicine and Microsurgery, Department of Urology, Weill Cornell Medicine of Cornell University, New York, New York
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
10
|
Wu H, Wang F, Tang D, Han D. Mumps Orchitis: Clinical Aspects and Mechanisms. Front Immunol 2021; 12:582946. [PMID: 33815357 PMCID: PMC8013702 DOI: 10.3389/fimmu.2021.582946] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
The causative agent of mumps is a single-stranded, non-segmented, negative sense RNA virus belonging to the Paramyxoviridae family. Besides the classic symptom of painfully swollen parotid salivary glands (parotitis) in mumps virus (MuV)-infected men, orchitis is the most common form of extra-salivary gland inflammation. Mumps orchitis frequently occurs in young adult men, and leads to pain and swelling of the testis. The administration of MuV vaccines in children has been proven highly effective in reducing the incidence of mumps. However, a recent global outbreak of mumps and the high rate of orchitis have recently been considered as threats to male fertility. The pathogenesis of mumps orchitis remains largely unclear due to lack of systematic clinical data analysis and animal models studies. The alarming increase in the incidence of mumps orchitis and the high risk of the male fertility have thus become a major health concern. Recent studies have revealed the mechanisms by which MuV-host cells interact and MuV infection induces inflammatory responses in testicular cells. In this mini-review, we highlight advances in our knowledge of the clinical aspects and possible mechanisms of mumps orchitis.
Collapse
Affiliation(s)
- Han Wu
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Chen R, Zhang W, Gong M, Wang F, Wu H, Liu W, Gao Y, Liu B, Chen S, Lu W, Yu X, Liu A, Han R, Chen Y, Han D. Characterization of an Antiviral Component in Human Seminal Plasma. Front Immunol 2021; 12:580454. [PMID: 33679733 PMCID: PMC7933687 DOI: 10.3389/fimmu.2021.580454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023] Open
Abstract
Numerous types of viruses have been found in human semen, which raises concerns about the sexual transmission of these viruses. The overall effect of semen on viral infection and transmission have yet to be fully investigated. In the present study, we aimed at the effect of seminal plasma (SP) on viral infection by focusing on the mumps viral (MuV) infection of HeLa cells. MuV efficiently infected HeLa cells in vitro. MuV infection was strongly inhibited by the pre-treatment of viruses with SP. SP inhibited MuV infection through the impairment of the virus's attachment to cells. The antiviral activity of SP was resistant to the treatment of SP with boiling water, Proteinase K, RNase A, and DNase I, suggesting that the antiviral factor would not be proteins and nucleic acids. PNGase or PLA2 treatments did not abrogate the antiviral effect of SP against MuV. Further, we showed that the prostatic fluid (PF) showed similar inhibition as SP, whereas the epididymal fluid and seminal vesicle extract did not inhibit MuV infection. Both SP and PF also inhibited MuV infection of other cell types, including another human cervical carcinoma cell line C33a, mouse primary epididymal epithelial cells, and Sertoli cell line 15P1. Moreover, this inhibitory effect was not specific to MuV, as the herpes simplex virus 1, dengue virus 2, and adenovirus 5 infections were also inhibited by SP and PF. Our findings suggest that SP contains a prostate-derived pan-antiviral factor that may limit the sexual transmission of various viruses.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenjing Zhang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Maolei Gong
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Han Wu
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weihua Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunxiao Gao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Yu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aijie Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiqin Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongmei Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Abstract
Mammalian spermatogenesis is a carefully orchestrated male germ cell differentiation process by which spermatogonia differentiate to spermatozoa in the testis. A highly organized testicular microenvironment is therefore necessary to support spermatogenesis. Regarding immunologic aspects, the testis adapts a specialized immune environment for the protection of male germ cells and testicular functions. The mammalian testis possesses two immunologic features: (1) it is an immunoprivileged organ where immunogenic germ cells do not induce deleterious immune responses under physiologic conditions; and (2) it creates its own effective innate defense system against microbial infection. Various pathologic conditions may disrupt testicular immune homeostasis, thereby resulting in a detrimental immune response and perturbing testicular functions, one of the etiologic factors of male infertility. Understanding the mechanisms underlying immunoregulation in the testis can aid in establishing strategies for the prevention and therapy of immunologic testicular dysfunction and male infertility. This chapter focuses on the mechanisms underlying immune privilege, local innate immunity, and immunologic diseases of the testis.
Collapse
|
13
|
Gao B, Zong W, Miskey C, Ullah N, Diaby M, Chen C, Wang X, Ivics Z, Song C. Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mob DNA 2020; 11:32. [PMID: 33303022 PMCID: PMC7731502 DOI: 10.1186/s13100-020-00227-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A family of Tc1/mariner transposons with a characteristic DD38E triad of catalytic amino acid residues, named Intruder (IT), was previously discovered in sturgeon genomes, but their evolutionary landscapes remain largely unknown. RESULTS Here, we comprehensively investigated the evolutionary profiles of ITs, and evaluated their cut-and-paste activities in cells. ITs exhibited a narrow taxonomic distribution pattern in the animal kingdom, with invasions into two invertebrate phyla (Arthropoda and Cnidaria) and three vertebrate lineages (Actinopterygii, Agnatha, and Anura): very similar to that of the DD36E/IC family. Some animal orders and species seem to be more hospitable to Tc1/mariner transposons, one order of Amphibia and seven Actinopterygian orders are the most common orders with horizontal transfer events and have been invaded by all four families (DD38E/IT, DD35E/TR, DD36E/IC and DD37E/TRT) of Tc1/mariner transposons, and eight Actinopterygii species were identified as the major hosts of these families. Intact ITs have a total length of 1.5-1.7 kb containing a transposase gene flanked by terminal inverted repeats (TIRs). The phylogenetic tree and sequence identity showed that IT transposases were most closely related to DD34E/Tc1. ITs have been involved in multiple events of horizontal transfer in vertebrates and have invaded most lineages recently (< 5 million years ago) based on insertion age analysis. Accordingly, ITs presented high average sequence identity (86-95%) across most vertebrate species, suggesting that some are putatively active. ITs can transpose in human HeLa cells, and the transposition efficiency of consensus TIRs was higher than that of the TIRs of natural isolates. CONCLUSIONS We conclude that DD38E/IT originated from DD34E/Tc1 and can be detected in two invertebrate phyla (Arthropoda and Cnidaria), and in three vertebrate lineages (Actinopterygii, Agnatha and Anura). IT has experienced multiple HT events in animals, dominated by recent amplifications in most species and has high identity among vertebrate taxa. Our reconstructed IT transposon vector designed according to the sequence from the "cat" genome showed high cut-and-paste activity. The data suggest that IT has been acquired recently and is active in many species. This study is meaningful for understanding the evolution of the Tc1/mariner superfamily members and their hosts.
Collapse
Affiliation(s)
- Bo Gao
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Wencheng Zong
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Numan Ullah
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
14
|
van der Kuyl AC, Berkhout B. Viruses in the reproductive tract: On their way to the germ line? Virus Res 2020; 286:198101. [PMID: 32710926 DOI: 10.1016/j.virusres.2020.198101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/13/2023]
Abstract
Studies of vertebrate genomes have indicated that all species contain in their chromosomes stretches of DNA with sequence similarity to viral genomes. How such 'endogenous' viral elements (EVEs) ended up in host genomes is usually explained in general terms such as 'they entered the germ line at some point during evolution'. This seems a correct statement, but is also rather imprecise. The vast number of endogenous viral sequences suggest that common routes to the 'germ line' may exist, as relying on chance alone may not easily explain the abundance of EVEs in modern mammalian genomes. An increasing number of virus types have been detected in human semen and a growing number of studies have reported on viral infections that cause male infertility or subfertility and on viral infections that threaten in vitro fertilisation practices. Thus, it is timely to survey the pathway(s) that viruses can use to gain access to the human germ line. Embryo transfer and semen quality studies in livestock form another source of relevant information because virus infection during reproduction is clearly unwanted, as is the case for the human situation. In this review, studies on viruses in the male and female reproductive tract and in the early embryo will be discussed to propose a plausible viral route to the mammalian germ line.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Wang F, Chen R, Jiang Q, Wu H, Gong M, Liu W, Yu X, Zhang W, Han R, Liu A, Chen Y, Han D. Roles of Sialic Acid, AXL, and MER Receptor Tyrosine Kinases in Mumps Virus Infection of Mouse Sertoli and Leydig Cells. Front Microbiol 2020; 11:1292. [PMID: 32695074 PMCID: PMC7336603 DOI: 10.3389/fmicb.2020.01292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
The mumps virus (MuV) causes epidemic parotitis. MuV also frequently infects the testis and induces orchitis, an important etiological factor contributing to male infertility. However, mechanisms underlying MuV infection of the testis remain unknown. Here, we describe that sialic acid, AXL, and MER receptor tyrosine kinases regulate MuV entry and replication in mouse major testicular cells, including Sertoli and Leydig cells. Sialic acid, AXL, and MER were present in Sertoli and Leydig cells. Sialic acid specifically mediated MuV entry into Sertoli and Leydig cells, whereas both AXL and MER facilitated MuV replication within cells through the inhibition of cellular innate antiviral responses. Mechanistically, the inhibition of type 1 interferon signaling by AXL and MER is essential for MuV replication in Sertoli and Leydig cells. Our findings provide novel insights into the mechanisms behind MuV infection and replication in the testis.
Collapse
Affiliation(s)
- Fei Wang
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Ran Chen
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Qian Jiang
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Han Wu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Maolei Gong
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Weihua Liu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoqin Yu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Wenjing Zhang
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Ruiqin Han
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Aijie Liu
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Yongmei Chen
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Daishu Han
- Peking Union Medical College, School of Basic Medicine, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
17
|
Wu H, Jiang X, Gao Y, Liu W, Wang F, Gong M, Chen R, Yu X, Zhang W, Gao B, Song C, Han D. Mumps virus infection disrupts blood-testis barrier through the induction of TNF-α in Sertoli cells. FASEB J 2019; 33:12528-12540. [PMID: 31450968 DOI: 10.1096/fj.201901089r] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mumps virus (MuV) has high tropism to the testis and may lead to male infertility. Sertoli cells are the major targets of MuV infection. However, the mechanisms by which MuV infection impairs male fertility and Sertoli cell function remain unclear. The present study elucidated the effect of MuV infection on the blood-testis barrier (BTB). The transepithelial electrical resistance of MuV-infected mouse Sertoli cells was monitored, and the expression of major proteins of the BTB was examined. We demonstrated that MuV infection disrupted the BTB by reducing the levels of occludin and zonula occludens 1. Sertoli cells derived from Tlr2-/- and Tnfa-/- mice were analyzed for mediating MuV-induced impairment. TLR2-mediated TNF-α production by Sertoli cells in response to MuV infection impaired BTB integrity. MuV-impaired BTB was not observed in Tlr2-/- and Tnfa-/- Sertoli cells. Moreover, an inhibitor of TNF-α, pomalidomide, prevents the disruption of BTB in response to MuV infection. FITC-labeled biotin tracing assay confirmed that BTB permeability and spermatogenesis were transiently impaired by MuV infection in vivo. These findings suggest that the disruption of the BTB could be one of the mechanisms underlying MuV-impaired male fertility, in which TNF-α could play a critical role.-Wu, H., Jiang, X., Gao, Y., Liu, W., Wang, F., Gong, M., Chen, R., Yu, X., Zhang, W., Gao, B., Song, C., Han, D. Mumps virus infection disrupts blood-testis barrier through the induction of TNF-α in Sertoli cells.
Collapse
Affiliation(s)
- Han Wu
- College of Animal Science and Technology, Institute of Mobilome and Genome, Yangzhou University, Yangzhou, China.,Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| | - Xing Jiang
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, China
| | - Yunxiao Gao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Weihua Liu
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wang
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| | - Maolei Gong
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Chen
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoqin Yu
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| | - Wenjing Zhang
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Gao
- College of Animal Science and Technology, Institute of Mobilome and Genome, Yangzhou University, Yangzhou, China
| | - Chengyi Song
- College of Animal Science and Technology, Institute of Mobilome and Genome, Yangzhou University, Yangzhou, China
| | - Daishu Han
- Institute of Basic Medical Sciences, Peking Union Medical College-Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Liu W, Han R, Wu H, Han D. Viral threat to male fertility. Andrologia 2019; 50:e13140. [PMID: 30569651 DOI: 10.1111/and.13140] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
The detrimental effects of Zika virus (ZIKV) infection on mouse testicular functions have reminded a viral threat to male fertility. A broad range of virus families has tropism for male reproductive system, particularly the testes. Certain virus types of these viruses, such as mumps virus and human immunodeficiency virus (HIV), may severely damage the testes and consequently lead to male infertility. ZIKV has been recently found to damage testicular functions and lead to male infertility in mice. Many other viruses also have detrimental effects on host reproduction. Public attention has been paid to sexually transmitted viruses, such as HIV and hepatitis B and C viruses in humans and likewise in economically important farm animals. This article provides an overview on main viruses affecting the male reproductive system and their detrimental effects on fertility, and outlines some important issues for future study.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ruiqin Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Han Wu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Wang LL, Li ZH, Duan YG, Yuan SQ, Mor G, Liao AH. Identification of programmed cell death 1 and its ligand in the testicular tissue of mice. Am J Reprod Immunol 2018; 81:e13079. [PMID: 30578744 DOI: 10.1111/aji.13079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/23/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
PROBLEM This study aims to determine the expression and localization of programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) in the testes of mice at different developmental stages. METHOD OF STUDY By means of RT-qPCR, Western blot and immunofluorescence, the expression and localization of PD-1 and PD-L1 were detected in the testicular tissues of mice at different postnatal times: P7, P14, P21, P28, P35, and adulthood. Meanwhile, the level of soluble PD-L1 (sPD-L1) was evaluated by ELISA in the testicular interstitial fluid (IF) of the adult mice, culture supernatants of TM4 cell lines (Sertoli cells lines), and primary Sertoli cells at P14. RESULTS Pd-1 mRNA levels were unexpectedly low. From P7 to P21, there was limited PD-1 protein detected while PD-1 was evident at P28 and afterward at significantly higher levels than at P14 and P21 (P < 0.05). Despite being found in the interstitial area at P7, P14, and P21, PD-1 was also detected in the germ cells of the seminiferous tubules after P28. Pd-l1 mRNA exhibited age-related changes, peaking at P21, while PD-L1 protein was constitutively expressed at any stage, specifically localized in the nucleus of Sertoli cells. Moreover, the level of sPD-L1 in IF was significantly higher than that in the culture supernatants of both TM4 and primary Sertoli cells at P14. CONCLUSIONS PD-1 and PD-L1 were present in the testicular tissue of adult mice. The expression and localization of PD-1 fluctuated with age, and PD-1 was mainly localized to advanced germ cells, suggesting that it may play a role in spermiogenesis. PD-L1 was constitutively expressed in the nucleus of Sertoli cells, which could secrete sPD-L1 into the testicular interstitial space and thus may be involved in testicular immune privilege.
Collapse
Affiliation(s)
- Li-Ling Wang
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hui Li
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - ShenZhen Hospital, Guangdong, China
| | - Shui-Qiao Yuan
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Reproductive Immunology Unit, Department of Obstetrics Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, Connecticut
| | - Ai-Hua Liao
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Robinson CL, Chong ACN, Ashbrook AW, Jeng G, Jin J, Chen H, Tang EI, Martin LA, Kim RS, Kenyon RM, Do E, Luna JM, Saeed M, Zeltser L, Ralph H, Dudley VL, Goldstein M, Rice CM, Cheng CY, Seandel M, Chen S. Male germ cells support long-term propagation of Zika virus. Nat Commun 2018; 9:2090. [PMID: 29844387 PMCID: PMC5974187 DOI: 10.1038/s41467-018-04444-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/26/2018] [Indexed: 01/22/2023] Open
Abstract
Evidence of male-to-female sexual transmission of Zika virus (ZIKV) and viral RNA in semen and sperm months after infection supports a potential role for testicular cells in ZIKV propagation. Here, we demonstrate that germ cells (GCs) are most susceptible to ZIKV. We found that only GCs infected by ZIKV, but not those infected by dengue virus and yellow fever virus, produce high levels of infectious virus. This observation coincides with decreased expression of interferon-stimulated gene Ifi44l in ZIKV-infected GCs, and overexpression of Ifi44l results in reduced ZIKV production. Using primary human testicular tissue, we demonstrate that human GCs are also permissive for ZIKV infection and production. Finally, we identified berberine chloride as a potent inhibitor of ZIKV infection in both murine and human testes. Together, these studies identify a potential cellular source for propagation of ZIKV in testes and a candidate drug for preventing sexual transmission of ZIKV.
Collapse
Affiliation(s)
- Christopher L Robinson
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Angie C N Chong
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, 10065, USA
| | - Ginnie Jeng
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Julia Jin
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Laura A Martin
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Rosa S Kim
- Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Reyn M Kenyon
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Eileen Do
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, 10065, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, 10065, USA
| | - Lori Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Harold Ralph
- Weill Cornell Medical College-Microscopy and Image Analysis Core Facility, 1300 York Avenue, New York, NY, 10065, USA
| | - Vanessa L Dudley
- Institute of Reproductive Medicine at Weill Cornell Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10065, USA
| | - Marc Goldstein
- Department of Urology and Institute for Reproductive Medicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|