1
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
2
|
Dai YG, Sun D, Liu J, Wei X, Chi L, Wang H. Efficacy and safety of etrolizumab in the treatment of inflammatory bowel disease: a meta-analysis. PeerJ 2024; 12:e17945. [PMID: 39193512 PMCID: PMC11348897 DOI: 10.7717/peerj.17945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Background To explore the efficacy and safety of etrolizumab in treating inflammatory bowel disease (IBD) through meta-analysis. Method A comprehensive exploration encompassed randomized controlled trials examining the efficacy of etrolizumab in treating IBD across PubMed, Embase, Cochrane library, and Web of Science, with a search deadline of 1 December 2023. Quality assessment leaned on the Cochrane manual's risk-of-bias evaluation, while Stata 15 undertook the data analysis. Result Five randomized controlled studies involving 1682 individuals were finally included, Meta-analysis results suggested that compared with placebo, etrolizumab could improve clinical response (RR = 1.26, 95% CI [1.04-1.51]), clinical remission (RR = 1.26, 95% CI [1.04-1.51]) in IBD patients. Endoscopic alleviate (RR = 2.10, 95% CI [1.56-2.82]), endoscopic improvement (RR = 2.10, 95% CI [1.56-2.82]), endoscopic remission (RR = 2.10, 95% CI [1.56-2.82]), Endoscopic improvement (RR = 1.56, 95% CI [1.30-1.89]), histological remission (RR = 1.62, 95% CI [1.26-2.08]), and did not increase any adverse events (RR = 0.95, 95% CI [0.90-1.01]) and serious adverse events (RR = 0.94, 95% CI [0.68-1.31]). Conclusion According to our current study, etrolizumab is a promising drug in IBD.
Collapse
Affiliation(s)
- Yong gang Dai
- Shandong University of Traditional Chinese Medicine, Shandong, China
- Shandong Provincial Third Hospital, Shandong, China
| | - Dajuan Sun
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiahui Liu
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xiunan Wei
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Lili Chi
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Hongya Wang
- Shandong Provincial Third Hospital, Shandong, China
| |
Collapse
|
3
|
Chen YB, Mohty M, Zeiser R, Teshima T, Jamy O, Maertens J, Purtill D, Chen J, Cao H, Rossiter G, Jansson J, Fløisand Y. Vedolizumab for the prevention of intestinal acute GVHD after allogeneic hematopoietic stem cell transplantation: a randomized phase 3 trial. Nat Med 2024; 30:2277-2287. [PMID: 38844797 PMCID: PMC11333288 DOI: 10.1038/s41591-024-03016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/23/2024] [Indexed: 08/21/2024]
Abstract
Acute graft-versus-host disease (aGVHD) of the lower gastrointestinal (GI) tract is a major cause of morbidity and mortality in patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT). Vedolizumab is a gut-selective anti-α4β7 integrin monoclonal antibody that reduces gut inflammation by inhibiting migration of GI-homing T lymphocytes. The efficacy and safety of vedolizumab added to standard GVHD prophylaxis (calcineurin inhibitor plus methotrexate/mycophenolate mofetil) was evaluated for prevention of lower-GI aGVHD after unrelated donor allo-HSCT in a randomized, double-blind, placebo-controlled phase 3 trial. Enrollment closed early during the COVID-19 pandemic with 343 patients randomized (n = 174 vedolizumab, n = 169 placebo), and 333 received ≥1 intravenous dose of 300 mg vedolizumab (n = 168) or placebo (n = 165) and underwent allo-HSCT. The primary end point was met; Kaplan-Meier (95% confidence interval) estimated rates of lower-GI aGVHD-free survival by day +180 after allo-HSCT were 85.5% (79.2-90.1) with vedolizumab versus 70.9% (63.2-77.2) with placebo (hazard ratio, 0.45; 95% confidence interval, 0.27-0.73; P < 0.001). For the 5 key secondary efficacy end points analyzed by day +180 after allo-HSCT, rates of lower-GI aGVHD-free and relapse-free survival and grade C-D aGVHD-free survival were significantly higher with vedolizumab versus placebo. No significant treatment differences were found for the other key secondary end points of non-relapse mortality, overall survival and grade B-D aGVHD-free survival, respectively. Incidence of treatment-related serious adverse events analyzed in patients receiving ≥1 dose of study treatment (n = 334) was 6.5% (n = 11 of 169) vedolizumab versus 8.5% (n = 14 of 165) placebo. When added to standard calcineurin inhibitor-based GVHD prevention, lower-GI aGVHD-free survival was significantly higher with vedolizumab versus placebo. ClinicalTrials.gov identifier: NCT03657160 .
Collapse
Affiliation(s)
- Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA, USA.
| | - Mohamad Mohty
- Hematology Department, AP-HP, Hôpital Saint-Antoine, Sorbonne Université and INSERM UMRs 938, Paris, France
| | - Robert Zeiser
- Department of Medicine I - Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Omer Jamy
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | | | | | | | | | - Yngvar Fløisand
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Velikova T, Sekulovski M, Peshevska-Sekulovska M. Immunogenicity and Loss of Effectiveness of Biologic Therapy for Inflammatory Bowel Disease Patients Due to Anti-Drug Antibody Development. Antibodies (Basel) 2024; 13:16. [PMID: 38534206 DOI: 10.3390/antib13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Many patients with inflammatory bowel disease (IBD) experience a loss of effectiveness to biologic therapy (i.e., anti-TNF therapy, etc.). Therefore, in addition to the adverse effects of the treatment, these patients also face failure to achieve and maintain remission. Immunogenicity, the process of production of antibodies to biological agents, is fundamental to the evolution of loss of response to treatment in IBD patients. The presence of these antibodies in patients is linked to decreased serum drug levels and inhibited biological activity. However, immunogenicity rates exhibit significant variability across inflammatory disease states, immunoassay formats, and time periods. In this review, we aimed to elucidate the immunogenicity and immune mechanisms of antibody formation to biologics, the loss of therapy response, clinical results of biological treatment for IBD from systematic reviews and meta-analyses, as well as to summarize the most recent strategies for overcoming immunogenicity and approaches for managing treatment failure in IBD.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, 1407 Sofia, Bulgaria
| |
Collapse
|
6
|
Liu J, Di B, Xu LL. Recent advances in the treatment of IBD: Targets, mechanisms and related therapies. Cytokine Growth Factor Rev 2023; 71-72:1-12. [PMID: 37455149 DOI: 10.1016/j.cytogfr.2023.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Inflammatory bowel disease (IBD), as a representative inflammatory disease, currently has multiple effective treatment options available and new therapeutic strategies are being actively explored to further increase the treatment options for patients with IBD. Furthermore, biologic agents and small molecule drugs developed for ulcerative colitis (UC) and Crohn's disease (CD) have evolved toward fewer side effects and more accurate targeting. Novel inhibitors that target cytokines (such as IL-12/23 inhibitors, PDE4 inhibitors), integrins (such as integrin inhibitors), cytokine signaling pathways (such as JAK inhibitors, SMAD7 blocker) and cell signaling receptors (such as S1P receptor modulator) have become the preferred treatment choice for many IBD patients. Conventional therapies such as 5-aminosalicylic acid, corticosteroids, immunomodulators and anti-tumor necrosis factor agents continue to demonstrate therapeutic efficacy, particularly in combination with drug therapy. This review integrates research from chemical, biological and adjuvant therapies to evaluate current and future IBD therapies, highlighting the mechanism of action of each therapy and emphasizing the potential of development prospects.
Collapse
Affiliation(s)
- Juan Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Ardizzone A, Mannino D, Capra AP, Repici A, Filippone A, Esposito E, Campolo M. New Insights into the Mechanism of Ulva pertusa on Colitis in Mice: Modulation of the Pain and Immune System. Mar Drugs 2023; 21:md21050298. [PMID: 37233492 DOI: 10.3390/md21050298] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) involving Crohn's disease (CD) and ulcerative colitis (UC) are gastrointestinal (GI) disorders in which abdominal pain, discomfort, and diarrhea are the major symptoms. The immune system plays an important role in the pathogenesis of IBD and, as indicated by several clinical studies, both innate and adaptative immune response has the faculty to induce gut inflammation in UC patients. An inappropriate mucosal immune response to normal intestinal constituents is a main feature of UC, thus leading to an imbalance in local pro- and anti-inflammatory species. Ulva pertusa, a marine green alga, is known for its important biological properties, which could represent a source of beneficial effects in various human pathologies. We have already demonstrated the anti-inflammatory, antioxidant, and antiapoptotic effects of an Ulva pertusa extract in a murine model of colitis. In this study, we aimed to examine thoroughly Ulva pertusa immunomodulatory and pain-relieving properties. Colitis was induced by using the DNBS model (4 mg in 100 μL of 50% ethanol), whereas Ulva pertusa was administered daily at the dosage of 50 and 100 mg/kg by oral gavage. Ulva pertusa treatments have been shown to relieve abdominal pain while modulating innate and adaptative immune-inflammatory responses. This powerful immunomodulatory activity was specifically linked with TLR4 and NLRP3 inflammasome modulation. In conclusion, our data suggest Ulva pertusa as a valid approach to counteract immune dysregulation and abdominal discomfort in IBD.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| |
Collapse
|
8
|
Sun Q, Lu Z, Ma L, Xue D, Liu C, Ye C, Huang W, Dang Y, Li F. Integrin β6 deficiency protects mice from experimental colitis and colitis-associated carcinoma by altering macrophage polarization. Front Oncol 2023; 13:1190229. [PMID: 37223685 PMCID: PMC10200923 DOI: 10.3389/fonc.2023.1190229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Background Given the key role of integrins in maintaining intestinal homeostasis, anti-integrin biologics in inflammatory bowel disease (IBD) are being investigated in full swing. However, the unsatisfactory efficacy and safety of current anti-integrin biologics in clinical trials limit their widespread use in clinic. Therefore, it is particularly important to find a target that is highly and specifically expressed in the intestinal epithelium of patients with IBD. Methods The function of integrin αvβ6 in IBD and colitis-associated carcinoma (CAC) with the underlying mechanisms has been less studied. In the present study, we detected the level of integrin β6 within inflammation including colitis tissues in human and mouse. To investigate the role of integrin β6 in IBD and CAC, integrin β6 deficient mice were hence generated based on the construction of colitis and CAC model. Results We noted that integrin β6 was significantly upregulated in inflammatory epithelium of patients with IBD. Integrin β6 deletion not only reduced infiltration of pro-inflammatory cytokines, but also attenuated disruption of tight junctions between colonic epithelial cells. Meanwhile, lack of integrin β6 affected macrophage infiltration in mice with colitis. This study further revealed that lack of integrin β6 could inhibit tumorigenesis and tumor progression in CAC model by influencing macrophage polarization, which was also involved in attenuating the degree of intestinal symptoms and inflammatory responses in mice suffering from colitis. Conclusions The present research provides a potentially new perspective and option for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhihua Lu
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lei Ma
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dong Xue
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yueyan Dang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Rossi B, Dusi S, Angelini G, Bani A, Lopez N, Della Bianca V, Pietronigro EC, Zenaro E, Zocco C, Constantin G. Alpha4 beta7 integrin controls Th17 cell trafficking in the spinal cord leptomeninges during experimental autoimmune encephalomyelitis. Front Immunol 2023; 14:1071553. [PMID: 37143680 PMCID: PMC10151683 DOI: 10.3389/fimmu.2023.1071553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Th1 and Th17 cell migration into the central nervous system (CNS) is a fundamental process in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Particularly, leptomeningeal vessels of the subarachnoid space (SAS) constitute a central route for T cell entry into the CNS during EAE. Once migrated into the SAS, T cells show an active motility behavior, which is a prerequisite for cell-cell communication, in situ reactivation and neuroinflammation. However, the molecular mechanisms selectively controlling Th1 and Th17 cell trafficking in the inflamed leptomeninges are not well understood. By using epifluorescence intravital microscopy, we obtained results showing that myelin-specific Th1 and Th17 cells have different intravascular adhesion capacity depending on the disease phase, with Th17 cells being more adhesive at disease peak. Inhibition of αLβ2 integrin selectively blocked Th1 cell adhesion, but had no effect on Th17 rolling and arrest capacity during all disease phases, suggesting that distinct adhesion mechanisms control the migration of key T cell populations involved in EAE induction. Blockade of α4 integrins affected myelin-specific Th1 cell rolling and arrest, but only selectively altered intravascular arrest of Th17 cells. Notably, selective α4β7 integrin blockade inhibited Th17 cell arrest without interfering with intravascular Th1 cell adhesion, suggesting that α4β7 integrin is predominantly involved in Th17 cell migration into the inflamed leptomeninges in EAE mice. Two-photon microscopy experiments showed that blockade of α4 integrin chain or α4β7 integrin selectively inhibited the locomotion of extravasated antigen-specific Th17 cells in the SAS, but had no effect on Th1 cell intratissue dynamics, further pointing to α4β7 integrin as key molecule in Th17 cell trafficking during EAE development. Finally, therapeutic inhibition of α4β7 integrin at disease onset by intrathecal injection of a blocking antibody attenuated clinical severity and reduced neuroinflammation, further demonstrating a crucial role for α4β7 integrin in driving Th17 cell-mediated disease pathogenesis. Altogether, our data suggest that a better knowledge of the molecular mechanisms controlling myelin-specific Th1 and Th17 cell trafficking during EAE delevopment may help to identify new therapeutic strategies for CNS inflammatory and demyelinating diseases.
Collapse
Affiliation(s)
- Barbara Rossi
- Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| | - Silvia Dusi
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Nicola Lopez
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Elena Zenaro
- Department of Medicine, University of Verona, Verona, Italy
| | - Carlotta Zocco
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Verona, Italy
- The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| |
Collapse
|
10
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight new and emerging therapies in inflammatory bowel disease (IBD) and provide insight on how these therapies can be integrated into clinical practice. RECENT FINDINGS The article covers clinical and real-world data for Janus kinase inhibitors, anti-interleukin antibodies, sphingosine-1-phosphate receptor modulators, and anti-integrin therapies. It also explores the potential role of antifibrotic agents, microbiota-based innovations, and for personalized medicine in IBD. SUMMARY The treatment of IBD has evolved significantly in the last two decades, with a host of new treatment options available and arising for patients. With these advancements, positioning these drugs in a treatment algorithm to create a more personalized approach to improve efficacy and prognosis is critical.
Collapse
|
12
|
Inal-Gultekin G, Gormez Z, Mangir N. Defining Molecular Treatment Targets for Bladder Pain Syndrome/Interstitial Cystitis: Uncovering Adhesion Molecules. Front Pharmacol 2022; 13:780855. [PMID: 35401223 PMCID: PMC8990855 DOI: 10.3389/fphar.2022.780855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Bladder pain syndrome/interstitial cystitis (BPS/IC) is a debilitating pain syndrome of unknown etiology that predominantly affects females. Clinically, BPS/IC presents in a wide spectrum where all patients report severe bladder pain together with one or more urinary tract symptoms. On bladder examination, some have normal-appearing bladders on cystoscopy, whereas others may have severely inflamed bladder walls with easily bleeding areas (glomerulations) and ulcerations (Hunner’s lesion). Thus, the reported prevalence of BPS/IC is also highly variable, between 0.06% and 30%. Nevertheless, it is rightly defined as a rare disease (ORPHA:37202). The aetiopathogenesis of BPS/IC remains largely unknown. Current treatment is mainly symptomatic and palliative, which certainly adds to the suffering of patients. BPS/IC is known to have a genetic component. However, the genes responsible are not defined yet. In addition to traditional genetic approaches, novel research methodologies involving bioinformatics are evaluated to elucidate the genetic basis of BPS/IC. This article aims to review the current evidence on the genetic basis of BPS/IC to determine the most promising targets for possible novel treatments.
Collapse
Affiliation(s)
- Guldal Inal-Gultekin
- Department of Physiology, Faculty of Medicine, Istanbul Okan University, Tuzla, Turkey
- *Correspondence: Guldal Inal-Gultekin,
| | - Zeliha Gormez
- Department of Applied Bioinformatics, Bingen Technical University of Applied Sciences, Bingen am Rhein, Germany
| | - Naside Mangir
- Department of Urology, Hacettepe University Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Cheng Y, Hall TR, Xu X, Yung I, Souza D, Zheng J, Schiele F, Hoffmann M, Mbow ML, Garnett JP, Li J. Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. EBioMedicine 2021; 75:103758. [PMID: 34933179 PMCID: PMC8688562 DOI: 10.1016/j.ebiom.2021.103758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Loss of intestinal epithelial barrier integrity is a critical component of Inflammatory Bowel Disease (IBD) pathogenesis. Co-expression regulation of ligand-receptor pairs in IBD mucosa has not been systematically studied. Targeting ligand-receptor pairs which are induced in IBD mucosa and function in intestinal epithelial barrier integrity may provide novel therapeutics for IBD. Methods We performed transcriptomic meta-analysis on public IBD datasets combined with cell surface protein-protein-interaction (PPI) databases. We explored primary human/mouse intestinal organoids and Caco-2 cells for expression and function studies of uPA-uPAR (prime hits from the meta-analysis). Epithelial barrier integrity was measured by Trans-Epithelial Electrical Resistance (TEER), FITC-Dextran permeability and tight junction assessment. Genetic (CRISPR, siRNA and KO mice) and pharmacological (small molecules, neutralizing antibody and peptide inhibitors) approaches were applied. Mice deficient of uPAR were studied using the Dextran Sulfate Sodium (DSS)-induced colitis model. Findings The IBD ligand-receptor meta-analysis led to the discovery of a coordinated upregulation of uPA and uPAR in IBD mucosa. Both genes were significantly upregulated during epithelial barrier breakdown in primary intestinal organoids and decreased during barrier formation. Genetic inhibition of uPAR or uPA, or pharmacologically blocking uPA-uPAR interaction protects against cytokine-induced barrier breakdown. Deficiency of uPAR in epithelial cells leads to enhanced EGF/EGFR signalling, a known regulator of epithelial homeostasis and repair. Mice deficient of uPAR display improved intestinal barrier function in vitro and during DSS-induced colitis in vivo. Interpretation Our findings suggest that blocking uPA-uPAR interaction via pharmacological agents protects the epithelial barrier from inflammation-induced damage, indicating a potential therapeutic target for IBD. Funding The study was funded by Boehringer Ingelheim.
Collapse
Affiliation(s)
- Yang Cheng
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Tyler R Hall
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Xiao Xu
- Computational Biology Group, Discovery Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Ivy Yung
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Donald Souza
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Jie Zheng
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Felix Schiele
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Matthias Hoffmann
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - M Lamine Mbow
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - James P Garnett
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jun Li
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| |
Collapse
|
14
|
Solitano V, Parigi TL, Ragaini E, Danese S. Anti-integrin drugs in clinical trials for inflammatory bowel disease (IBD): insights into promising agents. Expert Opin Investig Drugs 2021; 30:1037-1046. [PMID: 34449288 DOI: 10.1080/13543784.2021.1974396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Despite huge and increasing developments in the treatment of inflammatory bowel disease (IBD), a significant percentage of patients with Crohn's disease (CD) and ulcerative colitis (UC) is still in need of an effective and safe therapeutic option. Tackling the trafficking of leukocytes specifically within or directed to the inflamed gut appears to be a particularly promising strategy, and several new anti-integrin agents are currently under investigation in clinical trials. AREAS COVERED This review summarizes efficacy and safety data from phase 1, 2 and 3 clinical trials on investigational drugs, including monoclonal antibodies (etrolizumab, abrilumab, ontamalimab) and oral small molecules (AJM300, PTG-100). It also discusses the future perspectives for the treatment of IBD patients with this class of agents. EXPERT OPINION The pipeline of anti-integrin agents is well assorted, and it is reasonable to expect that some will be introduced in the market soon. Among the most exciting features of this class are the gut selectivity, the convenient subcutaneous and oral administrations and the reassuring safety profiles. Most of the new anti-integrins seem to improve outcomes in UC but not in CD, however these data are far from definitive and several pivotal trials are still under way.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Elisa Ragaini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
15
|
Biological Treatments in Inflammatory Bowel Disease: A Complex Mix of Mechanisms and Actions. BIOLOGICS 2021. [DOI: 10.3390/biologics1020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that requires lifelong medication and whose incidence is increasing over the world. There is currently no cure for IBD, and the current therapeutic objective is to control the inflammatory process. Approximately one third of treated patients do not respond to treatment and refractoriness to treatment is common. Therefore, pharmacological treatments, such as monoclonal antibodies, are urgently needed, and new treatment guidelines are regularly published. Due to the extremely important current role of biologics in the therapy of IBD, herein we have briefly reviewed the main biological treatments currently available. In addition, we have focused on the mechanisms of action of the most relevant groups of biological agents in IBD therapy, which are not completely clear but are undoubtfully important for understanding both their therapeutic efficacy and the adverse side effects they may have. Further studies are necessary to better understand the action mechanism of these drugs, which will in turn help us to understand how to improve their efficacy and safety. These studies will hopefully pave the path for a personalized medicine.
Collapse
|
16
|
Adamina M, Feakins R, Iacucci M, Spinelli A, Cannatelli R, D'Hoore A, Driessen A, Katsanos K, Mookhoek A, Myrelid P, Pellino G, Peros G, Tontini GE, Tripathi M, Yanai H, Svrcek M. ECCO Topical Review Optimising Reporting in Surgery, Endoscopy, and Histopathology. J Crohns Colitis 2021; 15:1089-1105. [PMID: 33428711 DOI: 10.1093/ecco-jcc/jjab011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Diagnosis and management of inflammatory bowel diseases [IBD] requires a lifelong multidisciplinary approach. The quality of medical reporting is crucial in this context. The present topical review addresses the need for optimised reporting in endoscopy, surgery, and histopathology. METHODS A consensus expert panel consisting of gastroenterologists, surgeons, and pathologists, convened by the European Crohn's and Colitis Organisation, performed a systematic literature review. The following topics were covered: in endoscopy: [i] general IBD endoscopy; [ii] disease activity and surveillance; [iii] endoscopy treatment in IBD; in surgery: [iv] medical history with surgical relevance, surgical indication, and strategy; [v] operative approach; [vi] intraoperative disease description; [vii] operative steps; in pathology: [viii] macroscopic assessment and interpretation of resection specimens; [ix] IBD histology, including biopsies, surgical resections, and neoplasia; [x] IBD histology conclusion and report. Statements were developed using a Delphi methodology incorporating two consecutive rounds. Current practice positions were set when ≥ 80% of participants agreed on a recommendation. RESULTS Thirty practice positions established a standard terminology for optimal reporting in endoscopy, surgery, and histopathology. Assessment of disease activity, surveillance recommendations, advice to surgeons for operative indication and strategies, including margins and extent of resection, and diagnostic criteria of IBD, as well as guidance for the interpretation of dysplasia and cancer, were handled. A standardised report including a core set of items to include in each specialty report, was defined. CONCLUSIONS Interdisciplinary high-quality care requires thorough and standardised reporting across specialties. This topical review offers an actionable framework and practice recommendations to optimise reporting in endoscopy, surgery, and histopathology.
Collapse
Affiliation(s)
- Michel Adamina
- Department of Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Roger Feakins
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Marietta Iacucci
- Institute of Immunology and Immunotherapy, NIHR Biomedical Research Centre, University of Birmingham, UK.,Division of Gastroenterology, University Hospitals Birmingham NHS Trust, UK
| | - Antonino Spinelli
- Division of Colon and Rectal Surgery, Humanitas Clinical and Research Center, Rozzano,Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Rosanna Cannatelli
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK.,Gastroenterology Unit, Spedali Civili di Brescia, Brescia, Italy
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospital Leuven, Leuven, Belgium
| | - Ann Driessen
- Department of Pathology, University Hospital Antwerp, University Antwerp, Edegem, Belgium
| | - Konstantinos Katsanos
- Department of Gastroenterology and Hepatology, University and Medical School of Ioannina, Ioannina, Greece
| | - Aart Mookhoek
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pär Myrelid
- Department of Surgery, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gianluca Pellino
- Department of Advanced Medical and Surgical Sciences, Universitá degli Studi della Campania 'Luigi Vanvitelli', Naples, Italy.,Colorectal Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Georgios Peros
- Department of Surgery, Cantonal Hospital of Winterthur, Winterthur, Switerland; Division of Colon and Rectal Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Gian Eugenio Tontini
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Monika Tripathi
- Department of Histopathology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Henit Yanai
- Division of Gastroenterology, IBD Center, Rabin Medical Center, Petah Tikva, Israel
| | - Magali Svrcek
- Department of Pathology, Sorbonne Université, AP-HP, Saint-Antoine hospital, Paris, France
| |
Collapse
|
17
|
Zhang W, Michalowski CB, Beloqui A. Oral Delivery of Biologics in Inflammatory Bowel Disease Treatment. Front Bioeng Biotechnol 2021; 9:675194. [PMID: 34150733 PMCID: PMC8209478 DOI: 10.3389/fbioe.2021.675194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) has been posed as a great worldwide health threat. Having an onset during early adulthood, IBD is a chronic inflammatory disease characterized by remission and relapse. Due to its enigmatic etiology, no cure has been developed at the moment. Conventionally, steroids, 5-aminosalicylic acid, and immunosuppressants have been applied clinically to relieve patients’ syndrome which, unfavorably, causes severe adverse drug reactions including diarrhea, anemia, and glaucoma. Insufficient therapeutic effects also loom, and surgical resection is mandatory in half of the patients within 10 years after diagnosis. Biologics demonstrated unique and differentiative therapeutic mechanism which can alleviate the inflammation more effectively. However, their application in IBD has been hindered considering their stability and toxicity. Scientists have brought up with the concept of nanomedicine to achieve the targeted drug delivery of biologics for IBD. Here, we provide an overview of biologics for IBD treatment and we review existing formulation strategies for different biological categories including antibodies, gene therapy, and peptides. This review highlights the current trends in oral delivery of biologics with an emphasis on the important role of nanomedicine in the development of reliable methods for biologic delivery in IBD treatment.
Collapse
Affiliation(s)
- Wunan Zhang
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Cecilia Bohns Michalowski
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
19
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
20
|
Portillo JC, Yu J, Hansen S, Kern TS, Subauste MC, Subauste CS. A cell-penetrating CD40-TRAF2,3 blocking peptide diminishes inflammation and neuronal loss after ischemia/reperfusion. FASEB J 2021; 35:e21412. [PMID: 33675257 PMCID: PMC8101361 DOI: 10.1096/fj.201903203rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
While the administration of anti-CD154 mAbs in mice validated the CD40-CD154 pathway as a target against inflammatory disorders, this approach caused thromboembolism in humans (unrelated to CD40 inhibition) and is expected to predispose to opportunistic infections. There is a need for alternative approaches to inhibit CD40 that avoid these complications. CD40 signals through TRAF2,3 and TRAF6-binding sites. Given that CD40-TRAF6 is the pathway that stimulates responses key for cell-mediated immunity against opportunistic pathogens, we examined the effects of pharmacologic inhibition of CD40-TRAF2,3 signaling. We used a model of ischemia/reperfusion (I/R)-induced retinopathy, a CD40-driven inflammatory disorder. Intravitreal administration of a cell-penetrating CD40-TRAF2,3 blocking peptide impaired ICAM-1 upregulation in retinal endothelial cells and CXCL1 upregulation in endothelial and Müller cells. The peptide reduced leukocyte infiltration, upregulation of NOS2/COX-2/TNF-α/IL-1β, and ameliorated neuronal loss, effects that mimic those observed after I/R in Cd40-/- mice. While a cell-penetrating CD40-TRAF6 blocking peptide also diminished I/R-induced inflammation, this peptide (but not the CD40-TRAF2,3 blocking peptide) impaired control of the opportunistic pathogen Toxoplasma gondii in the retina. Thus, inhibition of the CD40-TRAF2,3 pathway is a novel and potent approach to reduce CD40-induced inflammation, while likely diminishing the risk of opportunistic infections that would otherwise accompany CD40 inhibition.
Collapse
Affiliation(s)
- Jose‐Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Jin‐Sang Yu
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Samuel Hansen
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Timothy S. Kern
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - M. Cecilia Subauste
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of MedicineCase Western Reserve UniversityClevelandOHUSA
- Division of Pulmonary, Critical Care, Allergy and Sleep MedicineVeterans Administration Medical CenterClevelandOHUSA
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
- Department of PathologyCase Western Reserve University School of MedicineClevelandOHUSA
| |
Collapse
|
21
|
Yang B, Zhang G, Elias M, Zhu Y, Wang J. The role of cytokine and immune responses in intestinal fibrosis. J Dig Dis 2020; 21:308-314. [PMID: 32410365 DOI: 10.1111/1751-2980.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The rapidly increasing incidence of inflammatory bowel disease (IBD) in South America, eastern Europe, Asia, and Africa has resulted in a global public health challenge. Intestinal fibrosis is a common complication in patients with long-term IBD, which may develop into stenosis and subsequent obstruction. Hitherto, the origin of IBD is unclear and several factors may be involved, including genetic, immune, environmental and microbial influences. Little is known about how the recurrent inflammation in patients with IBD develops into intestinal fibrosis and currently, there is no suitable treatment to reverse intestinal fibrosis in these patients. Here, we review the role of immune components in the pathogenesis of IBD and intestinal fibrosis, including cytokine networks, host-microbiome interactions, and immune cell trafficking.
Collapse
Affiliation(s)
- Bo Yang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ge Zhang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yijun Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Chen W, Chen H, Fu S, Lin X, Zheng Z, Zhang J. Microbiome characterization and re-design by biologic agents for inflammatory bowel disease insights. Bioprocess Biosyst Eng 2020; 44:929-939. [PMID: 32458051 DOI: 10.1007/s00449-020-02380-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
The therapeutic effect of inflammatory bowel disease has improved in the past decades, but most of patients cannot tolerate, do not respond to drugs, or relapse after treating with conventional therapy. Therefore, new and more effective treatment methods are still needed in treatment of IBD. In this review, we will discuss the relevant mechanisms and the latest research progress of biologics (anti-TNF treatments, interleukin inhibitors, integrin inhibitors, antisense oligonucleotide, and JAK inhibitors) for IBD, focus on the efficacy and safety of drugs for moderate-to-severe IBD, and summarize the clinical status and future development direction of biologics in IBD.
Collapse
Affiliation(s)
- Wenshuo Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Haijin Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China.
| | - Shudan Fu
- Ophthalmology Department, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Xiaohua Lin
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Zheng Zheng
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Jinlong Zhang
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| |
Collapse
|
23
|
Na SY, Moon W. Perspectives on Current and Novel Treatments for Inflammatory Bowel Disease. Gut Liver 2020; 13:604-616. [PMID: 31195433 PMCID: PMC6860034 DOI: 10.5009/gnl19019] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
New therapeutic strategies in inflammatory bowel disease (IBD) have shifted from symptom control towards treat-to-target algorithms in order to optimize treatment results. The treatment of IBD has evolved with the development of tumor necrosis factor-α inhibitors beyond the conventional therapies. In spite of their long-term effectiveness, many patients do not respond to or cannot sustain treatment with these drugs, which have various side effects. Therefore, the development of new drugs targeting specific pathways in the pathogenesis of IBD has become necessary. Some novel biologics and small molecule drugs have shown potential in IBD clinical trials, providing safe and effective results. In addition, clinicians are now trying to target the dysbiotic microbiome of patients with IBD using fecal microbiota transplantation. New tools such as stem cells have also been developed. The available therapeutic options for IBD are expanding rapidly. In the next few years, physicians will face an unprecedented number of options when choosing the best treatments for patients with IBD. This review provides an overview of recent advances in IBD treatment options.
Collapse
Affiliation(s)
- Soo-Young Na
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
24
|
Abstract
Lymphocyte depletion and blockade of T-cell activation and trafficking serve as therapeutic strategies for an enlarging number of immune-mediated diseases and malignancies. This review summarizes the infection risks associated to monoclonal antibodies that bind to the α chain of the interleukin-2 receptor, the cell surface glycoprotein CD52, and members of α4- and β2-integrin families acting as cell-adhesion molecules. An outline of the mechanisms of action, approved indications and off-label uses, expected impact on the host immune response, and available clinical evidence is provided for each of these agents.
Collapse
|
25
|
Allner C, Melde M, Becker E, Fuchs F, Mühl L, Klenske E, Müller L, Morgenstern N, Fietkau K, Hirschmann S, Atreya R, Atreya I, Neurath MF, Zundler S. Baseline levels of dynamic CD4 + T cell adhesion to MAdCAM-1 correlate with clinical response to vedolizumab treatment in ulcerative colitis: a cohort study. BMC Gastroenterol 2020; 20:103. [PMID: 32293299 PMCID: PMC7158080 DOI: 10.1186/s12876-020-01253-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background While the number of therapeutic options for treating inflammatory bowel diseases (IBD) is increasing, evidence for rational treatment decisions is scarce in many cases. In particular, appropriate biomarkers to predict the response to the anti-α4β7 integrin antibody vedolizumab are currently lacking. Methods We performed a cohort study with 21 patients suffering from ulcerative colitis (UC), in which first-time treatment with vedolizumab was initiated. CD4+ T cells were isolated from the peripheral blood and dynamic adhesion to recombinant mucosal vascular addressin cell adhesion molecule (MAdCAM-)1 in vitro as well as the effect of vedolizumab on such adhesion in vitro was determined. The expression of α4β1 integrin on peripheral blood CD4+ T cells was quantified by flow cytometry. Electronic patient records were reviewed to determine clinical response to vedolizumab. Results Dynamic adhesion of peripheral blood CD4+ T cells to MAdCAM-1 and the reduction of adhesion following vedolizumab treatment in vitro were higher and the change in α4β1 expression on CD4+ T cells was different in vedolizumab responders and non-responders. Responders could be identified with high specificity and positive-predictive value. Conclusions Determining dynamic adhesion of CD4+ T cells to MAdCAM-1 and the in vitro response to vedolizumab before treatment initiation or dynamic integrin regulation in the early course of treatment seem to be promising tools to predict the clinical response to vedolizumab therapy. Larger prospective studies are warranted.
Collapse
Affiliation(s)
- Clarissa Allner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Michaela Melde
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Friederike Fuchs
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Laura Mühl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Entcho Klenske
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lisa Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Nadine Morgenstern
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Konstantin Fietkau
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Simon Hirschmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
26
|
The Biological Role of Apurinic/Apyrimidinic Endonuclease1/Redox Factor-1 as a Therapeutic Target for Vascular Inflammation and as a Serologic Biomarker. Biomedicines 2020; 8:biomedicines8030057. [PMID: 32164272 PMCID: PMC7148461 DOI: 10.3390/biomedicines8030057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction promotes vascular inflammation by inducing the production of reactive oxygen species and adhesion molecules. Vascular inflammation plays a key role in the pathogenesis of vascular diseases and atherosclerotic disorders. However, whether there is an endogenous system that can participate in circulating immune surveillance or managing a balance in homeostasis is unclear. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (henceforth referred to as APE1/Ref-1) is a multifunctional protein that can be secreted from cells. It functions as an apurinic/apyrimidinic endonuclease in the DNA base repair pathway and modulates redox status and several types of transcriptional factors, in addition to its anti-inflammatory activity. Recently, it was reported that the secretion of APE1/Ref-1 into the extracellular medium of cultured cells or its presence in the plasma can act as a serological biomarker for certain disorders. In this review, we summarize the possible biological functions of APE1/Ref-1 according to its subcellular localization or its extracellular secretions, as therapeutic targets for vascular inflammation and as a serologic biomarker.
Collapse
|
27
|
Phenotypic and Functional Changes in Peripheral Blood Natural Killer Cells in Crohn Disease Patients. Mediators Inflamm 2020; 2020:6401969. [PMID: 32148442 PMCID: PMC7049869 DOI: 10.1155/2020/6401969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated activation status, cytotoxic potential, and gut homing ability of the peripheral blood Natural Killer (NK) cells in Crohn disease (CD) patients. For this purpose, we compared the expression of different activating and inhibitory receptors (KIR and non-KIR) and integrins on NK cells as well as their recent degranulation history between the patients and age-matched healthy controls. The study was conducted using freshly obtained peripheral blood samples from the study participants. Multiple color flow cytometry was used for these determinations. Our results show that NK cells from treatment-naïve CD patients expressed higher levels of activating KIR as well as other non-KIR activating receptors vis-à-vis healthy controls. They also showed increased frequencies of the cells expressing these receptors. The expression of several KIR and non-KIR inhibitory receptors tended to decrease compared with the cells from healthy donors. NK cells from the patients also expressed increased levels of different gut-homing integrin molecules and showed a history of increased recent degranulation events both constitutively and in response to their in vitro stimulation. Furthermore, treatment of the patients tended to reverse these NK cell changes. Our results demonstrate unequivocally, for the first time, that peripheral blood NK cells in treatment-naïve CD patients are more activated and are more poised to migrate to the gut compared to their counterpart cells from healthy individuals. Moreover, they show that treatment of the patients tends to normalize their NK cells. The results suggest that NK cells are very likely to play a role in the immunopathogenesis of Crohn disease.
Collapse
|
28
|
López-Posadas R, Fastancz P, Martínez-Sánchez LDC, Panteleev-Ivlev J, Thonn V, Kisseleva T, Becker LS, Schulz-Kuhnt A, Zundler S, Wirtz S, Atreya R, Carlé B, Friedrich O, Schürmann S, Waldner MJ, Neufert C, Brakebusch CH, Bergö MO, Neurath MF, Atreya I. Inhibiting PGGT1B Disrupts Function of RHOA, Resulting in T-cell Expression of Integrin α4β7 and Development of Colitis in Mice. Gastroenterology 2019; 157:1293-1309. [PMID: 31302143 DOI: 10.1053/j.gastro.2019.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS It is not clear how regulation of T-cell function is altered during development of inflammatory bowel diseases (IBD). We studied the mechanisms by which geranylgeranyltransferase-mediated prenylation controls T-cell localization to the intestine and chronic inflammation. METHODS We generated mice with T-cell-specific disruption of the geranylgeranyltransferase type I, beta subunit gene (Pggt1b), called Pggt1bΔCD4 mice, or the ras homolog family member A gene (Rhoa), called RhoaΔCD4 mice. We also studied mice with knockout of CDC42 or RAC1 and wild-type mice (controls). Intestinal tissues were analyzed by histology, multiphoton and confocal microscopy, and real-time polymerase chain reaction. Activation of CDC42, RAC1, and RHOA were measured with G-LISA, cell fractionation, and immunoblots. T cells and lamina propria mononuclear cells from mice were analyzed by flow cytometry or transferred to Rag1-/- mice. Mice were given injections of antibodies against integrin alpha4beta7 or gavaged with the RORC antagonist GSK805. We obtained peripheral blood and intestinal tissue samples from patients with and without IBD and analyzed them by flow cytometry. RESULTS Pggt1bΔCD4 mice developed spontaneous colitis, characterized by thickening of the intestinal wall, edema, fibrosis, accumulation of T cells in the colon, and increased expression of inflammatory cytokines. Compared with control CD4+ T cells, PGGT1B-deficient CD4+ T cells expressed significantly higher levels of integrin alpha4beta7, which regulates their localization to the intestine. Inflammation induced by transfer of PGGT1B-deficient CD4+ T cells to Rag1-/- mice was blocked by injection of an antibody against integrin alpha4beta7. Lamina propria of Pggt1bΔCD4 mice had increased numbers of CD4+ T cells that expressed RORC and higher levels of cytokines produced by T-helper 17 cells (granulocyte-macrophage colony-stimulating factor, interleukin [IL]17A, IL17F, IL22, and tumor necrosis factor [TNF]). The RORC inverse agonist GSK805, but not antibodies against IL17A or IL17F, prevented colitis in Pggt1bΔCD4 mice. PGGT1B-deficient CD4+ T cells had decreased activation of RHOA. RhoAΔCD4 mice had a similar phenotype to Pggt1bΔCD4 mice, including development of colitis, increased numbers of CD4+ T cells in colon, increased expression of integrin alpha4beta7 by CD4+ T cells, and increased levels of IL17A and other inflammatory cytokines in lamina propria. T cells isolated from intestinal tissues from patients with IBD had significantly lower levels of PGGT1B than tissues from individuals without IBD. CONCLUSION Loss of PGGT1B from T cells in mice impairs RHOA function, increasing CD4+ T-cell expression of integrin alpha4beta7 and localization to colon, resulting in increased expression of inflammatory cytokines and colitis. T cells isolated from gut tissues from patients with IBD have lower levels of PGGT1B than tissues from patients without IBD.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Petra Fastancz
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Julia Panteleev-Ivlev
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Veronika Thonn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tatyana Kisseleva
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Lukas S Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Birgitta Carlé
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Schürmann
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Cord H Brakebusch
- Biotec Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Martin O Bergö
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To describe the latest developments in the field of anti-trafficking agents (ATAs), a class of therapeutics with growing importance in the field of inflammatory bowel diseases (IBDs) that specifically inhibit steps of immune cell trafficking. RECENT FINDINGS Several translational and clinical studies have further shaped the knowledge about the mechanisms and effects of the anti-α4β7 integrin antibody vedolizumab. In parallel, new ATAs like the anti-β7 integrin antibody etrolizumab and the anti-MAdCAM-1 antibody ontamalimab are investigated in phase III clinical trials and might soon increase the therapeutic armamentarium in IBD. SUMMARY ATAs have unique mechanisms of action and can meanwhile be considered an indispensable column of IBD therapy. Further efforts are necessary to elucidate complex mechanistic aspects, to exactly define their role in relation to other therapeutic approaches and to identify novel treatment targets as well as biomarkers for personalized medicine.
Collapse
|
30
|
Target-Specific Fluorescence-Mediated Tomography for Non-Invasive and Dynamic Assessment of Early Neutrophil Infiltration in Murine Experimental Colitis. Cells 2019; 8:cells8111328. [PMID: 31661876 PMCID: PMC6912230 DOI: 10.3390/cells8111328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
The role of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) is still only incompletely understood. Here, we evaluated target-specific fluorescence-mediated tomography (FMT) for visualization of neutrophil infiltration in murine experimental DSS-induced colitis. Colitis was assessed using clinical, endoscopic, and histopathological parameters. Intestinal neutrophil infiltration was determined at day 0, 4, and 10 by targeted FMT after injection of a neutrophil-specific fluorescence-labelled monoclonal antibody (Gr-1). Complementary, immunofluorescence tissue sections with Gr-1 and ELISA-based assessment of tissue myeloperoxidase (MPO) served as the gold standard for the quantification of neutrophil infiltration. Colitic animals showed decreasing body weight, presence of fecal occult blood, and endoscopic signs of inflammation. FMT revealed a significantly increased level of fluorescence only four days after colitis induction as compared to pre-experimental conditions (pmol tracer 73.2 ± 18.1 versus 738.6 ± 80.7; p < 0.05), while neither body weight nor endoscopic assessment showed significant changes at this early time. Confirmatory, post-mortem immunofluorescence studies and measurements of tissue MPO confirmed the presence of increased neutrophil infiltration in colitic mice compared to controls. Concluding, Gr-1 targeted FMT can detect early colonic infiltration of neutrophils in experimental colitis even before clinical symptoms or endoscopic alterations occur. Therefore, FMT might be an important tool for repetitive and non-invasive monitoring of inflammatory cell infiltrate in intestinal inflammation.
Collapse
|
31
|
Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2019; 141:1900-1916. [PMID: 29860380 DOI: 10.1093/brain/awy131] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan B Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Baiula M, Spampinato S, Gentilucci L, Tolomelli A. Novel Ligands Targeting α 4β 1 Integrin: Therapeutic Applications and Perspectives. Front Chem 2019; 7:489. [PMID: 31338363 PMCID: PMC6629825 DOI: 10.3389/fchem.2019.00489] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Among the other members of the adhesion molecules' family, α4β1 integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of α4β1 functions in human pathologies, we report an overview of synthetic α4β1 integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of α4β1 integrin regulation for the development of novel agents against pathologies still eluding an effective solution.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician,” University of Bologna, Bologna, Italy
| | | |
Collapse
|
33
|
Silva F, Gatica T, Pavez C. ETIOLOGÍA Y FISIOPATOLOGÍA DE LA ENFERMEDAD INFLAMATORIA INTESTINAL. REVISTA MÉDICA CLÍNICA LAS CONDES 2019. [DOI: 10.1016/j.rmclc.2019.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Chudy-Onwugaje KO, Christian KE, Farraye FA, Cross RK. A State-of-the-Art Review of New and Emerging Therapies for the Treatment of IBD. Inflamm Bowel Dis 2019; 25:820-830. [PMID: 30445504 PMCID: PMC6468492 DOI: 10.1093/ibd/izy327] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 12/12/2022]
Abstract
Over the last 2 decades, novel therapies targeting several immune pathways have been developed for the treatment of patients with inflammatory bowel disease (IBD). Although anti-tumor necrosis factor (anti-TNF) agents remain the firstline treatment for moderate to severe Crohn's disease and ulcerative colitis, many patients will require alternative agents, due to nonresponse, loss of response, or intolerance of anti-TNFs. Furthermore, patients may request newer therapies due to improved safety profiles or improved administration (ie, less frequent injection, oral therapy). This review will focus on new and emerging therapies for the treatment of IBD, with a special focus on their adverse effects. Although many of the agents included in this paper have been approved for use in IBD, a few are still in development but have been shown to be effective in phase II clinical trials. 10.1093/ibd/izy327_video1 izy327.video1 5967364908001.
Collapse
Affiliation(s)
- Kenechukwu O Chudy-Onwugaje
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kaci E Christian
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Francis A Farraye
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Raymond K Cross
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland,Address correspondence to: Raymond K. Cross, MD, MS, 685 West Baltimore Street, Suite 8-00, Baltimore, MD 21201 ()
| |
Collapse
|
35
|
Vojkovics D, Kellermayer Z, Gábris F, Schippers A, Wagner N, Berta G, Farkas K, Balogh P. Differential Effects of the Absence of Nkx2-3 and MAdCAM-1 on the Distribution of Intestinal Type 3 Innate Lymphoid Cells and Postnatal SILT Formation in Mice. Front Immunol 2019; 10:366. [PMID: 30891037 PMCID: PMC6413488 DOI: 10.3389/fimmu.2019.00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 01/08/2023] Open
Abstract
Seeding of leukocytes to developing lymphoid tissues in embryonic and early postnatal age and to the mucosa throughout adulthood depends on the interaction between endothelial MAdCAM-1 addressin and its cognate ligand α4β7 integrin. Nkx2-3 as a transcriptional regulator of MAdCAM-1 controls vascular patterning in visceral lymphoid tissues in mice, and has been identified as a susceptibility factor for inflammatory bowel diseases in humans, associated with lymphoid neogenesis in the inflamed intestines. The role of Nkx2-3 in the organogenesis of the solitary intestinal lymphoid tissues (SILTs) involving type 3 innate lymphoid cells (ILC3) is still unknown. Here we investigated the effect of Nkx2-3 on the postnatal distribution of intestinal ILC3s and the development of SILTs, comparing these to mice lacking MAdCAM-1, but preserving Nkx2-3. At 1 week of age small intestines (SI) contained significantly higher number of ILC3s relative to the colon, with a substantial reduction in MAdCAM-1−/− mice compared to C57BL/6 controls. One week later SI ILC3 number decreased in all genotypes, the number of colonic ILC3 of both Nkx2-3-deficient and Nkx2-3-heterozygous mice significantly increased. On the fourth postnatal week a further reduction of SI ILC3s was observed in both Nkx2-3-deficient and Nkx2-3-heterozygous mice, while in the colon the number of ILC3s showed a significant reduction in all genotypes. At 1 week of age only sporadic SILT components were present in all genotypes. By the second week mice deficient for either Nkx2-3 or MAdCAM-1 showed absence of SILT maturation compared to their relevant controls, lacking mature isolated lymphoid follicles (ILF). By the fourth week both Nkx2-3-deficient and Nkx2-3-heterozygous mice showed a similar distribution of ILFs relative to cryptopatches (CP), whereas in MAdCAM-1−/− mice CPs and immature ILFs were present, mature ILFs were scarce. Our data demonstrate that the complete absence of MAdCAM-1 partially impairs intestinal seeding of ILC3s and causes partial blockade of SILT maturation, without affecting peripheral lymph node development. In contrast, the inactivation of Nkx2-3 permits postnatal seeding, and its blocking effect on SILT maturation prevails at later stage, thus other adhesion molecules may compensate for the intestinal homing of ILC3s in the absence of MAdCAM-1.
Collapse
Affiliation(s)
- Dóra Vojkovics
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Fanni Gábris
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Angela Schippers
- Department of Pediatrics, University Hospital RWTH, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital RWTH, Aachen, Germany
| | - Gergely Berta
- Central Electron Microscope Laboratory, Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Kornélia Farkas
- Department of Bioanalytics, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
36
|
Eberhardson M, Hedin CRH, Carlson M, Tarnawski L, Levine YA, Olofsson PS. Towards improved control of inflammatory bowel disease. Scand J Immunol 2019; 89:e12745. [DOI: 10.1111/sji.12745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Eberhardson
- Department of Medicine, Center for Bioelectronic Medicine; Bioclinicum, Karolinska Institutet and Karolinska University Hospital; Solna Sweden
| | - Charlotte R. H. Hedin
- Department of Medicine Solna; Karolinska Institutet and Karolinska University Hospital; Sweden
| | - Marie Carlson
- Department of Medical Science, Gastroenterology Research Group; Uppsala University Hospital; Uppsala Sweden
| | - Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine; Bioclinicum, Karolinska Institutet and Karolinska University Hospital; Solna Sweden
| | | | - Peder S. Olofsson
- Department of Medicine, Center for Bioelectronic Medicine; Bioclinicum, Karolinska Institutet and Karolinska University Hospital; Solna Sweden
| |
Collapse
|
37
|
Lichnog C, Klabunde S, Becker E, Fuh F, Tripal P, Atreya R, Klenske E, Erickson R, Chiu H, Reed C, Chung S, Neufert C, Atreya I, McBride J, Neurath MF, Zundler S. Cellular Mechanisms of Etrolizumab Treatment in Inflammatory Bowel Disease. Front Pharmacol 2019; 10:39. [PMID: 30774593 PMCID: PMC6367223 DOI: 10.3389/fphar.2019.00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Anti-integrin therapy is a new frontline strategy in the treatment of inflammatory bowel diseases (IBD). The anti-β7 integrin antibody etrolizumab is currently being investigated for safety and efficacy in Crohn’s disease (CD) and ulcerative colitis (UC) in several phase III trials. Mechanistically, etrolizumab is known to block β7 integrin ligand binding and reduces intestinal trafficking of β7-expressing cells. Etrolizumab blocks β7 integrin ligand binding and reduces β7-positive lymphocyte migration and retention in the inflamed gut mucosa, but the exact mechanisms by which this inhibition occurs are not fully understood. Methods: Cellular effects of etrolizumab or etrolizumab surrogate antibody (etrolizumab-s) were investigated in cell culture models and analyzed by flow cytometry, fluorescence microscopy, ImageStream®, stimulated emission depletion (STED) microscopy and functional dynamic in vitro adhesion assays. Moreover, effects on α4β7 integrin were compared with the pharmacodynamically similar antibody vedolizumab. Results: As demonstrated by several different approaches, etrolizumab and etrolizumab-s treatment led to internalization of β7 integrin. This resulted in impaired dynamic adhesion to MAdCAM-1. Internalized β7 integrin localized in endosomes and re-expression of β7 was dependent on de novo protein synthesis. In vitro etrolizumab treatment did not lead to cellular activation or cytokine secretion and did not induce cytotoxicity. Internalization of α4β7 integrin was increased with etrolizumab compared with vedolizumab. Discussion: Our data suggest that etrolizumab does not elicit secondary effector functions on the single cell level. Integrin internalization may be an important mechanism of action of etrolizumab, which might explain some but not all immunological effects observed with etrolizumab.
Collapse
Affiliation(s)
- Charlotte Lichnog
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sha Klabunde
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Emily Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Franklin Fuh
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Philipp Tripal
- Optical Imaging Centre, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Entcho Klenske
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Rich Erickson
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Henry Chiu
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, United States
| | - Chae Reed
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Shan Chung
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Clemens Neufert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Jacqueline McBride
- OMNI Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, CA, United States
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| |
Collapse
|
38
|
Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Bamias G, Dulai PS, Boland BS, Sandborn WJ, Patel DR, Rivera-Nieves J. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts. Inflamm Bowel Dis 2019; 25:270-282. [PMID: 30165490 PMCID: PMC6327230 DOI: 10.1093/ibd/izy269] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/27/2022]
Abstract
After 20 years of successful targeting of pro-inflammatory cytokines for the treatment of IBD, an alternative therapeutic strategy has emerged, based on several decades of advances in understanding the pathogenesis of IBD. The targeting of molecules involved in leukocyte traffic has recently become a safe and effective alternative. With 2 currently approved drugs (ie, natalizumab, vedolizumab) and several others in phase 3 trials (eg, etrolizumab, ozanimod, anti-MAdCAM-1), the blockade of trafficking molecules has firmly emerged as a new therapeutic era for IBD. We discuss the targets that have been explored in clinical trials: chemokines and its receptors (eg, IP10, CCR9), integrins (eg, natalizumab, AJM300, vedolizumab, and etrolizumab), and its endothelial ligands (MAdCAM-1, ICAM-1). We also discuss a distinct strategy that interferes with lymphocyte recirculation by blocking lymphocyte egress from lymph nodes (small molecule sphingosine-phosphate receptor [S1PR] agonists: fingolimod, ozanimod, etrasimod, amiselimod). Strategies on the horizon include additional small molecules, allosteric inhibitors that specifically bind to the active integrin form and nanovectors that allow for the use of RNA interference in the quest to modulate pro-inflammatory leukocyte trafficking in IBD.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Hospital San Borja Arriarán, Santiago, Chile
- Universidad Católica de Chile, Santiago, Chile
| | - Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Joshua D Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Parambir S Dulai
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brigid S Boland
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - William J Sandborn
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Derek R Patel
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
39
|
Lucafò M, Franca R, Selvestrel D, Curci D, Pugnetti L, Decorti G, Stocco G. Pharmacogenetics of treatments for inflammatory bowel disease. Expert Opin Drug Metab Toxicol 2018; 14:1209-1223. [PMID: 30465611 DOI: 10.1080/17425255.2018.1551876] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Inflammatory bowel disease is a chronic inflammation of the gut whose pathogenesis is still unclear. Although no curative therapy is currently available, a number of drugs are used in induction and maintenance therapy; however, for most of these drugs, a high inter-individual variability in response is observed. Among the factors of this variability, genetics plays an important role. Areas covered: This review summarizes the results of pharmacogenetic studies, considering the most important drugs used and in particular aminosalycilates, glucocorticoids, thiopurines, monoclonal antibodies and thalidomide. Most studies used a candidate gene approach, even if significant breakthroughs have been obtained recently from applying genome-wide studies. When available, also investigations considering epigenetics and pharmacogenetic dosing guidelines have been included. Expert opinion: Only for thiopurines, genetic markers identified as predictors of efficacy or adverse events have allowed the development of dosing guidelines. For the other drugs, encouraging results are available and great expectations rely on the study of epigenetics and integration with pharmacokinetic information, especially useful for biologics. However, to improve therapy of IBD patients with these drugs, for implementation in the clinics of pharmacogenetics, informatic clinical decision support systems and training about pharmacogenetics of health providers are needed.
Collapse
Affiliation(s)
- Marianna Lucafò
- a Experimental and Clinical Pharmacology Unit , National Cancer Institute - Centro di Riferimento Oncologico , Aviano , Italy.,b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy
| | - Raffaella Franca
- b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy.,c Department of Medical, Surgical and Health Sciences , University of Trieste , Trieste , Italy
| | - Davide Selvestrel
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Debora Curci
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Letizia Pugnetti
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Giuliana Decorti
- b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy.,c Department of Medical, Surgical and Health Sciences , University of Trieste , Trieste , Italy
| | - Gabriele Stocco
- e Department of Life Sciences , University of Trieste , Trieste , Italy
| |
Collapse
|
40
|
Li H, Huang SY, Shi FH, Gu ZC, Zhang SG, Wei JF. α 4β 7 integrin inhibitors: a patent review. Expert Opin Ther Pat 2018; 28:903-917. [PMID: 30444683 DOI: 10.1080/13543776.2018.1549227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The α4β7 integrin is heterodimeric cell surface receptors expressed on most leukocytes. Mucosal addressing cell adhesion molecule 1(MAdCAM-1) is an exclusive ligand for α4β7 integrin. Areas covered: This article will highlight the progress that has been made in the discovery and development of α4β7 integrin inhibitors, and their use in the treatment of inflammatory bowel diseases, multiple sclerosis, asthma, hepatic disorders, human immunodeficiency virus, allergic conjunctivitis and type 1 diabetes. Expert opinion: α4β7 integrin inhibitors have attracted much interest for their clinical implication. Natalizumab and Vedolizumab are monoclonal antibodies (mAbs) successfully utilized clinically. Natalizumab is a mAbs of α4-subunit blocking both α4β1 and α4β7 integrin. Vedolizumab selectively targets the α4β7 integrin. Several mAbs are still in the process of research and development. Among these mAbs, etrolizumab selectively against the β7-subunit and AMG-181 specifically against the α4β7 integrin are the most promising anti-α4β7 integrin antibodies. Despite the unclear development stage of TR-14035 and R411, several low molecular compounds show bright future of further development, such as AJM300 and CDP323. In addition, results from laboratory data show that peptide inhibitors, such as peptide X, are effective α4β7 integrin inhibitors.
Collapse
Affiliation(s)
- Hao Li
- a Department of Pharmacy , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Shi-Ying Huang
- a Department of Pharmacy , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Fang-Hong Shi
- b Department of Pharmacy, Renji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Zhi-Chun Gu
- b Department of Pharmacy, Renji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Shun-Guo Zhang
- a Department of Pharmacy , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Ji-Fu Wei
- c Research Division of Clinical Pharmacology , Τhe First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| |
Collapse
|
41
|
Becker E, Schramm S, Binder MT, Allner C, Wiendl M, Neufert C, Atreya I, Neurath M, Zundler S. Dynamic Adhesion Assay for the Functional Analysis of Anti-adhesion Therapies in Inflammatory Bowel Disease. J Vis Exp 2018. [PMID: 30295649 DOI: 10.3791/58210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gut homing of immune cells is important for the pathogenesis of inflammatory bowel diseases (IBD). Integrin-dependent cell adhesion to addressins is a crucial step in this process and therapeutic strategies interfering with adhesion have been successfully established. The anti-α4β7 integrin antibody, vedolizumab, is used for the clinical treatment of Crohn's disease (CD) and ulcerative colitis (UC) and further compounds are likely to follow. The details of the adhesion procedure and the action mechanisms of anti-integrin antibodies are still unclear in many regards due to the limited available techniques for the functional research in this field. Here, we present a dynamic adhesion assay for the functional analysis of human cell adhesion under flow conditions and the impact of anti-integrin therapies in the context of IBD. It is based on the perfusion of primary human cells through addressin-coated ultrathin glass capillaries with real-time microscopic analysis. The assay offers a variety of opportunities for refinements and modifications and holds potentials for mechanistic discoveries and translational applications.
Collapse
Affiliation(s)
- Emily Becker
- Department of Medicine 1, University of Erlangen-Nuremberg
| | | | | | | | | | | | - Imke Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg
| | - Markus Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg
| | | |
Collapse
|
42
|
Immunephenotype Predicts Response to Vedolizumab: Integrating Clinical and Biochemical Biomarkers in the Treatment of Inflammatory Bowel Diseases. Dig Dis Sci 2018; 63:2168-2171. [PMID: 29611077 DOI: 10.1007/s10620-018-5039-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Soendergaard C, Bergenheim FH, Bjerrum JT, Nielsen OH. Targeting JAK-STAT signal transduction in IBD. Pharmacol Ther 2018; 192:100-111. [PMID: 30048708 DOI: 10.1016/j.pharmthera.2018.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unmet medical need exists for novel targeted therapies for inflammatory bowel disease (IBD) as many patients experience inadequate responses to antibody-based biologics. An oral drug formulation with reduced production costs and redundancy for healthcare staff to administer therapy ideally should result in diminished healthcare expenses and improved patient compliance. A new drug class of small molecules, the Janus kinase (JAK) inhibitors (jakinibs), fulfills these criteria and has recently shown efficacy in IBD. Here we provide an overview of the mode of action of jakinibs and provide a comprehensive overview of existing clinical studies. Convincing clinical data show that a complex cytokine-driven inflammation can efficiently be modulated by therapeutic inhibition of the JAK proteins.
Collapse
Affiliation(s)
| | | | | | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark.
| |
Collapse
|
44
|
Ma J, Yin G, Lu Z, Xie P, Zhou H, Liu J, Yu L. Casticin prevents DSS induced ulcerative colitis in mice through inhibitions of NF-κB pathway and ROS signaling. Phytother Res 2018; 32:1770-1783. [DOI: 10.1002/ptr.6108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jiamei Ma
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Ganghui Yin
- Department of Spine Surgery; The Third Affiliated Hospital of Southern Medical University; Guangzhou China
| | - Zibin Lu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Pei Xie
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Hongling Zhou
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Junshan Liu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Linzhong Yu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| |
Collapse
|
45
|
Binder MT, Becker E, Wiendl M, Schleier L, Fuchs F, Leppkes M, Atreya R, Neufert C, Atreya I, Neurath MF, Zundler S. Similar Inhibition of Dynamic Adhesion of Lymphocytes From IBD Patients to MAdCAM-1 by Vedolizumab and Etrolizumab-s. Inflamm Bowel Dis 2018; 24:1237-1250. [PMID: 29788362 DOI: 10.1093/ibd/izy077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although anti-adhesion therapies are a novel mainstay in the treatment of inflammatory bowel diseases (IBDs), the mechanisms controlling integrin-dependent gut homing are poorly elucidated, and the available techniques for translational functional investigations are limited. METHODS We used dynamic adhesion assays to study adhesion of CD4+ T cells, CD8+ T cells, CD19+ B cells, and granulocytes to the addressins MAdCAM-1, VCAM-1, and ICAM-1. The effects of vedolizumab, natalizumab, etrolizumab-s, anti-CD11a, and anti-CD18 antibodies were explored. RESULTS Adhesion of peripheral blood leukocytes from IBD patients and control donors could be validly assessed, and integrin-mediated addressin adhesion could be specifically inhibited by anti-integrin antibodies. Numbers of adhering cells were partly, but not completely, related to integrin expression. Vedolizumab and etrolizumab-s resulted in similar reduction of adhesion to MAdCAM-1, and preliminary data proposed an association of dynamic adhesion to MAdCAM-1 with response to vedolizumab therapy. CONCLUSIONS Dynamic adhesion assays are an easy and broadly applicable method for IBD research that is useful for future translational studies and potentially also for supporting clinical treatment decisions. 10.1093/ibd/izy077_video1izy077_Video_15786486962001.
Collapse
Affiliation(s)
- Marie-Theres Binder
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Lena Schleier
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Friederike Fuchs
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| |
Collapse
|
46
|
Park SC, Jeen YT. Anti-integrin therapy for inflammatory bowel disease. World J Gastroenterol 2018; 24:1868-1880. [PMID: 29740202 PMCID: PMC5937204 DOI: 10.3748/wjg.v24.i17.1868] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
In inflammatory bowel disease (IBD), tumor necrosis factor plays an important role in mediating inflammation, but several other pathways are also involved in eliciting an inflammatory response. One such pathway is the invasion of the intestinal mucosa by leukocytes. Leukocytes within the systemic circulation move to sites of inflammation, and blocking this pathway could be an important treatment strategy for IBD. Anti-integrin therapy blocks the action of integrin on the surface of circulating immune cells and endothelial cell adhesion molecules, thereby inhibiting the interactions between leukocytes and intestinal blood vessels. Natalizumab, which acts on α4-integrin, was the first such drug to be approved for Crohn’s disease, but its use is limited due to the risk of progressive multifocal leukoencephalopathy. Vedolizumab produces few systemic adverse effects because it acts on gut-trophic α4β7 integrin, and has been approved and is being used to treat IBD. Currently, several anti-integrin drugs, including etrolizumab, which acts on β7-integrin, and PF-00547569, which targets mucosal addressin cell adhesion molecule-1, are undergoing clinical trials and the results are being closely watched.
Collapse
Affiliation(s)
- Sung Chul Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, South Korea
| | - Yoon Tae Jeen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, South Korea
| |
Collapse
|
47
|
Fryer HR, Wolinsky SM, McLean AR. Increased T cell trafficking as adjunct therapy for HIV-1. PLoS Comput Biol 2018; 14:e1006028. [PMID: 29499057 PMCID: PMC5864072 DOI: 10.1371/journal.pcbi.1006028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/22/2018] [Accepted: 02/07/2018] [Indexed: 01/15/2023] Open
Abstract
Although antiretroviral drug therapy suppresses human immunodeficiency virus-type 1 (HIV-1) to undetectable levels in the blood of treated individuals, reservoirs of replication competent HIV-1 endure. Upon cessation of antiretroviral therapy, the reservoir usually allows outgrowth of virus and approaches to targeting the reservoir have had limited success. Ongoing cycles of viral replication in regions with low drug penetration contribute to this persistence. Here, we use a mathematical model to illustrate a new approach to eliminating the part of the reservoir attributable to persistent replication in drug sanctuaries. Reducing the residency time of CD4 T cells in drug sanctuaries renders ongoing replication unsustainable in those sanctuaries. We hypothesize that, in combination with antiretroviral drugs, a strategy to orchestrate CD4 T cell trafficking could contribute to a functional cure for HIV-1 infection.
Collapse
Affiliation(s)
- Helen R. Fryer
- Institute for Emerging Infections, Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, United Kingdom
- * E-mail:
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Angela R. McLean
- Institute for Emerging Infections, Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
48
|
Eosinophils from Physiology to Disease: A Comprehensive Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9095275. [PMID: 29619379 PMCID: PMC5829361 DOI: 10.1155/2018/9095275] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
Abstract
Despite being the second least represented granulocyte subpopulation in the circulating blood, eosinophils are receiving a growing interest from the scientific community, due to their complex pathophysiological role in a broad range of local and systemic inflammatory diseases as well as in cancer and thrombosis. Eosinophils are crucial for the control of parasitic infections, but increasing evidence suggests that they are also involved in vital defensive tasks against bacterial and viral pathogens including HIV. On the other side of the coin, eosinophil potential to provide a strong defensive response against invading microbes through the release of a large array of compounds can prove toxic to the host tissues and dysregulate haemostasis. Increasing knowledge of eosinophil biological behaviour is leading to major changes in established paradigms for the classification and diagnosis of several allergic and autoimmune diseases and has paved the way to a "golden age" of eosinophil-targeted agents. In this review, we provide a comprehensive update on the pathophysiological role of eosinophils in host defence, inflammation, and cancer and discuss potential clinical implications in light of recent therapeutic advances.
Collapse
|
49
|
Cytokines and integrins related to inflammation of joint and gut in patients with spondyloarthritis and inflammatory bowel disease. Reumatologia 2017; 55:276-283. [PMID: 29491535 PMCID: PMC5825965 DOI: 10.5114/reum.2017.72624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/28/2017] [Indexed: 01/15/2023] Open
Abstract
Objectives Inflammatory bowel disease (IBD) and spondyloarthritis (SpA) have some overlapping clinical features, i.e. gut and joint inflammation. Cytokines of interleukin 17(IL-17)/IL-23 axis play a pathogenic role in both diseases. Integrins (ITGs) regulate migration of immune cells to inflamed tissues (ITGβ7 into gut, ITGβ2 into gut and also to other tissues). In this study, we search for differences in the serum concentrations of these cytokines and integrins between patients suffering from SpA or IBD with and without overlapping symptoms. Material and methods Patients with SpA (n = 30), IBD (n = 68), and healthy volunteers (n = 28) were included in the study. Fourteen SpA patients reported symptoms characteristic for IBD. Spondyloarthritis symptoms were diagnosed in 50% of IBD patients, while other patients of this group reported arthralgia only. Serum concentrations of IL-17, IL-22, IL-23, ITGβ2, and ITGβ7 were measured by specific enzyme-linked immunosorbent assay using commercially available sets. The Mann-Whitney and Spearman’s rank tests were used for intergroup comparison and correlation assessment, respectively. Results Comparison of patient groups showed significantly higher serum concentrations of IL-17, IL-22, and ITGβ7 in SpA, and up-regulated levels of IL-23 in IBD patients. Similar differences were observed between patient subgroups, both with and without overlapping symptoms. In SpA but not in IBD patients, serum concentrations of ITGβ7 inversely correlated (r = –0.552) with C-reactive protein. Conclusions Patients with SpA and IBD differ in the circulating concentrations of IL-17/IL-23 axis cytokines and ITGβ7, irrespectively of the presence or absence of overlapping symptoms. Therefore, we conclude that observed differences are attributed rather to underlying than concurrent disease.
Collapse
|