1
|
Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, Nerkar M, Jehi L, Drayman N, Nicolaescu V, Gula H, Tay S, Randall G, Wang P, Lis JT, Feschotte C, Erzurum SC, Cheng F, Yu H. A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat Biotechnol 2023; 41:128-139. [PMID: 36217030 PMCID: PMC9851973 DOI: 10.1038/s41587-022-01474-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023]
Abstract
Studying viral-host protein-protein interactions can facilitate the discovery of therapies for viral infection. We use high-throughput yeast two-hybrid experiments and mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of 739 high-confidence binary and co-complex interactions, validating 218 known SARS-CoV-2 host factors and revealing 361 novel ones. Our results show the highest overlap of interaction partners between published datasets and of genes differentially expressed in samples from COVID-19 patients. We identify an interaction between the viral protein ORF3a and the human transcription factor ZNF579, illustrating a direct viral impact on host transcription. We perform network-based screens of >2,900 FDA-approved or investigational drugs and identify 23 with significant network proximity to SARS-CoV-2 host factors. One of these drugs, carvedilol, shows clinical benefits for COVID-19 patients in an electronic health records analysis and antiviral properties in a human lung cell line infected with SARS-CoV-2. Our study demonstrates the value of network systems biology to understand human-virus interactions and provides hits for further research on COVID-19 therapeutics.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuan Liu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
| | - Shagun Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Mauricio I Paramo
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shayne Wierbowski
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Marta Bertolotti
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA
| | - Mriganka Nerkar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Lara Jehi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nir Drayman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Haley Gula
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA.
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Zhang B, Liu M, Huang J, Zeng Q, Zhu Q, Xu S, Chen H. H1N1 Influenza A Virus Protein NS2 Inhibits Innate Immune Response by Targeting IRF7. Viruses 2022; 14:v14112411. [PMID: 36366509 PMCID: PMC9694023 DOI: 10.3390/v14112411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus (IAV) is a globally distributed zoonotic pathogen and causes a highly infectious respiratory disease with high morbidity and mortality in humans and animals. IAV has evolved various strategies to counteract the innate immune response, using different viral proteins. However, the mechanisms are not fully elucidated. In this study, we demonstrated that the nonstructural protein 2 (NS2) of H1N1 IAV negatively regulate the induction of type-I interferon. Co-immunoprecipitation experiments revealed that NS2 specifically interacts with interferon regulatory factor 7 (IRF7). NS2 blocks the nuclear translocation of IRF7 by inhibiting the formation of IRF7 dimers, thereby prevents the activation of IRF7 and inhibits the production of interferon-beta. Taken together, these findings revealed a novel mechanism by which the NS2 of H1N1 IAV inhibits IRF7-mediated type-I interferon production.
Collapse
Affiliation(s)
- Bo Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Minxuan Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jiaxin Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiyun Zhu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (S.X.); (H.C.); Tel.: +86-931-8370164 (S.X.); +86-451-51997168 (H.C.)
| | - Hualan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (S.X.); (H.C.); Tel.: +86-931-8370164 (S.X.); +86-451-51997168 (H.C.)
| |
Collapse
|
3
|
Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, Nerkar M, Jehi L, Drayman N, Nicolaescu V, Gula H, Tay S, Randall G, Lis JT, Feschotte C, Erzurum SC, Cheng F, Yu H. A comprehensive SARS-CoV-2-human protein-protein interactome network identifies pathobiology and host-targeting therapies for COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1354127. [PMID: 35677070 PMCID: PMC9176654 DOI: 10.21203/rs.3.rs-1354127/v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Physical interactions between viral and host proteins are responsible for almost all aspects of the viral life cycle and the host's immune response. Studying viral-host protein-protein interactions is thus crucial for identifying strategies for treatment and prevention of viral infection. Here, we use high-throughput yeast two-hybrid and affinity purification followed by mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of both binary and co-complex interactions. We report a total of 739 high-confidence interactions, showing the highest overlap of interaction partners among published datasets as well as the highest overlap with genes differentially expressed in samples (such as upper airway and bronchial epithelial cells) from patients with SARS-CoV-2 infection. Showcasing the utility of our network, we describe a novel interaction between the viral accessory protein ORF3a and the host zinc finger transcription factor ZNF579 to illustrate a SARS-CoV-2 factor mediating a direct impact on host transcription. Leveraging our interactome, we performed network-based drug screens for over 2,900 FDA-approved/investigational drugs and obtained a curated list of 23 drugs that had significant network proximities to SARS-CoV-2 host factors, one of which, carvedilol, showed promising antiviral properties. We performed electronic health record-based validation using two independent large-scale, longitudinal COVID-19 patient databases and found that carvedilol usage was associated with a significantly lowered probability (17%-20%, P < 0.001) of obtaining a SARS-CoV-2 positive test after adjusting various confounding factors. Carvedilol additionally showed anti-viral activity against SARS-CoV-2 in a human lung epithelial cell line [half maximal effective concentration (EC 50 ) value of 4.1 µM], suggesting a mechanism for its beneficial effect in COVID-19. Our study demonstrates the value of large-scale network systems biology approaches for extracting biological insight from complex biological processes.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Yuan Liu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
| | - Shagun Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, US
| | - Mauricio I. Paramo
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, US
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, US
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Shayne Wierbowski
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, US
| | - Marta Bertolotti
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
| | - Mriganka Nerkar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Lara Jehi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Nir Drayman
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, US
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL 60637, US
| | - Haley Gula
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL 60637, US
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, US
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL 60637, US
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US
| | - Serpil C. Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, US
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, US
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, US
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, US
| |
Collapse
|
4
|
Lai S, Jia J, Cao X, Zhou PK, Gao S. Molecular and Cellular Functions of the Linker Histone H1.2. Front Cell Dev Biol 2022; 9:773195. [PMID: 35087830 PMCID: PMC8786799 DOI: 10.3389/fcell.2021.773195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Linker histone H1.2, which belongs to the linker histone family H1, plays a crucial role in the maintenance of the stable higher-order structures of chromatin and nucleosomes. As a critical part of chromatin structure, H1.2 has an important function in regulating chromatin dynamics and participates in multiple other cellular processes as well. Recent work has also shown that linker histone H1.2 regulates the transcription levels of certain target genes and affects different processes as well, such as cancer cell growth and migration, DNA duplication and DNA repair. The present work briefly summarizes the current knowledge of linker histone H1.2 modifications. Further, we also discuss the roles of linker histone H1.2 in the maintenance of genome stability, apoptosis, cell cycle regulation, and its association with disease.
Collapse
Affiliation(s)
- Shuting Lai
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Medicine, University of South China, Hengyang, China
| | - Xiaoyu Cao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
5
|
Daemi HB, Kulyar MFEA, He X, Li C, Karimpour M, Sun X, Zou Z, Jin M. Progression and Trends in Virus from Influenza A to COVID-19: An Overview of Recent Studies. Viruses 2021; 13:1145. [PMID: 34203647 PMCID: PMC8232279 DOI: 10.3390/v13061145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19.
Collapse
Affiliation(s)
- Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | | | - Xinlin He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Morteza Karimpour
- Department of Biology, Azad University of Rasht, Rasht 4147654919, Iran;
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
6
|
Interaction of NEP with G Protein Pathway Suppressor 2 Facilitates Influenza A Virus Replication by Weakening the Inhibition of GPS2 to RNA Synthesis and Ribonucleoprotein Assembly. J Virol 2021; 95:JVI.00008-21. [PMID: 33658351 PMCID: PMC8139649 DOI: 10.1128/jvi.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear export protein (NEP) serves multiple functions in the life cycle of influenza A virus (IAV). Identifying novel host proteins that interact with NEP and understanding their functions in IAV replication are of great interest. In this study, we screened and confirmed the direct interaction of G protein pathway suppressor 2 (GPS2) with NEP through a yeast two-hybrid screening assay and glutathione S-transferase-pulldown and co-immunoprecipitation assays. Knockdown or knockout of GPS2 enhanced IAV titers, whereas overexpression of GPS2 impaired IAV replication, demonstrating that GPS2 acted as a negative host factor in IAV replication. Meanwhile, GPS2 inhibited viral RNA synthesis by reducing the assembly of IAV polymerase. Interestingly, IAV NEP interacted with GPS2 and mediated its nuclear export, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication. Overall, this study identified the novel NEP-binding host partner GPS2 as a critical host factor to participate in IAV replication. These findings provided novel insights into the interactions between IAV and host cells, revealing a new function for GPS2 during IAV replication.Importance: NEP is proposed to play multiple biologically important roles in the life cycle of IAV, which largely relies on host factors by interaction. Our study demonstrated that GPS2 could reduce the interaction between PB1 and PB2 and interfere with vRNP assembly. Thus, GPS2 inhibited the RNA synthesis of IAV and negatively regulated its replication. Importantly, IAV NEP interacted with GPS2 and mediated the nuclear export of GPS2, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication.
Collapse
|
7
|
Hu J, Zhang L, Liu X. Role of Post-translational Modifications in Influenza A Virus Life Cycle and Host Innate Immune Response. Front Microbiol 2020; 11:517461. [PMID: 33013775 PMCID: PMC7498822 DOI: 10.3389/fmicb.2020.517461] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/14/2020] [Indexed: 01/01/2023] Open
Abstract
Throughout various stages of its life cycle, influenza A virus relies heavily on host cellular machinery, including the post-translational modifications (PTMs) system. During infection, influenza virus interacts extensively with the cellular PTMs system to aid in its successful infection and dissemination. The complex interplay between viruses and the PTMs system induces global changes in PTMs of the host proteome as well as modifications of specific host or viral proteins. The most common PTMs include phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, NEDDylation, and glycosylation. Many PTMs directly support influenza virus infection, whereas others contribute to modulating antiviral responses. In this review, we describe current knowledge regarding the role of PTMs in different stages of the influenza virus replication cycle. We also discuss the concerted role of PTMs in antagonizing host antiviral responses, with an emphasis on their impact on viral pathogenicity and host range.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
9
|
Mukherjee K, English N, Meers C, Kim H, Jonke A, Storici F, Torres M. Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair. DNA Repair (Amst) 2019; 86:102763. [PMID: 31821952 DOI: 10.1016/j.dnarep.2019.102763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Double strand-breaks (DSBs) of genomic DNA caused by ionizing radiation or mutagenic chemicals are a common source of mutation, recombination, chromosomal aberration, and cell death. Linker histones are DNA packaging proteins with established roles in chromatin compaction, gene transcription, and in homologous recombination (HR)-mediated DNA repair. Using a machine-learning model for functional prioritization of eukaryotic post-translational modifications (PTMs) in combination with genetic and biochemical experiments with the yeast linker histone, Hho1, we discovered that site-specific phosphorylation sites regulate HR and HR-mediated DSB repair. Five total sites were investigated (T10, S65, S141, S173, and S174), ranging from high to low function potential as determined by the model. Of these, we confirmed S173/174 are phosphorylated in yeast by mass spectrometry and found no evidence of phosphorylation at the other sites. Phospho-nullifying mutations at these two sites results in a significant decrease in HR-mediated DSB repair templated either with oligonucleotides or a homologous chromosome, while phospho-mimicing mutations have no effect. S65, corresponding to a mammalian phosphosite that is conserved in yeast, exhibited similar effects. None of the mutations affected base- or nucleotide-excision repair, nor did they disrupt non-homologous end joining or RNA-mediated repair of DSBs when sequence heterology between the break and repair template strands was low. More extensive analysis of the S174 phospho-null mutant revealed that its repression of HR and DSB repair is proportional to the degree of sequence heterology between DSB ends and the HR repair template. Taken together, these data demonstrate the utility of machine learning for the discovery of functional PTM hotspots, reveal linker histone phosphorylation sites necessary for HR and HR-mediated DSB repair, and provide insight into the context-dependent control of DNA integrity by the yeast linker histone Hho1.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Nolan English
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Hyojung Kim
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Alex Jonke
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Matthew Torres
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA.
| |
Collapse
|