1
|
Le Floch AC, Orlanducci F, Béné MC, Ben Amara A, Rouviere MS, Salem N, Le Roy A, Cordier C, Demerlé C, Granjeaud S, Hamel JF, Ifrah N, Cornillet-Lefebvre P, Delaunay J, Récher C, Delabesse E, Pigneux A, Vey N, Chretien AS, Olive D. Low frequency of Vγ9Vδ2 T cells predicts poor survival in newly diagnosed acute myeloid leukemia. Blood Adv 2024; 8:4262-4275. [PMID: 38788176 PMCID: PMC11372596 DOI: 10.1182/bloodadvances.2023011594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
ABSTRACT In several tumor subtypes, an increased infiltration of Vγ9Vδ2 T cells has been shown to have the highest prognostic value compared with other immune subsets. In acute myeloid leukemia (AML), similar findings have been based solely on the inference of transcriptomic data and have not been assessed with respect to confounding factors. This study aimed at determining, by immunophenotypic analysis (flow or mass cytometry) of peripheral blood from patients with AML at diagnosis, the prognostic impact of Vγ9Vδ2 T-cell frequency. This was adjusted for potential confounders (age at diagnosis, disease status, European LeukemiaNet classification, leukocytosis, and allogeneic hematopoietic stem cell transplantation as a time-dependent covariate). The cohort was composed of 198 patients with newly diagnosed (ND) AML. By univariate analysis, patients with lower Vγ9Vδ2 T cells at diagnosis had significantly lower 5-year overall and relapse-free survivals. These results were confirmed in multivariate analysis (hazard ratio [HR], 1.55 [95% confidence interval (CI), 1.04-2.30]; P = .030 and HR, 1.64 [95% CI, 1.06-2.53]; P = .025). Immunophenotypic alterations observed in patients with lower Vγ9Vδ2 T cells included a loss of some cytotoxic Vγ9Vδ2 T-cell subsets and a decreased expression of butyrophilin 3A on the surface of blasts. Samples expanded regardless of their Vγ9Vδ2 T-cell levels and displayed similar effector functions in vitro. This study confirms the prognostic value of elevated Vγ9Vδ2 T cells among lymphocytes in patients with ND AML. These results provide a strong rationale to consider consolidation protocols aiming at enhancing Vγ9Vδ2 T-cell responses.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Middle Aged
- Female
- Male
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Aged
- Prognosis
- Immunophenotyping
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
- Aged, 80 and over
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | | | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Marie-Sarah Rouviere
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Aude Le Roy
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Cordier
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Clémence Demerlé
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Marseille, France
| | - Jean-François Hamel
- Département de Biostatistiques, Centre Hospitalier Universitaire d'Angers, Université d'Angers, Angers, France
| | - Norbert Ifrah
- Département d'Hématologie, Centre Hospitalier Universitaire d'Angers, Université d'Angers, INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | | | - Jacques Delaunay
- Département d'Hématologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Christian Récher
- Département d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Pigneux
- Département d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Norbert Vey
- Département d'hématologie, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d'immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
2
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
3
|
Li Y, Mo XP, Yao H, Xiong QX. Research Progress of γδT Cells in Tumor Immunotherapy. Cancer Control 2024; 31:10732748241284863. [PMID: 39348473 PMCID: PMC11459529 DOI: 10.1177/10732748241284863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/02/2024] Open
Abstract
Background: γδT cells are special innate lymphoid cells, which are not restricted by major histocompatibility complex (MHC). γδT cells mainly exist in human epidermis and mucosal epithelium. They can secrete a variety of cytokines and chemokines involved in immune regulation, and produce effective cytotoxic responses to cancer cells. Purpose: To investigate the role of γδT cells in tumor immunotherapy, to understand its anti-tumor mechanism, and to explore the synergistic effect with other treatment modalities. This therapy is expected to become an important means of cancer treatment. Research Design: In this review presents a comprehensive analysis of the existing literature, focusing on the efficacy of γδT cells in a variety of tumor types. Results: The mechanism of γδT cells recognizing tumor antigens and killing tumor was clarified. The tumor immunotherapy based on γδT cells and its application in clinical practice were summarized. Conclusions: γδT cells have shown promising potential in tumor immunotherapy, but the therapeutic effect varies according to the type of tumor, and some patients have poor response. There are still some challenges in the treatment of this disease, such as non-standard expansion regimens and different responses of patients, indicating that the existing treatment methods are not complete. Future research should focus on perfecting γδT cell expansion protocols, gaining a deeper understanding of its anti-tumor mechanisms, and exploring synergies with other treatment modalities. This multifaceted study will promote the development of γδT cells in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Xin-pei Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Hong Yao
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Qiu-xia Xiong
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| |
Collapse
|
4
|
Patra S, Ghosal S, Shand H, Mondal R, Rath A, Kumar Jana S, Ghorai S. Function of gamma delta (γδ) T cell in cancer with special emphasis on cervical cancer. Hum Immunol 2023; 84:110724. [PMID: 37932183 DOI: 10.1016/j.humimm.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Cervical cancer is the second-most prevalent gynecologic cancer in India. It is typically detected in women between the ages of 35 and 44. Cervical cancer is mainly associated with the human papillomavirus (HPV). The report shows that 70 % of cervical cancer is caused by HPV 16 and 18. There are few therapeutic options and vaccines available for cervical cancer treatment and γδ T cell therapy is one of them. This therapy can kill various types of cancers, including cervical cancer. The major γδ T cell subset is the Vγ9Vδ2 T cell, mainly distributed in peripheral blood which recognize non-MHC peptide antigens and can eliminate MHC-downregulated cancer. Moreover, γδ T cells can express different types of receptors that bind to the molecules of stressed cells, often produced on cancerous cells but absent from healthy tissue. γδ T cells possess both direct and indirect cytotoxic capabilities against malignancies and show potential antitumoral responses. However, γδ T cells also encourage the progression of cancer. Cancer immunotherapy using γδ T cells will be a potential cancer treatment, as well as cervical cancer. This review focused on the γδ T cell and its function in cancer, with special emphasis on cervical cancer. It also focused on the ligand recognition site of γδ T cells, galectin-mediated therapy and pamidronate-treated therapy for cervical cancer. Instead of the great potential of γδ T cell for the eradication of cervical cancer, no comprehensive in-depth review is available to date, so there is a need to jot down the various roles and modes of action and different applications of γδ T cells for cancer research, which we believe will be a handy tool for the researchers and the readers.
Collapse
Affiliation(s)
- Soumendu Patra
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Sayan Ghosal
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Harshita Shand
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Ankita Rath
- Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Yupia, Arunachal Pradesh 791112, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India.
| |
Collapse
|
5
|
Dong J, Holthaus D, Peters C, Koster S, Ehsani M, Quevedo-Olmos A, Berger H, Zarobkiewicz M, Mangler M, Gurumurthy RK, Hedemann N, Chumduri C, Kabelitz D, Meyer TF. γδ T cell-mediated cytotoxicity against patient-derived healthy and cancer cervical organoids. Front Immunol 2023; 14:1281646. [PMID: 38090581 PMCID: PMC10711208 DOI: 10.3389/fimmu.2023.1281646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Cervical cancer is a leading cause of death among women globally, primarily driven by high-risk papillomaviruses. However, the effectiveness of chemotherapy is limited, underscoring the potential of personalized immunotherapies. Patient-derived organoids, which possess cellular heterogeneity, proper epithelial architecture and functionality, and long-term propagation capabilities offer a promising platform for developing viable strategies. In addition to αβ T cells and natural killer (NK) cells, γδ T cells represent an immune cell population with significant therapeutic potential against both hematologic and solid tumours. To evaluate the efficacy of γδ T cells in cervical cancer treatment, we generated patient-derived healthy and cancer ectocervical organoids. Furthermore, we examined transformed healthy organoids, expressing HPV16 oncogenes E6 and E7. We analysed the effector function of in vitro expanded γδ T cells upon co-culture with organoids. Our findings demonstrated that healthy cervical organoids were less susceptible to γδ T cell-mediated cytotoxicity compared to HPV-transformed organoids and cancerous organoids. To identify the underlying pathways involved in this observed cytotoxicity, we performed bulk-RNA sequencing on the organoid lines, revealing differences in DNA-damage and cell cycle checkpoint pathways, as well as transcription of potential γδ T cell ligands. We validated these results using immunoblotting and flow cytometry. We also demonstrated the involvement of BTN3A1 and BTN2A1, crucial molecules for γδ T cell activation, as well as differential expression of PDL1/CD274 in cancer, E6/E7+ and healthy organoids. Interestingly, we observed a significant reduction in cytotoxicity upon blocking MSH2, a protein involved in DNA mismatch-repair. In summary, we established a co-culture system of γδ T cells with cervical cancer organoids, providing a novel in vitro model to optimize innovative patient-specific immunotherapies for cervical cancer.
Collapse
Affiliation(s)
- Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - David Holthaus
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefanie Koster
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marzieh Ehsani
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alvaro Quevedo-Olmos
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hilmar Berger
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Mandy Mangler
- Department of Gynaecology and Obstetrics, Vivantes Auguste Viktoria-Klinikum, Berlin, Germany
- Department of Gynaecology, Charité University Medicine, Berlin, Germany
| | | | - Nina Hedemann
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Cindrilla Chumduri
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas F. Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
6
|
Wang Y, Ji N, Zhang Y, Chu J, Pan C, Zhang P, Ma W, Zhang X, Xi JJ, Chen M, Zhang Y, Zhang L, Sun T. B7H3-targeting chimeric antigen receptor modification enhances antitumor effect of Vγ9Vδ2 T cells in glioblastoma. J Transl Med 2023; 21:672. [PMID: 37770968 PMCID: PMC10537973 DOI: 10.1186/s12967-023-04514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. This study investigates the therapeutic potential of human Vγ9Vδ2 T cells in GBM treatment. The sensitivity of different glioma specimens to Vγ9Vδ2 T cell-mediated cytotoxicity is assessed using a patient-derived tumor cell clusters (PTCs) model. METHODS The study evaluates the anti-tumor effect of Vγ9Vδ2 T cells in 26 glioma cases through the PTCs model. Protein expression of BTN2A1 and BTN3A1, along with gene expression related to lipid metabolism and glioma inflammatory response pathways, is analyzed in matched tumor tissue samples. Additionally, the study explores two strategies to re-sensitize tumors in the weak anti-tumor effect (WAT) group: utilizing a BTN3A1 agonistic antibody or employing bisphosphonates to inhibit farnesyl diphosphate synthase (FPPS). Furthermore, the study investigates the efficacy of genetically engineered Vγ9Vδ2 T cells expressing Car-B7H3 in targeting diverse GBM specimens. RESULTS The results demonstrate that Vγ9Vδ2 T cells display a stronger anti-tumor effect (SAT) in six glioma cases, while showing a weaker effect (WAT) in twenty cases. The SAT group exhibits elevated protein expression of BTN2A1 and BTN3A1, accompanied by differential gene expression related to lipid metabolism and glioma inflammatory response pathways. Importantly, the study reveals that the WAT group GBM can enhance Vγ9Vδ2 T cell-mediated killing sensitivity by incorporating either a BTN3A1 agonistic antibody or bisphosphonates. Both approaches support TCR-BTN mediated tumor recognition, which is distinct from the conventional MHC-peptide recognition by αβ T cells. Furthermore, the study explores an alternative strategy by genetically engineering Vγ9Vδ2 T cells with Car-B7H3, and both non-engineered and Car-B7H3 Vγ9Vδ2 T cells demonstrate promising efficacy in vivo, underscoring the versatile potential of Vγ9Vδ2 T cells for GBM treatment. CONCLUSIONS Vγ9Vδ2 T cells demonstrate a robust anti-tumor effect in some glioma cases, while weaker in others. Elevated BTN2A1 and BTN3A1 expression correlates with improved response. WAT group tumors can be sensitized using a BTN3A1 agonistic antibody or bisphosphonates. Genetically engineered Vγ9Vδ2 T cells, i.e., Car-B7H3, show promising efficacy. These results together highlight the versatility of Vγ9Vδ2 T cells for GBM treatment.
Collapse
Affiliation(s)
- Yi Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Nan Ji
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital, Jiangsu Provincial Key Laboratory of Stem Cell and Biomedical Materials, Soochow University, Soochow University, Suzhou, 215000, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Mingze Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Liwei Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Tao Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
7
|
Wang X, Zhang Y, Chung Y, Tu CR, Zhang W, Mu X, Wang M, Chan GC, Leung W, Lau Y, Liu Y, Tu W. Tumor vaccine based on extracellular vesicles derived from γδ-T cells exerts dual antitumor activities. J Extracell Vesicles 2023; 12:e12360. [PMID: 37654012 PMCID: PMC10471836 DOI: 10.1002/jev2.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
γδ-T cells are innate-like T cells with dual antitumor activities. They can directly eradicate tumor cells and function as immunostimulatory cells to promote antitumor immunity. Previous studies have demonstrated that small extracellular vesicles (EVs) derived from γδ-T cells (γδ-T-EVs) inherited the dual antitumor activities from their parental cells. However, it remains unknown whether γδ-T-EVs can be designed as tumors vaccine to improve therapeutic efficacy. Here, we found that γδ-T-EVs had immune adjuvant effects on antigen-presenting cells, as revealed by enhanced expression of antigen-presenting and co-stimulatory molecules, secretion of pro-inflammatory cytokines and antigen-presenting ability of DCs after γδ-T-EVs treatment. The γδ-T-EVs-based vaccine was designed by loading tumor-associated antigens (TAAs) into γδ-T-EVs. Compared with γδ-T-EVs, the γδ-T-EVs-based vaccine effectively promoted more tumor-specific T-cell responses. In addition, the vaccine regimen preserved direct antitumor effects and induced tumor cell apoptosis. Interestingly, the allogeneic γδ-T-EVs-based vaccine showed comparable preventive and therapeutic antitumor effects to their autologous counterparts, indicating a better way of centralization and standardization in clinical practice. Furthermore, the allogeneic γδ-T-EVs-based vaccine displayed advantages over the DC-EVs-based vaccine through their dual antitumor activities. This study provides a proof-of-concept for using the allogeneic γδ-T-EVs-based vaccine in cancer control.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yanmei Zhang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yuet Chung
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Chloe Ran Tu
- Department of Data Sciences, Dana‐Farber Cancer InstituteHarvard UniversityBostonMassachusettsUSA
| | - Wenyue Zhang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Xiaofeng Mu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Manni Wang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Godfrey Chi‐Fung Chan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Wing‐Hang Leung
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yu‐Lung Lau
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yinping Liu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
8
|
Luo W, Bian X, Liu X, Zhang W, Xie Q, Feng L. A new method for the treatment of myocardial ischemia-reperfusion injury based on γδT cell-mediated immune response. Front Cardiovasc Med 2023; 10:1219316. [PMID: 37600023 PMCID: PMC10435296 DOI: 10.3389/fcvm.2023.1219316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Acute myocardial ischemia is a disease with high morbidity and mortality, and re-perfusion is currently the best intervention. However, re-perfusion may lead to further myocardial injury and increase the area of myocardial infarction. The mechanism of myocardial ischemia-re-perfusion injury is complex, but with more in-depth study, it has been proved that the immune system plays an important role in the process of MIRI. Among them, the γδT cell population has received increasing attention as the main early source of IL-17A in many immune response models. Because γδT cells have the characteristics of linking innate immunity and adaptive immunity,they can rapidly produce IL-17A and produce subsequent immune killing of cardiomyocytes. It can be seen that γδT cells play an important role in MIRI. Therefore, here we review the research progress of immune response in myocardial ischemia-re-perfusion injury, the key characteristics of γδT cells and the role of rapidly produced IL-17 in myocardial ischemia-re-perfusion injury, and propose relevant treatment strategies and prospects for myocardial repair, in order to provide new ideas and methods for clinical treatment of myocardial ischemia-re-perfusion injury.
Collapse
Affiliation(s)
- Wei Luo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohong Bian
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaona Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenchao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xie
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Corsale AM, Di Simone M, Lo Presti E, Dieli F, Meraviglia S. γδ T cells and their clinical application in colon cancer. Front Immunol 2023; 14:1098847. [PMID: 36793708 PMCID: PMC9923022 DOI: 10.3389/fimmu.2023.1098847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
In recent years, research has focused on colorectal cancer to implement modern treatment approaches to improve patient survival. In this new era, γδ T cells constitute a new and promising candidate to treat many types of cancer because of their potent killing activity and their ability to recognize tumor antigens independently of HLA molecules. Here, we focus on the roles that γδ T cells play in antitumor immunity, especially in colorectal cancer. Furthermore, we provide an overview of small-scale clinical trials in patients with colorectal cancer employing either in vivo activation or adoptive transfer of ex vivo expanded γδ T cells and suggest possible combinatorial approaches to treat colon cancer.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR)I, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Giannotta C, Autino F, Massaia M. Vγ9Vδ2 T-cell immunotherapy in blood cancers: ready for prime time? Front Immunol 2023; 14:1167443. [PMID: 37143664 PMCID: PMC10153673 DOI: 10.3389/fimmu.2023.1167443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
In the last years, the tumor microenvironment (TME) has emerged as a promising target for therapeutic interventions in cancer. Cancer cells are highly dependent on the TME to growth and evade the immune system. Three major cell subpopulations are facing each other in the TME: cancer cells, immune suppressor cells, and immune effector cells. These interactions are influenced by the tumor stroma which is composed of extracellular matrix, bystander cells, cytokines, and soluble factors. The TME can be very different depending on the tissue where cancer arises as in solid tumors vs blood cancers. Several studies have shown correlations between the clinical outcome and specific patterns of TME immune cell infiltration. In the recent years, a growing body of evidence suggests that unconventional T cells like natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells are key players in the protumor or antitumor TME commitment in solid tumors and blood cancers. In this review, we will focus on γδ T cells, especially Vγ9Vδ2 T cells, to discuss their peculiarities, pros, and cons as potential targets of therapeutic interventions in blood cancers.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Federica Autino
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S. Croce e Carle, Cuneo, Italy
- *Correspondence: Massimo Massaia,
| |
Collapse
|
11
|
Lin L, Chen Y, Chen D, Shu J, Hu Y, Yin Z, Wu Y. Transient 40 °C-shock potentiates cytotoxic responses of Vδ2+ γδ T cell via HSP70 upregulation. Cancer Immunol Immunother 2022; 71:2391-2404. [DOI: 10.1007/s00262-022-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
|
12
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
13
|
Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol 2022; 19:944-956. [PMID: 35821253 PMCID: PMC9338301 DOI: 10.1038/s41423-022-00894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/11/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have an increased risk of cancer. The effect of glucose metabolism on γδ T cells and their impact on tumor surveillance remain unknown. Here, we showed that high glucose induced Warburg effect type of bioenergetic profile in Vγ9Vδ2 T cells, leading to excessive lactate accumulation, which further inhibited lytic granule secretion by impairing the trafficking of cytolytic machinery to the Vγ9Vδ2 T-cell-tumor synapse by suppressing AMPK activation and resulted in the loss of antitumor activity in vitro, in vivo and in patients. Strikingly, activating the AMPK pathway through glucose control or metformin treatment reversed the metabolic abnormalities and restored the antitumor activity of Vγ9Vδ2 T cells. These results suggest that the impaired antitumor activity of Vγ9Vδ2 T cells induced by dysregulated glucose metabolism may contribute to the increased cancer risk in T2DM patients and that metabolic reprogramming by targeting the AMPK pathway with metformin may improve tumor immunosurveillance.
Collapse
|
14
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Pei Y, Xiang Z, Wen K, Tu CR, Wang X, Zhang Y, Mu X, Liu Y, Tu W. CD137 Costimulation Enhances the Antitumor Activity of Vγ9Vδ2-T Cells in IL-10-Mediated Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 13:872122. [PMID: 35784354 PMCID: PMC9247142 DOI: 10.3389/fimmu.2022.872122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although γδ-T cell-based tumor immunotherapy using phosphoantigens to boost γδ-T cell immunity has shown success in some cancer patients, the clinical application is limited due to the rapid exhaustion of Vγ9Vδ2-T cells caused by repetitive stimulation from phosphoantigens and the profoundly immunosuppressive tumor microenvironment (TME). In this study, using a cell culture medium containing human and viral interleukin-10 (hIL-10 and vIL-10) secreted from EBV-transformed lymphoblastoid B cell lines (EBV-LCL) to mimic the immunosuppressive TEM, we found that the antitumor activity of Vγ9Vδ2-T cells was highly suppressed by endogenous hIL-10 and vIL-10 within the TME. CD137 costimulation could provide an anti-exhaustion signal to mitigate the suppressive effects of IL-10 in TME by suppressing IL-10R1 expression on Vγ9Vδ2-T cells. CD137 costimulation also improved the compromised antitumor activity of Vγ9Vδ2-T cells in TME with high levels of IL-10 in Rag2-/- γc-/- mice. In humanized mice, CD137 costimulation boosted the therapeutic effects of aminobisphosphonate pamidronate against EBV-induced lymphoma. Our study offers a novel approach to overcoming the obstacle of the hIL-10 and vIL-10-mediated immunosuppressive microenvironment by costimulating CD137 and enhancing the efficacy of γδ-T cell-based tumor therapy.
Collapse
Affiliation(s)
- Yujun Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kun Wen
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chloe Ran Tu
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu,
| |
Collapse
|
16
|
Xu QH, Muyayalo KP, Zhang YJ, Wang H, Lin XX, Liao AH. Altered vitamin D metabolism is involved in the dysregulation of γδT cell function and their crosstalk with trophoblasts in recurrent pregnancy loss. Am J Reprod Immunol 2022; 89:e13581. [PMID: 35704547 DOI: 10.1111/aji.13581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is a common disease characterized by immune dysfunction and vitamin D deficiency. This study aimed to investigate vitamin D metabolism and γδT cell phenotypes at the maternal-fetal interface in women with early normal pregnancy (NP) and RPL and to determine the effects of vitamin D on the functions of γδT cells and their crosstalk with trophoblasts. METHODS The levels of 25-(OH)VD3 , the expression of vitamin D metabolic enzymes in the villi, and the proportion of γδT cells in the decidua were detected in women with NP and RPL. After treatment with different concentrations of vitamin D, the mRNA expression of the vitamin D receptor (VDR), cytokines, and transcription factors was detected in Vδ2+ γδT cells. In addition, the proliferation, migration, and invasion of HTR-8/SVneo trophoblasts were determined by co-culturing them with vitamin D-treated Vδ2+ γδT cells and their supernatants. RESULTS In women with RPL, the level of 25-(OH)VD3 in the villi was increased; however, that of CYP27B1 (enzyme converting 25-(OH)VD3 into 1,25-(OH)2 VD3 ) was decreased. In addition, the proportion of Vδ2+ γδT cells increased, whereas that of Foxp3+ Vδ2+ γδT cells decreased in the decidua of women with RPL. An in vitro study showed that vitamin D increased the expression of VDR mRNA and Foxp3, but decreased the expression of IFN-γ mRNA, in Vδ2+ γδT cells. Finally, vitamin D-treated Vδ2+ γδT cells promoted trophoblast migration and invasion. CONCLUSIONS Abnormal vitamin D metabolism and γδT cell proportions were present at the maternal-fetal interface in women with RPL. Under normal pregnancy conditions, vitamin D can induce the differentiation of decidual Vδ2+ γδT cells toward an anti-inflammatory phenotype (Treg-like γδT cells) and modulate the crosstalk between Vδ2+ γδT cells and trophoblasts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
17
|
Wang X, Zhang Y, Mu X, Tu CR, Chung Y, Tsao SW, Chan GCF, Leung WH, Lau YL, Liu Y, Tu W. Exosomes derived from γδ-T cells synergize with radiotherapy and preserve antitumor activities against nasopharyngeal carcinoma in immunosuppressive microenvironment. J Immunother Cancer 2022; 10:jitc-2021-003832. [PMID: 35105688 PMCID: PMC8808451 DOI: 10.1136/jitc-2021-003832] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/30/2022] Open
Abstract
Background Radiotherapy is the first-line treatment for patients nasopharyngeal carcinoma (NPC), but its therapeutic efficacy is poor in some patients due to radioresistance. Adoptive T cell-based immunotherapy has also shown promise to control NPC; however, its antitumor efficacy may be attenuated by an immunosuppressive tumor microenvironment. Exosomes derived from γδ-T cells (γδ-T-Exos) have potent antitumor potentials. However, it remains unknown whether γδ-T-Exos have synergistic effect with radiotherapy and preserve their antitumor activities against NPC in an immunosuppressive tumor microenvironment. Methods γδ-T-Exos were stained with fluorescent membrane dye, and their interactions with NPC were determined both in vitro and in vivo. NPC cell deaths were detected after treatment with γδ-T-Exos and/or irradiation. Moreover, effects of γδ-T-Exos on radioresistant cancer stem-like cells (CSCs) were determined. The therapeutic efficacy of combination therapy using γδ-T-Exos and irradiation on NPC tumor progression was also monitored in vivo. Finally, the tumor-killing and T cell-promoting activities of γδ-T-Exos were determined under the culture in immunosuppressive NPC supernatant. Results γδ-T-Exos effectively interacted with NPC tumor cells in vitro and in vivo. γδ-T-Exos not only killed NPC cells in vitro, which was mainly mediated by Fas/Fas ligand (FasL) and death receptor 5 (DR5)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathways, but also controlled NPC tumor growth and prolonged tumor-bearing mice survival in vivo. Furthermore, γδ-T-Exos selectively targeted the radioresistant CD44+/high CSCs and induced profound cell apoptosis. The combination of γδ-T-Exos with radiotherapy overcame the radioresistance of CD44+/high NPC cells and significantly improved its therapeutic efficacy against NPC in vitro and in vivo. In addition, γδ-T-Exos promoted T-cell migration into NPC tumors by upregulating CCR5 on T cells that were chemoattracted by CCR5 ligands in the NPC tumor microenvironment. Although NPC tumor cells secreted abundant tumor growth factor beta to suppress T-cell responses, γδ-T-Exos preserved their direct antitumor activities and overcame the immunosuppressive NPC microenvironment to amplify T-cell antitumor immunity. Conclusions γδ-T-Exos synergized with radiotherapy to control NPC by overcoming the radioresistance of NPC CSCs. Moreover, γδ-T-Exos preserved their tumor-killing and T cell-promoting activities in the immunosuppressive NPC microenvironment. This study provides a proof of concept for a novel and potent strategy by combining γδ-T-Exos with radiotherapy in the control of NPC.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chloe Ran Tu
- Computational and Systems Biology Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - Yuet Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Hang Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Beatson RE, Parente-Pereira AC, Halim L, Cozzetto D, Hull C, Whilding LM, Martinez O, Taylor CA, Obajdin J, Luu Hoang KN, Draper B, Iqbal A, Hardiman T, Zabinski T, Man F, de Rosales RT, Xie J, Aswad F, Achkova D, Joseph CYR, Ciprut S, Adami A, Roider HG, Hess-Stumpp H, Győrffy B, Quist J, Grigoriadis A, Sommer A, Tutt AN, Davies DM, Maher J. TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer. Cell Rep Med 2021; 2:100473. [PMID: 35028614 PMCID: PMC8714942 DOI: 10.1016/j.xcrm.2021.100473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-β1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells, as the control). Unexpectedly, the yield and viability of γδ[T2] cells are also increased by TGF-β1, when compared to γδ[2] controls. γδ[T2] cells are less differentiated and yet display increased cytolytic activity, cytokine release, and antitumor activity in several leukemic and solid tumor models. Efficacy is further enhanced by cancer cell sensitization using aminobisphosphonates or Ara-C. A number of contributory effects of TGF-β are described, including prostaglandin E2 receptor downmodulation, TGF-β insensitivity, and upregulated integrin activity. Biological relevance is supported by the identification of a favorable γδ[T2] signature in acute myeloid leukemia (AML). Given their enhanced therapeutic activity and compatibility with allogeneic use, γδ[T2] cells warrant evaluation in cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Culture Media, Serum-Free/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Immunophenotyping
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- Mice, SCID
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transforming Growth Factor beta1/metabolism
- Mice
Collapse
Affiliation(s)
- Richard E. Beatson
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Ana C. Parente-Pereira
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Leena Halim
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Domenico Cozzetto
- Translational Bioinformatics, NIHR Biomedical Research Centre, Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London SE1 9RT, UK
| | - Caroline Hull
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Lynsey M. Whilding
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Olivier Martinez
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Chelsea A. Taylor
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Jana Obajdin
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Kim Ngan Luu Hoang
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Benjamin Draper
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Ayesha Iqbal
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Tom Hardiman
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Tomasz Zabinski
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Francis Man
- King’s College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Rafael T.M. de Rosales
- King’s College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Jinger Xie
- Bayer Healthcare Innovation Center, Mission Bay, 455 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Fred Aswad
- Bayer Healthcare Innovation Center, Mission Bay, 455 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Daniela Achkova
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Chung-Yang Ricardo Joseph
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Sara Ciprut
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Antonella Adami
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | | | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest H1085, Hungary
- Cancer Biomarker Research Group, Research Center for Natural Science, Budapest H1117, Hungary
| | - Jelmar Quist
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Anita Grigoriadis
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | | | - Andrew N.J. Tutt
- King’s College London, Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Leucid Bio, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
19
|
Keane JT, Posey AD. Chimeric Antigen Receptors Expand the Repertoire of Antigenic Macromolecules for Cellular Immunity. Cells 2021; 10:cells10123356. [PMID: 34943864 PMCID: PMC8699116 DOI: 10.3390/cells10123356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
T-cell therapies have made significant improvements in cancer treatment over the last decade. One cellular therapy utilizing T-cells involves the use of a chimeric MHC-independent antigen-recognition receptor, typically referred to as a chimeric antigen receptor (CAR). CAR molecules, while mostly limited to the recognition of antigens on the surface of tumor cells, can also be utilized to exploit the diverse repertoire of macromolecules targetable by antibodies, which are incorporated into the CAR design. Leaning into this expansion of target macromolecules will enhance the diversity of antigens T-cells can target and may improve the tumor-specificity of CAR T-cell therapy. This review explores the types of macromolecules targetable by T-cells through endogenous and synthetic antigen-specific receptors.
Collapse
Affiliation(s)
- John T. Keane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Avery D. Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
20
|
Wang Z, Du Y. Identification of a novel mutation gene signature HAMP for cholangiocarcinoma through comprehensive TCGA and GEO data mining. Int Immunopharmacol 2021; 99:108039. [PMID: 34426102 DOI: 10.1016/j.intimp.2021.108039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CHOL), the second most common malignant liver tumor, is clinically heterogeneous. In this study, we used gene expression profiles of CHOL obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases to identify novel mutation signatures in CHOL. Hepcidin antimicrobial peptide (HAMP) was identified as a novel diagnostic biomarker for CHOL using the intersection of mutation analysis and receiver operating characteristic (ROC) analysis. We then explored the expression signatures of HAMP in CHOL. HAMP-related differentially expressed genes (DEGs) were selected for the identification of hub genes related to HAMP and for prognostic prediction model analysis. Gene set enrichment analysis (GSEA) showed that the HAMP-related DEGs were mainly enriched for signaling pathways related to cholangiocarcinoma development. Through immunohistochemistry validation, clinical cohorts analysis, and TCGA analysis, we investigated the association between HAMP and clinical parameters and found that decreased HAMP expression was correlated with advanced pathological grade and poor prognosis. Besides, we estimated the immune infiltration level in CHOL and its relationship with HAMP expression. The proportion of tumor-infiltrating cells revealed that gamma delta T cells and monocytes were positively correlated with HAMP expression. Besides, HAMP was also correlated with chemokine, CCL16. This evidence suggested that HAMP might contribute to immune activation in the CHOL microenvironment. Therefore, HAMP may play a synergistic role with these immune cells and chemokines to inhibit CHOL development. HAMP serves as a valuable biomarker in CHOL and is closely correlated with its progression.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaqi Du
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
21
|
Xu QH, Liu H, Wang LL, Zhu Q, Zhang YJ, Muyayalo KP, Liao AH. Roles of γδT cells in pregnancy and pregnancy-related complications. Am J Reprod Immunol 2021; 86:e13487. [PMID: 34331364 DOI: 10.1111/aji.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
A successful pregnancy is a complex and unique process comprised of discrete events, including embryo implantation, placentation, and parturition. To maintain the balance between maternal-fetal immune tolerance and resistance to infections, the maternal immune system must have a high degree of stage-dependent plasticity throughout the period of pregnancy. Innate immunity is the frontline force for the establishment of early anti-infection and tolerance mechanisms in mammals. Belonging to the innate immune system, a subset of T cells called γδT cells (based on γδT cell receptors) are the main participants in immune surveillance and immune defense. Unlike traditional αβT cells, γδT cells are regarded as a bridge between innate immunity and acquired immunity. In this review, we summarize current knowledge on the functional plasticity of γδT cells during pregnancy. Furthermore, we discuss the roles of γδT cells in pathological pregnancies.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, Zhi H, Wong WHS, Wei H, Ng IOL, Lee PPW, Chan GCF, Lau YL, Tu W. Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med 2021; 12:12/563/eaaz3426. [PMID: 32998970 DOI: 10.1126/scitranslmed.aaz3426] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Treatment of life-threatening Epstein-Barr virus (EBV)-associated tumors remains a great challenge, especially for patients with relapsed or refractory disease. Here, we found that exosomes derived from phosphoantigen-expanded Vδ2-T cells (Vδ2-T-Exos) contained death-inducing ligands (FasL and TRAIL), an activating receptor for natural killer (NK) cells (NKG2D), immunostimulatory ligands (CD80 and CD86), and antigen-presenting molecules (MHC class I and II). Vδ2-T-Exos targeted and efficiently killed EBV-associated tumor cells through FasL and TRAIL pathways and promoted EBV antigen-specific CD4 and CD8 T cell expansion. Administration of Vδ2-T-Exos effectively controlled EBV-associated tumors in Rag2-/-γc-/- and humanized mice. Because expanding Vδ2-T cells and preparing autologous Vδ2-T-Exos from cancer patients ex vivo in large scale is challenging, we explored the antitumor activity of allogeneic Vδ2-T-Exos in humanized mouse cancer models. Here, we found that allogeneic Vδ2-T-Exos had more effective antitumor activity than autologous Vδ2-T-Exos in humanized mice; the allogeneic Vδ2-T-Exos increased the infiltration of T cells into tumor tissues and induced more robust CD4 and CD8 T cell-mediated antitumor immunity. Compared with exosomes derived from NK cells (NK-Exos) with direct cytotoxic antitumor activity or dendritic cells (DC-Exos) that induced T cell antitumor responses, Vδ2-T-Exos directly killed tumor cells and induced T cell-mediated antitumor response, thus resulting in more effective control of EBV-associated tumors. This study provided proof of concept for the strategy of using Vδ2-T-Exos, especially allogeneic Vδ2-T-Exos, to treat EBV-associated tumors.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Chunyu Huang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yujun Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xia Wang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hui Zhi
- Biostatistics and Clinical Research Methodology Unit, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wilfred Hing-Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Haiming Wei
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Pamela Pui-Wah Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
23
|
Okamura Y, Miyanishi H, Kinoshita M, Kono T, Sakai M, Hikima JI. A defective interleukin-17 receptor A1 causes weight loss and intestinal metabolism-related gene downregulation in Japanese medaka, Oryzias latipes. Sci Rep 2021; 11:12099. [PMID: 34103614 PMCID: PMC8187396 DOI: 10.1038/s41598-021-91534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
In the intestine, the host must be able to control the gut microbiota and efficiently absorb transiently supplied metabolites, at the risk of enormous infection. In mammals, the inflammatory cytokine interleukin (IL)-17A/F is one of the key mediators in the intestinal immune system. However, many functions of IL-17 in vertebrate intestines remain unclarified. In this study, we established a gene-knockout (KO) model of IL-17 receptor A1 (IL-17RA1, an IL-17A/F receptor) in Japanese medaka (Oryzias latipes) using genome editing technique, and the phenotypes were compared to wild type (WT) based on transcriptome analyses. Upon hatching, homozygous IL-17RA1-KO medaka mutants showed no significant morphological abnormality. However, after 4 months, significant weight decreases and reduced survival rates were observed in IL-17RA1-KO medaka. Comparison of gene-expression patterns in WT and IL-17RA1-KO medaka revealed that various metabolism- and immune-related genes were significantly down-regulated in IL-17RA1-KO medaka intestine, particularly genes related to mevalonate metabolism (mvda, acat2, hmgcs1, and hmgcra) and genes related to IL-17 signaling (such as il17c, il17a/f1, and rorc) were found to be decreased. Conversely, expression of genes related to cardiovascular system development, including fli1a, sox7, and notch1b in the anterior intestine, and that of genes related to oxidation-reduction processes including ugp2a, aoc1, and nos1 in posterior intestine was up-regulated in IL-17RA1-KO medaka. These findings show that IL-17RA regulated immune- and various metabolism-related genes in the intestine for maintaining the health of Japanese medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture , Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
24
|
Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol 2021; 18:842-859. [PMID: 33139907 PMCID: PMC8115290 DOI: 10.1038/s41423-020-00565-9] [Citation(s) in RCA: 430] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical success of cancer immune checkpoint blockade (ICB) has refocused attention on tumor-infiltrating lymphocytes (TILs) across cancer types. The outcome of immune checkpoint inhibitor therapy in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell responses within the tumor microenvironment. State-of-the-art single-cell analysis of TIL gene expression profiles and clonality has revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune activation and exhaustion. Many of these states are conserved across tumor types, in line with the broad responses observed clinically. Despite this homology, not all cancer types with similar TIL landscapes respond similarly to immunotherapy, highlighting the complexity of the underlying tumor-immune interactions. This observation is further confounded by the strong prognostic benefit of TILs observed for tumor types that have so far respond poorly to immunotherapy. Thus, while a holistic view of lymphocyte infiltration and dysfunction on a single-cell level is emerging, the search for response and prognostic biomarkers is just beginning. Within this review, we discuss recent advances in the understanding of TIL biology, their prognostic benefit, and their predictive value for therapy.
Collapse
Affiliation(s)
- Sterre T Paijens
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annegé Vledder
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Huang C, Xiang Z, Zhang Y, Li Y, Xu J, Zhang H, Zeng Y, Tu W. NKG2D as a Cell Surface Marker on γδ-T Cells for Predicting Pregnancy Outcomes in Patients With Unexplained Repeated Implantation Failure. Front Immunol 2021; 12:631077. [PMID: 33777016 PMCID: PMC7988228 DOI: 10.3389/fimmu.2021.631077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maternal immune tolerance to semi-allogeneic fetus is essential for a successful implantation and pregnancy. Growing evidence indicated that low cytotoxic activity of γδ-T cells, which is mediated by activation and inhibitory receptors, is important for establishment of maternal immune tolerant microenvironment. However, the correlation between receptors on peripheral blood γδ-T cells, such as NKG2D, CD158a, and CD158b, and pregnancy outcome in patients with unexplained repeated implantation failure (uRIF) remains unclear. In this study, the association between the expression level of these receptors and pregnancy outcome in patients with uRIF was investigated. Thirty-eight women with uRIF were enrolled and divided into two groups: successful group and failed group, according to the pregnancy outcome on different gestational periods. The percentage of NKG2D+ γδ-T cells in lymphocytes was significantly higher in uRIF patients who had failed clinical pregnancy in subsequent cycle, compared with those who had successful clinical pregnancy. However, there were no differences about the frequencies of CD158a+ and CD158b+ γδ-T cells between the successful and failed groups. The receiver operating characteristic curve exhibited that the optimal cut-off value of NKG2D+ γδ-T cells was 3.24%, with 92.3% sensitivity and 66.7% specificity in predicting clinical pregnancy failure in uRIF patients. The patients with uRIF were further divided into two groups, group 1 (NKG2D+ γδ-T cells <3.24%) and group 2 (NKG2D+ γδ-T cells ≥3.24%), based on the cut-off value. The live birth rate of patients in the group 1 and group 2 were 61.5 and 28.0%, respectively. Kaplan-Meier survival curve further suggested that the frequency of NKG2D+ γδ-T cells in lymphocytes negatively correlated with live birth rate in patients with uRIF. In conclusion, our study demonstrated that the frequency of peripheral blood NKG2D+ γδ-T cells among lymphocytes is a potential predictor for pregnancy outcome in uRIF patients.
Collapse
Affiliation(s)
- Chunyu Huang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yongnu Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jian Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Hongzhan Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Liu Y, Han Y, Zeng S, Shen H. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Cell Biosci 2021; 11:48. [PMID: 33653419 PMCID: PMC7927236 DOI: 10.1186/s13578-021-00565-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
γδT cells are a mixture of innate programming and acquired adaptability that bridge the adaptive and innate immune systems. γδT cells are mainly classified as tissue-resident Vδ1 or circulating Vδ2 γδT cells. In the tumor microenvironment, tumor immunity is influenced by the increased quantity and phenotype plasticity of γδT cells. Commensal bacteria are ubiquitous in the human body, and they have been confirmed to exist in various tumor tissues. With the participation of commensal bacteria, γδT cells maintain homeostasis and are activated to affect the development and progression of tumors. Here, we summarize the relationship between γδT cells and commensal bacteria, the potential protumor and antitumor effects underlying γδT cells, and the new developments in γδT cell-based tumor therapy which is expected to open new opportunities for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
27
|
Huang X, Wang C, Wang N. Vγ9Vδ2 T cells strengthen cisplatin inhibition activity against breast cancer MDA-MB-231 cells by disrupting mitochondrial function and cell ultrastructure. Cancer Cell Int 2021; 21:113. [PMID: 33593340 PMCID: PMC7885429 DOI: 10.1186/s12935-021-01815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer ranks second of new cases and fifth of death in 2018 worldwide. Cis-platinum (CDDP) has been used as a chemotherapy to treat breast cancer for years. However, CDDP can adversely disrupt immune function of host. Thus, development of new protocol that can minimize side effect and meanwhile elevate clinical efficacy of CDDP will eventually benefit cancer patients. Since Vγ9Vδ2 T cells can up-regulate immune function of cancer patients, therefore, our hypothesis is that introduction of Vγ9Vδ2 T cells could potentiate CDDP efficacy against breast cancer. METHODS We used breast cancer cell line MDA-MB-231 as model cell to test our hypothesis. The cancer cell viability in vitro in the context of different dose of CDDP was analyzed by flow cytometry. The cytoskeleton alteration was visualized by confocal microscopy, and the ultrastructure of cell membrane was observed by atomic force microscopy. The mitochondrial function of MDA-MB-231 cells was detected as well by flow cytometry. RESULTS Comparing to either Vγ9Vδ2 T cells or CDDP alone, Vγ9Vδ2 T cells plus CDDP could more strikingly induce MDA-MB-231 cell membrane ultrastructure disruption and cytoskeleton disorder, and more significantly enhance the inhibition of CDDP on proliferation of MDA-MB-231 cells. At the same time, Vγ9Vδ2 T cells strengthened CDDP-induced mitochondrial dysfunction of cancer cells. CONCLUSION This work revealed that Vγ9Vδ2 T cells could synergistically enhance the inhibition activity of CDDP against breast cancer cells. Meanwhile, this in vitro proof-of-concept study implied the clinical prospect of the combining application of Vγ9Vδ2 T cells and CDDP in breast cancer therapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, 613 West Huangpu Road, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Cunchuan Wang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, 613 West Huangpu Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Ningxia Wang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, 613 West Huangpu Road, Guangzhou, 510630, Guangdong, People's Republic of China
| |
Collapse
|
28
|
Granzyme B-expressing γδ-T and NK cells as a predictor of clinical pregnancy failure in patients with unexplained repeated implantation failure. J Reprod Immunol 2020; 144:103269. [PMID: 33540297 DOI: 10.1016/j.jri.2020.103269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/30/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023]
Abstract
The limited cytotoxicity of immune cells facilitates a successful establishment of pregnancy. However, the association between cytotoxic granules and unexplained repeated implantation failure (uRIF) remains unkown. Twenty-one fertile controls and 54 patients with uRIF were included in this study. The pregnancy outcomes were monitored at different gestational periods. The peripheral blood lymphocytes were detected using specific monoclonal antibodies by flow cytometry. The percentage of perforin+ (Pfr+), granzyme B+ (GrB+), or granulysin+ (Gnly+) lymphocytes was not significantly different among fertile controls, uRIF patients with successful pregnancy outcomes, and uRIF patients with pregnancy failure. The percentage of GrB+ γδ-T cells in lymphocytes was markedly higher in uRIF patients with implantation failure and clinical pregnancy failure than that in uRIF patients with a corresponding successful pregnancy outcome. A four-tier risk model showed that the risk of suffering clinical pregnancy failure in uRIF patients among high risk tier (83.3 %), normal risk tier (65.0 %) and low risk tier (39.1 %) was elevated by 2-4 fold compared with uRIF patients among lowest risk tier (20.0 %). In addition, the percentage of GrB+ NK cells in lymphocytes tended to decrease in uRIF patients with pregnancy failure. The AUC of the combined indicator with GrB+ γδ-T cells and GrB+ NK cells was increased than that of GrB+ γδ-T cells and GrB+ NK cells for predicting clinical pregnancy failure. In conclusion, the frequency of GrB-expressing γδ-T and NK cells in peripheral blood could serve as a predictor of clinical pregnancy failure in patients with uRIF.
Collapse
|
29
|
Lu H, Ma Y, Wang M, Shen J, Wu H, Li J, Gao N, Gu Y, Zhang X, Zhang G, Shi T, Chen W. B7-H3 confers resistance to Vγ9Vδ2 T cell-mediated cytotoxicity in human colon cancer cells via the STAT3/ULBP2 axis. Cancer Immunol Immunother 2020; 70:1213-1226. [PMID: 33119798 DOI: 10.1007/s00262-020-02771-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Immunotherapy based on γδT cells has limited efficiency in solid tumors, including colon cancer (CC). The immune evasion of tumor cells may be the main cause of the difficulties of γδT cell-based treatment. In the present study, we explored whether and how B7-H3 regulates the resistance of CC cells to the cytotoxicity of Vγ9Vδ2 (Vδ2) T cells. We observed that B7-H3 overexpression promoted, while B7-H3 knockdown inhibited, CC cell resistance to the killing effect of Vδ2 T cells in vitro and in vivo. Mechanistically, we showed that B7-H3-mediated CC cell resistance to the cytotoxicity of Vδ2 T cells involved a molecular pathway comprising STAT3 activation and decreased ULBP2 expression. ULBP2 blockade or knockdown abolished the B7-H3 silencing-induced increase in the cytotoxicity of Vδ2 T cells to CC cells. Furthermore, cryptotanshinone, a STAT3 phosphorylation inhibitor, reversed the B7-H3 overexpression-induced decrease in ULBP2 expression and attenuated the killing effect of Vδ2 T cells on CC cells. Moreover, there was a negative correlation between the expression of B7-H3 and ULBP2 in the tumor tissues of CC patients. Our results suggest that the B7-H3-mediated STAT3/ULBP2 axis may be a potential candidate target for improving the efficiency of γδT cell-based immunotherapy in CC.
Collapse
Affiliation(s)
- Huimin Lu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215100, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanchao Ma
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Mingyuan Wang
- Suzhou Red Cross Blood Center, 355 Shizi Road, Suzhou, China
| | - Jin Shen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Hongya Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215100, Jiangsu, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Nan Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215100, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215100, Jiangsu, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215100, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215100, Jiangsu, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215100, Jiangsu, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- , 50 Donghuan Road, Suzhou, 215100, Jiangsu, China.
| |
Collapse
|
30
|
Lin M, Zhang X, Liang S, Luo H, Alnaggar M, Liu A, Yin Z, Chen J, Niu L, Jiang Y. Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. Signal Transduct Target Ther 2020; 5:215. [PMID: 33093457 PMCID: PMC7582168 DOI: 10.1038/s41392-020-00260-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has limited efficacy against locally advanced pancreatic cancer (LAPC) due to the presence of an immunosuppressive microenvironment (ISM). Irreversible electroporation (IRE) can not only induce immunogenic cell death, but also alleviate immunosuppression. This study aimed to investigate the antitumor efficacy of IRE plus allogeneic γδ T cells in LAPC patients. A total of 62 patients who met the eligibility criteria were enrolled in this trial, then randomized into two groups (A: n = 30 and B: n = 32). All patients received IRE therapy and after receiving IRE, the group A patients received at least two cycles of γδ T-cell infusion as one course continuously. Group A patients had better survival than group B patients (median OS: 14.5 months vs. 11 months; median PFS: 11 months vs. 8.5 months). Moreover, the group A patients treated with multiple courses of γδ T-cell infusion had longer OS (17 months) than those who received a single course (13.5 months). IRE combined with allogeneic γδ T-cell infusion is a promising strategy to enhance the antitumor efficacy in LAPC patients, yielding extended survival benefits. ClinicalTrials.gov ID: NCT03180437.
Collapse
Affiliation(s)
- Mao Lin
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Biological Treatment Center, Fuda Cancer Hospital, Jinan University, Guangzhou, 510665, China
| | - Xiaoyan Zhang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuzhen Liang
- Medical Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mohammed Alnaggar
- Department of Oncology, Tongji Chibi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Chibi, 437300, China
| | - Aihua Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Jibing Chen
- Biological Treatment Center, Fuda Cancer Hospital, Jinan University, Guangzhou, 510665, China.
| | - Lizhi Niu
- Biological Treatment Center, Fuda Cancer Hospital, Jinan University, Guangzhou, 510665, China. .,Department of Oncology, Fuda Cancer Hospital, Jinan University, Guangzhou, 510665, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
31
|
Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res Treat 2020; 185:261-279. [PMID: 33011829 DOI: 10.1007/s10549-020-05954-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Ductal breast carcinoma as a heterogeneous disease has different molecular subtypes associated with clinical prognosis and patients' survival. The role of immune system as a consistent part of the tumor microenvironment (TME) has been documented in progression of ductal breast carcinoma. Here, we aimed to describe the important immune cells and the immune system-associated molecules in Ductal Carcinoma In situ (DCIS) and Invasive Ductal Carcinoma (IDC) with special emphasis on their associations with different molecular subtypes and patients' prognosis. RESULTS The immune cells have a dual role in breast cancer (BC) microenvironment depending on the molecular subtype or tumor grade. These cells with different frequencies are present in the TME of DCIS and IDC. The presence of regulatory cells including Tregs, MDSC, Th2, Th17, M2 macrophages, HLADR- T cells, and Tγδ cells is related to more immunosuppressive microenvironment, especially in ER- and TN subtypes. In contrast, NK cells, CTL, Th, and Tfh cells are associated to the anti-tumor activity. These cells are higher in ER+ BC, although in other subtypes such as TN or HER2+ are associated with a favorable prognosis. CONCLUSION Determining the specific immune response in each subtype could be helpful in estimating the possible behavior of the tumor cells in TME. It is important to realize that different frequencies of immune cells in BC environment likely determine the patients' prognosis and their survival in each subtype. Therefore, elucidation of the distinct immune players in TME would be helpful toward developing targeted therapies in each subtype.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Children's Medical Center Hospital, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
32
|
Lu H, Dai W, Guo J, Wang D, Wen S, Yang L, Lin D, Xie W, Wen L, Fang J, Wang Z. High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Front Immunol 2020; 11:573920. [PMID: 33101298 PMCID: PMC7555127 DOI: 10.3389/fimmu.2020.573920] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
γδ T cells are a small subset of unconventional T cells that are enriched in the mucosal areas, and are responsible for pathogen clearance and maintaining integrity. However, the role of γδ T cells in head and neck squamous cell carcinoma (HNSCC) is largely unknown. Here, by using RNA-seq data from The Cancer Genome Atlas (TCGA), we discovered that HNSCC patients with higher levels of γδ T cells were positively associated with lower clinical stages and better overall survival, and high abundance of γδ T cells was positively correlated with CD8+/CD4+ T cell infiltration. Gene ontology and pathway analyses showed that genes associated with T cell activation, proliferation, effector functions, cytotoxicity, and chemokine production were enriched in the group with a higher γδ T cell abundance. Furthermore, we found that the abundance of γδ T cells was positively associated with the expression of the butyrophilin (BTN) family proteins BTN3A1/BTN3A2/BTN3A3 and BTN2A1, but only MICB, one of the ligands of NKG2D, was involved in the activation of γδ T cells, indicating that the BTN family proteins might be involved in the activation and proliferation of γδ T cells in the tumor microenvironment of HNSCC. Our results indicated that γδ T cells, along with their ligands, are promising targets in HNSCC with great prognostic values and treatment potentials.
Collapse
Affiliation(s)
- Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenxiao Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dikan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuqiong Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongjia Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenqiang Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Lee HW, Chung YS, Kim TJ. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Immune Netw 2020; 20:e5. [PMID: 32158593 PMCID: PMC7049581 DOI: 10.4110/in.2020.20.e5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Shin Chung
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
34
|
Li X, Lu H, Gu Y, Zhang X, Zhang G, Shi T, Chen W. Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp Cell Res 2019; 386:111719. [PMID: 31726050 DOI: 10.1016/j.yexcr.2019.111719] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
Gamma delta (γδ) T cell-based tumor immunotherapy has been one of the most promising cancer immunotherapeutic strategies. However, the key regulators of the Vγ9Vδ2 T cell-mediated antitumor response remain unclear. Recently, mounting reports have indicated that Tim-3 performs critical roles in the regulation of the activities of immune cells, including Vγ9Vδ2 T cells. However, the roles of Tim-3 in Vγ9Vδ2 T cell-mediated killing of colon cancer cells and the underlying mechanism remain largely unknown. Here, the proportion of Tim-3+ γδ T cells was significantly increased in both the peripheral blood and colon cancer tissue of patients and was significantly associated with TNM staging and tumor volume. Additionally, the activation of Tim-3 signaling significantly inhibited the killing efficiency of Vγ9Vδ2 T cells against colon cancer cells. In addition, Tim-3 signaling reduced the expression of perforin and granzyme B in Vγ9Vδ2 T cells. Blocking the perforin/granzyme B pathway also decreased the cytotoxicity of Vγ9Vδ2 T cells to colon cancer cells. Moreover, Tim-3 signaling reduced the perforin and granzyme B expression of Vγ9Vδ2 T cells in an ERK1/2 signaling pathway-dependent manner. This knowledge reveals that Tim-3 may be a promising therapeutic target to improve Vγ9Vδ2 T cell-based adoptive immunotherapy for colon cancer.
Collapse
Affiliation(s)
- Xiaomi Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Huimin Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
35
|
Hu Y, Liu T, Li J, Mai F, Li J, Chen Y, Jing Y, Dong X, Lin L, He J, Xu Y, Shan C, Hao J, Yin Z, Chen T, Wu Y. Selenium nanoparticles as new strategy to potentiate γδ T cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials 2019; 222:119397. [PMID: 31442884 DOI: 10.1016/j.biomaterials.2019.119397] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 12/13/2022]
Abstract
Immune cell therapy presents a paradigm for the treatment of malignant tumors. Human Vγ9Vδ2 T cells, a subset of peripheral γδ T cells, have been shown to have promising anti-tumor activity. However, new methodology on how to achieve a stronger anti-tumor activity of Vγ9Vδ2 T cells is under continuous investigation. In this work, we used selenium nanoparticles (SeNPs) to strengthen the anti-tumor cytotoxicity of Vγ9Vδ2 T cells. We found SeNPs pretreated γδ T cells had significantly stronger cancer killing and tumor growth inhibition efficacy when compared with γδ T cells alone. Simultaneously, SeNPs pretreatment could significantly upregulate the expression of cytotoxicity related molecules including NKG2D, CD16, and IFN-γ, meanwhile, downregulate PD-1 expression of γδ T cells. Importantly, we observed that SeNPs promoted tubulin acetylation modification in γδ T cells through interaction between microtubule network and lysosomes since the latter is the primary resident station of SeNPs shown by confocal visualization. In conclusion, SeNPs could significantly potentiate anti-tumor cytotoxicity of Vγ9Vδ2 T cells, and both cytotoxicity related molecules and tubulin acetylation were involved in fine-tuning γδ T cell toxicity against cancer cells. Our present work demonstrated a new strategy for further enhancing anti-tumor cytotoxicity of human Vγ9Vδ2 T cells by using SeNPs-based nanotechnology, not gene modification, implicating SeNPs-based nanotechnology had a promising clinical perspective in the γδ T cell immunotherapy for malignant tumors.
Collapse
Affiliation(s)
- Yi Hu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Ting Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jingxia Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China; Central Laboratory, Maternal and Child Health Care Hospital of Dongchangfu District, Liaocheng, 252000, Shangdong, PR China
| | - Fengyi Mai
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Yan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Yanyun Jing
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Xin Dong
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Li Lin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Junyi He
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Yan Xu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Changliang Shan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jianlei Hao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| | - Yangzhe Wu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| |
Collapse
|
36
|
Alnaggar M, Xu Y, Li J, He J, Chen J, Li M, Wu Q, Lin L, Liang Y, Wang X, Li J, Hu Y, Chen Y, Xu K, Wu Y, Yin Z. Allogenic Vγ9Vδ2 T cell as new potential immunotherapy drug for solid tumor: a case study for cholangiocarcinoma. J Immunother Cancer 2019; 7:36. [PMID: 30736852 PMCID: PMC6368763 DOI: 10.1186/s40425-019-0501-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly aggressive and fatal tumor. CCA occurs in the epithelial cells of bile ducts. Due to increasing incidences, CCA accounts for 3% of all gastrointestinal malignancies. In addition to comprehensive treatments for cancer, such as surgery, chemotherapy, and radiotherapy, during the past few years, cellular immunotherapy has played an increasingly important role. As a result of our research, we have discovered the γδ T cell-based immunotherapy for CCA. CASE PRESENTATION A 30-year-old male ( https://www.clinicaltrials.gov/ ID: NCT02425735) was diagnosed with recurrent mediastinal lymph node metastasis after liver transplantation because of Cholangiocarcinoma (stage IV). In the course of his therapy sessions, he only received allogenic γδ T cell immunotherapy from August, 2017 through February, 2018 (8 infusions in total). γδ T cells were expanded from peripheral blood mononuclear cells (PBMCs) of healthy donor, and ~ 4 × 108 cells were adoptive transferred to the patient. CONCLUSION In the above case report of the Cholangiocarcinoma (stage IV) patient who had received liver transplantation and afterward was diagnosed with recurrent mediastinal lymph node metastasis, we clinically proved that allogenic γδ T cell treatment had no adverse effects. We observed that allogenic γδ T cell treatments positively regulated peripheral immune functions of the patient, depleted tumor activity, improved quality of life, and prolonged his life span. After 8 γδ T cell treatments, the size of lymph nodes was remarkably reduced with activity depletion. This clinical work suggested that allogenic γδ T cell immunotherapy could be developed into a promising therapy drug for CCA.
Collapse
Affiliation(s)
- Mohammed Alnaggar
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China.,Department of Oncology, Fuda Cancer Hospital, School of Medicine, Jinan University, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Yan Xu
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Jingxia Li
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Junyi He
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Jibing Chen
- Department of Oncology, Fuda Cancer Hospital, School of Medicine, Jinan University, Guangzhou, 510665, Guangdong, People's Republic of China.,Department of Biological Treatment Center, Fuda Cancer Hospital, School of Medicine, Jinan University, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Man Li
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Qingling Wu
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Li Lin
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Yingqing Liang
- Department of Biological Treatment Center, Fuda Cancer Hospital, School of Medicine, Jinan University, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Xiaohua Wang
- Department of Biological Treatment Center, Fuda Cancer Hospital, School of Medicine, Jinan University, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Jiawei Li
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Yi Hu
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Yan Chen
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Kecheng Xu
- Department of Oncology, Fuda Cancer Hospital, School of Medicine, Jinan University, Guangzhou, 510665, Guangdong, People's Republic of China. .,Department of Biological Treatment Center, Fuda Cancer Hospital, School of Medicine, Jinan University, Guangzhou, 510665, Guangdong, People's Republic of China.
| | - Yangzhe Wu
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China.
| | - Zhinan Yin
- Biomedical Translational Research Institute and The First Affiliated Hospital, Jinan University, 601 W Ave Huangpu, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
37
|
T-cell frequencies of CD8 + γδ and CD27 + γδ cells in the stem cell graft predict the outcome after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2019; 54:1562-1574. [PMID: 30723262 DOI: 10.1038/s41409-019-0462-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 11/08/2022]
Abstract
The impact of intra-graft T cells on the clinical outcome after allogeneic hematopoietic cell transplantation has been investigated. Most previous studies have focused on the role of αβ cells while γδ cells have received less attention. It has been an open question whether γδ cells are beneficial or not for patient outcome, especially with regards to graft versus host disease. In this study, graft composition of γδ cell subsets was analyzed and correlated to clinical outcome in 105 recipients who underwent allogeneic hematopoietic cell transplantation between 2013 and 2016. We demonstrate for the first time that grafts containing higher T-cell proportions of CD8+γδ cells were associated with increased cumulative incidence of acute graft versus host disease grade II-III (50% vs 22.6%; P = 0.008). Additionally, graft T-cell frequency of CD27+γδ cells was inversely correlated with relapse (P = 0.006) and CMV reactivation (P = 0.05). We conclude that clinical outcome after allogeneic hematopoietic cell transplantation is influenced by the proportions of distinct γδ cell subsets in the stem cell graft. We also provide evidence that CD8+γδ cells are potentially alloreactive and may play a role in acute graft versus host disease. This study illustrates the importance of better understanding of the role of distinct subsets of γδ cells in allogeneic hematopoietic cell transplantation.
Collapse
|
38
|
Wu K, Zhao H, Xiu Y, Li Z, Zhao J, Xie S, Zeng H, Zhang H, Yu L, Xu B. IL-21-mediated expansion of Vγ9Vδ2 T cells is limited by the Tim-3 pathway. Int Immunopharmacol 2019; 69:136-142. [PMID: 30708194 DOI: 10.1016/j.intimp.2019.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Vγ9Vδ2 T cells are the main γδ T subset in the peripheral blood and lymphoid organs. Previous studies have shown that Vγ9Vδ2 T cells could expand in the presence of phosphoantigens and IL-2 and exert antitumor functions. However, their potency was limited because sustained proliferation could not be achieved, possibly due to exhaustion caused by prolonged antigenic stimulation. In this study, we examined the proliferative response of Vγ9Vδ2 T cells to IL-21, a cytokine previously shown to promote NK cell and CD8 T cell cytotoxicity. We found that IL-21 could significantly improve the proliferation of phosphoantigen-stimulated Vγ9Vδ2 T cells in a dose-dependent manner. However, in acute myeloid leukemia (AML) patients, the efficacy of IL-21 was significantly reduced. Vγ9Vδ2 T cells from AML patients exhibited lower expression of IL-21R, and required higher levels of IL-21 for expansion. IL-21-treated Vγ9Vδ2 T cells from AML patients presented lower increase in STAT1 phosphorylation than Vγ9Vδ2 T cells from healthy volunteers. Interestingly, AML Vγ9Vδ2 T cells presented significantly higher Tim-3 expression than healthy Vγ9Vδ2 T cells. IL-21 treatment further induced Tim-3 upregulation. Blocking Tim-3 increased the proliferation and the STAT phosphorylation in Vγ9Vδ2 T cells in response to IL-21. Together, these results demonstrated that IL-21 could significantly expand the Vγ9Vδ2 T cells, but its efficacy was limited since it also increased the expression of checkpoint molecule Tim-3.
Collapse
Affiliation(s)
- Kangni Wu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, P.R. China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, P.R. China
| | - Yanghui Xiu
- Eye Institute and Xiamen Eye Center Affiliated to Xiamen University, Xiamen 361001, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, P.R. China
| | - Jintao Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, P.R. China
| | - Shiting Xie
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, P.R. China
| | - Hanyan Zeng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, P.R. China
| | - Haiping Zhang
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, P.R. China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, P.R. China.
| |
Collapse
|
39
|
Morrow ES, Roseweir A, Edwards J. The role of gamma delta T lymphocytes in breast cancer: a review. Transl Res 2019; 203:88-96. [PMID: 30194922 DOI: 10.1016/j.trsl.2018.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
Gammadelta T (γδT) lymphocytes have provoked interest in oncology, particularly as regards their potential use in immunotherapy, because of their unique ability to recognise antigens without a requirement for major histocompatibility complex antigen presentation, and to quickly activate an anti-tumour response. However, work in some cancers has suggested that they also have pro-tumourigenic activity. Their role in breast cancer is unclear. This review outlines the evidence to date in in vitro studies, in vivo mouse models and in human studies regarding the role of γδT lymphocytes in breast cancer. We describe the seemingly opposing roles of the predominantly circulating Vγ9Vδ2+ subtype, which can suppress tumour growth through direct cytotoxicity, induction of apoptosis and inhibition of angiogenesis, and the predominantly tumour-infiltrating γδ1+ subtype which can promote tumour growth and spread through immunosuppressant effects. We summarise the evidence in breast cancer for the mechanisms of action of γδT lymphocytes and describe how factors in the tumour microenvironment may affect their function, polarising them towards a pro-tumourigenic, immune-suppressing role. We also describe the experience to date of γδT lymphocytes in immunotherapy for breast cancer and suggest the direction of work going forward, particularly as regards different breast cancer subtypes.
Collapse
Affiliation(s)
- Elizabeth S Morrow
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Translational Cancer Research Centre, Garscube Estate, Bearsden, Glasgow, UK; Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow, UK.
| | - Antonia Roseweir
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Translational Cancer Research Centre, Garscube Estate, Bearsden, Glasgow, UK.
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Translational Cancer Research Centre, Garscube Estate, Bearsden, Glasgow, UK.
| |
Collapse
|
40
|
Yang Y, Xu C, Wu D, Wang Z, Wu P, Li L, Huang J, Qiu F. γδ T Cells: Crosstalk Between Microbiota, Chronic Inflammation, and Colorectal Cancer. Front Immunol 2018; 9:1483. [PMID: 29997627 PMCID: PMC6028700 DOI: 10.3389/fimmu.2018.01483] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that intestinal microbiota dysbiosis and chronic inflammation contribute to colorectal cancer (CRC) development. γδ T cells represent a major innate immune cell population in the intestinal epithelium that is involved in the maintenance of gut homeostasis, inflammation regulation, and carcinogenesis. The important contributions of γδ T cells are (i) to perform a protective role in the context of barrier damage and pathogenic microorganism translocation; (ii) to exert either pro- or anti-inflammatory effects at different inflammatory stages; and (iii) to boost the crosstalk between immune cells and tumor microenvironment, inducing a cascade of suppressive immune responses. Understanding the crucial role of γδ T cells would enable us to manipulate these cells during the CRC sequence and improve the efficacy of tumor therapy.
Collapse
Affiliation(s)
- Yunben Yang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunjing Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Pin Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Fuming Qiu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Van Acker HH, Campillo-Davo D, Roex G, Versteven M, Smits EL, Van Tendeloo VF. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev 2018; 41:54-64. [PMID: 29773448 DOI: 10.1016/j.cytogfr.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Cytokines of the common gamma-chain receptor family, comprising interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are vital with respect to organizing and sustaining healthy immune cell functions. Supporting the anti-cancer immune response, these cytokines inspire great interest for their use as vaccine adjuvants and cancer immunotherapies. It is against this background that gamma delta (γδ) T cells, as special-force soldiers and natural contributors of the tumor immunosurveillance, also received a lot of attention the last decade. As γδ T cell-based cancer trials are coming of age, this present review focusses on the effects of the different cytokines of the common gamma-chain receptor family on γδ T cells with respect to boosting γδ T cells as a therapeutic target in cancer immunotherapy. This review also gathers data that IL-15 in particular exhibits key features for augmenting the anti-tumor activity of effector killer γδ T cells whilst overcoming the myriad of immune escape mechanisms used by cancer cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Gils Roex
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|