1
|
Chen ZG, Xie YT, Yang C, Xiao T, Chen SY, Wu JH, Guo QN, Gao L. M2 macrophages secrete CCL20 to regulate iron metabolism and promote daunorubicin resistance in AML cells. Life Sci 2025; 361:123297. [PMID: 39645162 DOI: 10.1016/j.lfs.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Chemotherapy resistance is a significant clinical challenge in the treatment of leukemia. M2 macrophages have been identified as key contributors to the development of chemotherapy resistance in cancer, yet the precise mechanisms by which macrophages regulate this resistance remain elusive. Our study has identified CCL20 as a pivotal factor in the promotion of chemoresistance in AML cells by M2 macrophages. The chemotherapeutic agent daunorubicin induces a marked increase in ROS and lipid peroxidation levels within AML cells. This is accompanied by the inhibition of the SLC7A11/GCL/GPX4 signaling axis, elevated levels of intracellular free iron, disrupted iron metabolism, and consequent mitochondrial damage, ultimately leading to ferroptosis. Notably, CCL20 enhances the ability of AML cells to maintain iron homeostasis by upregulating SLC7A11 protein activity, mitigating mitochondrial damage, and inhibiting ferroptosis, thereby contributing to chemotherapy resistance. Furthermore, in vivo experiments demonstrated that blocking CCL20 effectively restores the sensitivity of AML cells to daunorubicin chemotherapy. Collectively, these findings underscore the complex interplay between M2 macrophages, CCL20 signaling, and chemotherapy resistance in AML, highlighting potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Zhi-Gang Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Yu-Tong Xie
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Chao Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Tong Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Si-Yu Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Jun-Hong Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Qiao-Nan Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037.
| |
Collapse
|
2
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2025; 67:231-252. [PMID: 38242529 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
3
|
Liu Z, Yang X, Chen S, Jia W, Qian Y, Zhang M, Fang T, Liu H, Yang H. Tumor suppressor ACER1 correlates with prognosis and Immune Infiltration in head and neck squamous cell carcinoma. Sci Rep 2024; 14:28039. [PMID: 39543336 PMCID: PMC11564793 DOI: 10.1038/s41598-024-78663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is notorious for poor prognoses, and effective biomarkers are urgently needed for early diagnosis of HNSCC patients. We investigate the role of alkaline ceramidase 1 (ACER1) and its relationship with immune infiltration in HNSCC. The differential expression and clinical prognostic significance of ACER1 in HNSCC patients are explored using bioinformatics methods and verified in human HNSCC samples. Genetic mutation, DNA methylation and drug sensitivity linked with ACER1 are examined. The potential biological function of ACER1 co-expression genes is assessed, and a series of functional assays are performed on ACER1in vitro. The results comprehensively reveal a relationship between ACER1 and immune infiltration in HNSCC patients. ACER1 expression is significantly downregulated in HNSCC tissues and closely correlated with better prognoses for HNSCC patients, and this prognostic significance is determined by distinct clinical characteristics. Genetic alteration and promoter hypomethylation of ACER1 are involved in progression of HNSCC, and ACER1 expression is significantly related to several drug sensitivities. Functional analysis shows that ACER1 co-expression genes are mainly enriched in the sphingolipid signaling pathway associated with inhibition of tumorigenesis, leading to better prognoses for HNSCC patients. In vitro, ACER1 overexpression inhibits proliferation and migration, induces apoptosis, and promotes adhesion of Fadu and SCC9 cells. In addition, high ACER1 expression is closely linked with infiltration levels of immune cells, and strongly associated with biomarkers of immune cells in HNSCC, suggesting the important role of ACER1 in regulating tumor immunity in HNSCC patients. In summary, ACER1 may be a useful indicator for diagnosis and prognosis, and may regulate immune infiltration in HNSCC patients, thus promising targeted immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Xiaoqi Yang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Shuai Chen
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Wenming Jia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Minfa Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University,, Binzhou, Shandong, China
| | - Tianhe Fang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Heng Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China.
| | - Hui Yang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan,Shandong, China.
| |
Collapse
|
4
|
Roos J, Manolikakes G, Schlomann U, Klinke A, Schopfer FJ, Neumann CA, Maier TJ. Nitro-fatty acids: promising agents for the development of new cancer therapeutics. Trends Pharmacol Sci 2024; 45:1061-1080. [PMID: 39490362 DOI: 10.1016/j.tips.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
Nitro-fatty acids (NO2-FAs) are endogenous pleiotropic lipid mediators regarded as promising drug candidates for treating inflammatory and fibrotic diseases. Over the past two decades, the anti-inflammatory and cytoprotective actions of NO2-FAs and several molecular targets have been identified. More recently, preclinical studies have demonstrated their potential as prospective cancer therapeutics with favorable safety and tumor-selective profiles. In this review, we describe the mechanisms of action, with a focus on NO2-FA antineoplastic and chemosensitizing effects. We also address the potential therapeutic applications of endogenous and structurally modified NO2-FAs species in cancer treatment.
Collapse
Affiliation(s)
- Jessica Roos
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, 63225, Hesse, Germany.
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, 67663, Rhineland-Palatinate, Germany
| | - Uwe Schlomann
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M) University of Pittsburgh, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Thorsten J Maier
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, 63225, Hesse, Germany
| |
Collapse
|
5
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Zhao X, Ren T, Li S, Wang X, Hou R, Guan Z, Liu D, Zheng J, Shi M. A new perspective on the therapeutic potential of tumor metastasis: targeting the metabolic interactions between TAMs and tumor cells. Int J Biol Sci 2024; 20:5109-5126. [PMID: 39430253 PMCID: PMC11489172 DOI: 10.7150/ijbs.99680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Tumor-associated macrophages (TAMs) undergo metabolic reprogramming, encompassing glucose, amino acid, fatty acid metabolism, tricarboxylic acid (TCA) cycle, purine metabolism, and autophagy, within the tumor microenvironment (TME). The metabolic interdependencies between TAMs and tumor cells critically influence macrophage recruitment, differentiation, M2 polarization, and secretion of epithelial-mesenchymal transition (EMT)-related factors, thereby activating intratumoral EMT pathways and enhancing tumor cell invasion and metastasis. Tumor cell metabolic alterations, including hypoxia, metabolite secretion, aerobic metabolism, and autophagy, affect the TME's metabolic landscape, driving macrophage recruitment, differentiation, M2 polarization, and metabolic reprogramming, ultimately facilitating EMT, invasion, and metastasis. Additionally, macrophages can induce tumor cell EMT by reprogramming their aerobic glycolysis. Recent experimental and clinical studies have focused on the metabolic interactions between macrophages and tumor cells to control metastasis and inhibit tumor progression. This review highlights the regulatory role of TAM-tumor cell metabolic codependencies in EMT, offering valuable insights for TAM-targeted therapies in highly metastatic tumors. Modulating the metabolic interplay between tumors and TAMs represents a promising therapeutic strategy for treating patients with metastatic cancers.
Collapse
Affiliation(s)
- Xuan Zhao
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| |
Collapse
|
8
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Lin G, Lin L, Chen X, Chen L, Yang J, Chen Y, Qian D, Zeng Y, Xu Y. PPAR-γ/NF-kB/AQP3 axis in M2 macrophage orchestrates lung adenocarcinoma progression by upregulating IL-6. Cell Death Dis 2024; 15:532. [PMID: 39060229 PMCID: PMC11282095 DOI: 10.1038/s41419-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Aquaporin 3 (AQP3), which is mostly expressed in pulmonary epithelial cells, was linked to lung adenocarcinoma (LUAD). However, the underlying functions and mechanisms of AQP3 in the tumor microenvironment (TME) of LUAD have not been elucidated. Single-cell RNA sequencing (scRNA-seq) was used to study the composition, lineage, and functional states of TME-infiltrating immune cells and discover AQP3-expressing subpopulations in five LUAD patients. Then the identifications of its function on TME were examined in vitro and in vivo. AQP3 was associated with TNM stages and lymph node metastasis of LUAD patients. We classified inter- and intra-tumor diversity of LUAD into twelve subpopulations using scRNA-seq analyses. The analysis showed AQP3 was mainly enriched in subpopulations of M2 macrophages. Importantly, mechanistic investigations indicated that AQP3 promoted M2 macrophage polarization by the PPAR-γ/NF-κB axis, which affected tumor growth and migration via modulating IL-6 production. Mixed subcutaneous transplanted tumor mice and Aqp3 knockout mice models were further utilized, and revealed that AQP3 played a critical role in mediating M2 macrophage polarization, modulating glucose metabolism in tumors, and regulating both upstream and downstream pathways. Overall, our study demonstrated that AQP3 could regulate the proliferation, migration, and glycometabolism of tumor cells by modulating M2 macrophages polarization through the PPAR-γ/NF-κB axis and IL-6/IL-6R signaling pathway, providing new insight into the early detection and potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Jiansheng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Yanling Chen
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Danwen Qian
- The Tumor Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, UK
| | - Yiming Zeng
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China.
| | - Yuan Xu
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
10
|
Salmaninejad A, Layeghi SM, Falakian Z, Golestani S, Kobravi S, Talebi S, Yousefi M. An update to experimental and clinical aspects of tumor-associated macrophages in cancer development: hopes and pitfalls. Clin Exp Med 2024; 24:156. [PMID: 39003350 PMCID: PMC11246281 DOI: 10.1007/s10238-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor-associated macrophages (TAMs) represent one of the most abundant tumor-infiltrating stromal cells, and their normal function in tumor microenvironment (TME) is to suppress tumor cells by producing cytokines which trigger both direct cell cytotoxicity and antibody-mediated immune response. However, upon prolonged exposure to TME, the classical function of these so-called M1-type TAMs can be converted to another type, "M2-type," which are recruited by tumor cells so that they promote tumor growth and metastasis. This is the reason why the accumulation of TAMs in TME is correlated with poor prognosis in cancer patients. Both M1- and M2-types have high degree of plasticity, and M2-type cells can be reprogrammed to M1-type for therapeutic purposes. This characteristic introduces TAMs as promising target for developing novel cancer treatments. In addition, inhibition of M2-type cells and blocking their recruitment in TME, as well as their depletion by inducing apoptosis, are other approaches for effective immunotherapy of cancer. In this review, we summarize the potential of TAMs to be targeted for cancer immunotherapy and provide an up-to-date about novel strategies for targeting TAMs.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Falakian
- Department of Laboratory Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shahin Golestani
- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Tehran Azad University, Tehran, Iran
| | - Samaneh Talebi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Zaliunas BR, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Tamasauskas A, Liutkeviciene R. Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas. Cancers (Basel) 2024; 16:2509. [PMID: 39061149 PMCID: PMC11274473 DOI: 10.3390/cancers16142509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
AIM The aim of this study was to determine associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) gene polymorphisms and TRAF2, TAB2, IKBKB protein levels with clinical and morphological features of pituitary adenomas (PAs). METHODS This case-control study included 459 individuals divided into two groups: a control group (n = 320) and a group of individuals with PAs (n = 139). DNA from peripheral blood leukocytes was isolated using salt precipitation and column method. Real-time PCR was used for TRAF2 (rs867186), TAB2 (rs237025), and IKBKB (rs13278372) SNP genotyping, and TRAF2, TAB2, IKBKB protein concentration measurements were performed by immunoenzymatic analysis tests using a commercial ELISA kit according to the manufacturer's recommendations. The labeling index Ki-67 was determined by immunohistochemical analysis using a monoclonal antibody (clone SP6; Spring Bioscience Corporation). Statistical data analysis was performed using the programs "IMB SPSS Statistics 29.0". RESULTS We found significant differences in TRAF2 (rs867186) genotypes (AA, AG, GG) between groups: 79.1%, 17.3%, 3.6% vs. 55.3%, 20.9%, 23.8% (p < 0.001). The G allele was less frequent in the PA group than in controls (12.2% vs. 34.2%, p < 0.001). The AG and GG genotypes reduced PA occurrence by 1.74-fold and 9.43-fold, respectively, compared to AA (p < 0.001). In the dominant model, GG and AG genotypes reduced PA odds by 3.07-fold, while in the recessive model, the GG genotype reduced PA odds by 8.33-fold (p < 0.001). Each G allele decreased PA odds by 2.49-fold in the additive model (p < 0.001). Microadenomas had significant genotype differences compared to controls: 81.3%, 18.8%, 0.0% vs. 55.3%, 20.9%, 23.8% (p < 0.001), with the G allele being less frequent (9.4% vs. 34.2%, p < 0.001). In macroadenomas, genotype differences were 78%, 16.5%, 5.5% vs. 55.3%, 20.9%, 23.8% (p < 0.001), and the G allele was less common (13.7% vs. 34.2%, p < 0.001). The dominant model showed that GG and AG genotypes reduced microadenoma odds by 3.5-fold (p = 0.001), and each G allele reduced microadenoma odds by 3.1-fold (p < 0.001). For macroadenomas, the GG genotype reduced odds by 6.1-fold in the codominant model (p < 0.001) and by 2.9-fold in GG and AG genotypes combined compared to AA (p < 0.001). The recessive model indicated the GG genotype reduced macroadenoma odds by 5.3-fold (p < 0.001), and each G allele reduced odds by 2.2-fold in the additive model (p < 0.001). CONCLUSIONS The TRAF2 (rs867186) G allele and GG genotype are significantly associated with reduced odds of pituitary adenomas, including both microadenomas and macroadenomas, compared to the AA genotype. These findings suggest a protective role of the G allele against the occurrence of these tumors.
Collapse
Affiliation(s)
- Balys Remigijus Zaliunas
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
| | - Greta Gedvilaite-Vaicechauskiene
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Arimantas Tamasauskas
- Department of Neurosurgery, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| |
Collapse
|
12
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
13
|
Lin J, Huang C, Diao W, Liu H, Lu H, Huang S, Wang J. CPE correlates with poor prognosis in gastric cancer by promoting tumourigenesis. Heliyon 2024; 10:e29901. [PMID: 38694095 PMCID: PMC11058891 DOI: 10.1016/j.heliyon.2024.e29901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Aims To investigate the potential functions and mechanisms of tumourigenesis in carboxypeptidase E (CPE) and its prognostic value in gastric cancer, and to develop a predictive model for prognosis based on CPE. Results Transcriptome level variation and the prognostic value of CPE in different types of cancers were investigated using bioinformatics analyses. The association between CPE and clinicopathological characteristics was specifically explored in gastric cancer. Elevated CPE expression was associated with poor survival and recurrence prognosis and was found in cases with a later clinical stage of gastric cancer. The CPE was considered an independent prognostic factor, as assessed using Cox regression analysis. The prognostic value of CPE was further verified through immunohistochemistry and haematoxylin staining. Enrichment analysis provided a preliminary confirmation of the potential functions and mechanisms of CPE. Immune cell infiltration analysis revealed a significant correlation between CPE and macrophage infiltration. Eventually, a prognosis prediction nomogram model based on CPE was developed. Conclusion CPE was identified as an independent biomarker associated with poor prognosis in gastric cancer. This suggests that CPE overexpression promoted epithelial-mesenchymal transition via the activation of the Erk/Wnt pathways, leading to proliferation, invasion, and metastasis. Targeted therapeutic strategies for gastric cancer may benefit from these findings.
Collapse
Affiliation(s)
- Jiarui Lin
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515000, China
| | - Haoming Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hesong Lu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Shengchao Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
14
|
Pradhan R, Kundu A, Kundu CN. The cytokines in tumor microenvironment: from cancer initiation-elongation-progression to metastatic outgrowth. Crit Rev Oncol Hematol 2024; 196:104311. [PMID: 38442808 DOI: 10.1016/j.critrevonc.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
It is a well-known fact that cancer can be augmented by infections and inflammation. In fact, chronic inflammation establishes a tumor-supporting-microenvironment (TME), which contributes to neoplastic progression. Presently, extensive research is going on to establish the interrelationship between infection, inflammation, immune response, and cancer. Cytokines are the most essential components in this linkage, which are secreted by immune cells and stromal cells of TME. Cytokines have potential involvement in tumor initiation, elongation, progression, metastatic outgrowth, angiogenesis, and development of therapeutic resistance. They are also linked with increased cancer symptoms along with reduced quality of life in advanced cancer patients. The cancer patients experience multiple symptoms including pain, asthenia, fatigue, anorexia, cachexia, and neurodegenerative disorders etc. Anti-cancer therapeutics can be developed by targeting cytokines along with TME to reduce the immunocompromised state and also modulate the TME. This review article depicts the composition and function of different inflammatory cells within the TME, more precisely the role of cytokines in cancer initiation, elongation, and progression as well as the clinical effects in advanced cancer patients. It also provides an overview of different natural compounds, nanoparticles, and chemotherapeutic agents that can target cytokines along with TME, which finally pave the way for cytokines-targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| | - Anushka Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
15
|
Hou S, Zhao Y, Chen J, Lin Y, Qi X. Tumor-associated macrophages in colorectal cancer metastasis: molecular insights and translational perspectives. J Transl Med 2024; 22:62. [PMID: 38229160 PMCID: PMC10792812 DOI: 10.1186/s12967-024-04856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Metastasis is the leading cause of high mortality in colorectal cancer (CRC), which is not only driven by changes occurring within the tumor cells, but is also influenced by the dynamic interaction between cancer cells and components in the tumor microenvironment (TME). Currently, the exploration of TME remodeling and its impact on CRC metastasis has attracted increasing attention owing to its potential to uncover novel therapeutic avenues. Noteworthy, emerging studies suggested that tumor-associated macrophages (TAMs) within the TME played important roles in CRC metastasis by secreting a variety of cytokines, chemokines, growth factors and proteases. Moreover, TAMs are often associated with poor prognosis and drug resistance, making them promising targets for CRC therapy. Given the prognostic and clinical value of TAMs, this review provides an updated overview on the origin, polarization and function of TAMs, and discusses the mechanisms by which TAMs promote the metastatic cascade of CRC. Potential TAM-targeting techniques for personalized theranostics of metastatic CRC are emphasized. Finally, future perspectives and challenges for translational applications of TAMs in CRC development and metastasis are proposed to help develop novel TAM-based strategies for CRC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
16
|
Yu J, Liu T, Liu M, Jin H, Wei Z. RBCK1 overexpression is associated with immune cell infiltration and poor prognosis in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:538-549. [PMID: 38214606 PMCID: PMC10817371 DOI: 10.18632/aging.205393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024]
Abstract
RBCK1 is an important E3 ubiquitin ligase, which plays an important role in many major diseases. However, the function and mechanism of RBCK1 in pan-cancer and its association with immune cell infiltration have not been reported. The purpose of this study is to find out the expression of RBCK1 in cancer, and to explore the relationship between RBCK1 and the prognosis of patients. Our results show that the expression of RBCK1 is up-regulated in a variety of malignant tumors, and is closely related to the prognosis of patients. Further studies have shown that RBCK1 regulates protein expression in the nucleus and plays an important role in ribosome and valine, leucine, and isoleucine degradation. Genetic variation analysis showed that RBCK1 was mainly involved in missense mutations in multiple tumors, and mutated patients showed poor prognoses. Further studies showed that RBCK1 may be interacted with proteins such as RNRPB, MCRS1, TRIB3, MKKS and ARPC3. Through protein interaction analysis, we found 43 proteins interacting with RBCK1 in liver cancer. We also analyzed immune cell infiltration and found that RBCK1 expression was positively correlated with T cells and macrophages, while it was negatively correlated with neutrophils, NK cells, and DCs in liver cancer. Finally, we confirmed experimentally that RBCK1 can significantly inhibit the apoptosis and invasion of HCC. Therefore, we speculate that RBCK1 plays an important regulatory role in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Jingjing Yu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingjiang Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Hepatopancreatobiliary Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, China
| | - Hu Jin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Critical Care Medicine, Liuzhou People’s Hospital, Liuzhou, China
| | - Zaiwa Wei
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guangxi, China
| |
Collapse
|
17
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
18
|
Okumura T, Kimura T, Iwadare T, Wakabayashi SI, Kobayashi H, Yamashita Y, Sugiura A, Joshita S, Fujimori N, Kunimoto H, Komatsu M, Fukushima H, Mori H, Umemura T. Prognostic Significance of C-Reactive Protein in Lenvatinib-Treated Unresectable Hepatocellular Carcinoma: A Multi-Institutional Study. Cancers (Basel) 2023; 15:5343. [PMID: 38001602 PMCID: PMC10670047 DOI: 10.3390/cancers15225343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Serum C-reactive protein (CRP) is an established biomarker for acute inflammation and has been identified as a prognostic indicator for hepatocellular carcinoma (HCC). However, the significance of the serum CRP level, specifically in HCC patients treated with lenvatinib, remains unclear. METHODS We retrospectively analyzed 125 HCC patients who received lenvatinib treatment at six centers. Clinical characteristics were assessed to identify clinical associations between serum CRP and HCC prognosis. RESULTS The median overall serum CRP level was 0.29 mg/dL. The cohort was divided into two groups: the low-CRP group with a serum CRP < 0.5 mg/dL and the high-CRP group with a serum CRP ≥ 0.5 mg/dL. The low-CRP group exhibited significantly longer overall survival (OS) than the high-CRP group (22.9 vs. 7.8 months, p < 0.001). No significant difference was observed for progression-free survival (PFS) between the high- and low-CRP groups (9.8 vs. 8.4 months, p = 0.411), while time-to-treatment failure (TTF) was significantly longer in the low-CRP group (8.5 vs. 4.4 months, p = 0.007). The discontinuation rate due to poor performance status was significantly higher in the high-CRP group (p < 0.001). CONCLUSION A baseline serum CRP level exceeding 0.5 mg/dL was identified as an unfavorable prognostic factor in HCC patients receiving lenvatinib treatment.
Collapse
Affiliation(s)
- Taiki Okumura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.O.); (T.I.); (S.-i.W.); (H.K.); (Y.Y.); (T.U.)
- Department of Advanced Endoscopic Therapy, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.O.); (T.I.); (S.-i.W.); (H.K.); (Y.Y.); (T.U.)
| | - Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.O.); (T.I.); (S.-i.W.); (H.K.); (Y.Y.); (T.U.)
| | - Shun-ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.O.); (T.I.); (S.-i.W.); (H.K.); (Y.Y.); (T.U.)
- Department of Advanced Endoscopic Therapy, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Hiroyuki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.O.); (T.I.); (S.-i.W.); (H.K.); (Y.Y.); (T.U.)
- Department of Health Promotion Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.O.); (T.I.); (S.-i.W.); (H.K.); (Y.Y.); (T.U.)
| | - Ayumi Sugiura
- Department of Internal Medicine, Sato Hospital, Nakano 389-2102, Japan;
| | - Satoru Joshita
- Department of Health Promotion Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Internal Medicine, Yodakubo Hospital, Nagawa 386-0603, Japan
| | - Naoyuki Fujimori
- Department of Gastroenterology, Shinshu Ueda Medical Center, Ueda 386-8610, Japan;
| | - Hideo Kunimoto
- Department of Gastroenterology, Nagano Municipal Hospital, Nagano 381-0006, Japan;
| | - Michiharu Komatsu
- Department of Gastroenterology, Suwa Red Cross Hospital, Suwa 392-0027, Japan;
| | - Hideki Fukushima
- Department of Gastroenterology, Saku Central Hospital Advanced Care Center, Saku 385-0051, Japan;
| | - Hiromitsu Mori
- Department of Gastroenterology, Nagano Red Cross Hospital, Nagano 380-0928, Japan;
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.O.); (T.I.); (S.-i.W.); (H.K.); (Y.Y.); (T.U.)
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto 390-8621, Japan
| |
Collapse
|
19
|
Hu A, Liu Y, Zhang H, Wang T, Zhang J, Cheng W, Yu T, Duan Y, Feng J, Chen Z, Ding Y, Li Y, Li M, Rong Z, Shang Y, Shakila SS, Zou Y, Ma F, Guo B. BPIFB1 promotes metastasis of hormone receptor-positive breast cancer via inducing macrophage M2-like polarization. Cancer Sci 2023; 114:4157-4171. [PMID: 37702269 PMCID: PMC10637056 DOI: 10.1111/cas.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Metastasis is an important factor affecting the prognosis of hormone receptor-positive breast cancer (BC). However, the molecular basis for migration and invasion of tumor cells remains poorly understood. Here, we identify that bactericidal/permeability-increasing-fold-containing family B member 1 (BPIFB1), which plays an important role in innate immunity, is significantly elevated in breast cancer and associated with lymph node metastasis. High expression of BPIFB1 and its coding mRNA are significantly associated with poor prognosis of hormone receptor-positive BC. Using enrichment analysis and constructing immune infiltration evaluation, we predict the potential ability of BPIFB1 to promote macrophage M2 polarization. Finally, we demonstrate that BPIFB1 promotes the metastasis of hormone receptor-positive BC by stimulating the M2-like polarization of macrophages via the establishment of BC tumor cells/THP1 co-culture system, qPCR, Transwell assay, and animal experiments. To our knowledge, this is the first report on the role of BPIFB1 as a tumor promoter by activating the macrophage M2 polarization in hormone receptor-positive breast carcinoma. Together, these results provide novel insights into the mechanism of BPIFB1 in BC.
Collapse
Affiliation(s)
- Anbang Hu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yansong Liu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hanyu Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ting Wang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiarui Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Weilun Cheng
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianshui Yu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yunqiang Duan
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jianyuan Feng
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ziang Chen
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yu Ding
- Department of General SurgeryDaqing Oilfield General HospitalDaqingChina
| | - Yanling Li
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mingcui Li
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhiyuan Rong
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuhang Shang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Suborna S. Shakila
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yiyun Zou
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Fei Ma
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Baoliang Guo
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
20
|
Lyu J, Liu H, Chen L, Liu C, Tao J, Yao Y, Li L, Huang Y, Zhou Z. In situ hydrogel enhances non-efferocytic phagocytosis for post-surgical tumor treatment. J Control Release 2023; 363:402-414. [PMID: 37751825 DOI: 10.1016/j.jconrel.2023.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Post-surgical efferocytosis of tumor associated macrophages (TAMs) originates an immunosuppressive tumor microenvironment and facilitates abscopal metastasis of residual tumor cells. Currently, few strategies could inhibit efferocytosis while recovering the tumor-eliminative phagocytosis of TAMs. Herein, we developed an in situ hydrogel that contains anti-CD47 antibody (aCD47) and apocynin (APO), an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase. This hydrogel amplifies the non-efferocytic phagocytosis of TAMs by (1) blocking the extracellular "Don't eat me" signal of efferocytosis with aCD47, which enhances the receptor-mediated recognition and engulfment of tumor cells by TAMs in the post-surgical tumor bed, and (2) by utilizing APO to dispose of tumor debris in a non-efferocytic manner, which prevents acidification and maturation of efferosomes and allows for M1-polarization of TAMs, leading to improved antigen presentation ability. With the complementary intervention of extracellular and intracellular, this hydrogel reverses the immunosuppressive effects of efferocytosis, and induces a potent M1-associated Th1 immune response against tumor recurrence. In addition, the in situ detachment and distal colonization of metastatic tumor cells were efficiently restrained due to the intervention of efferocytosis. Collectively, the hydrogel potentiates surgery treatment of tumor by recovering the tumor-elimination ability of post-surgical TAMs.
Collapse
Affiliation(s)
- Jiayan Lyu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Huizhi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Jing Tao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yuan Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
21
|
Ogarek N, Oboza P, Olszanecka-Glinianowicz M, Kocelak P. SARS-CoV-2 infection as a potential risk factor for the development of cancer. Front Mol Biosci 2023; 10:1260776. [PMID: 37753372 PMCID: PMC10518417 DOI: 10.3389/fmolb.2023.1260776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The COVID-19 pandemic has a significant impact on public health and the estimated number of excess deaths may be more than three times higher than documented in official statistics. Numerous studies have shown an increased risk of severe COVID-19 and death in patients with cancer. In addition, the role of SARS-CoV-2 as a potential risk factor for the development of cancer has been considered. Therefore, in this review, we summarise the available data on the potential effects of SARS-CoV-2 infection on oncogenesis, including but not limited to effects on host signal transduction pathways, immune surveillance, chronic inflammation, oxidative stress, cell cycle dysregulation, potential viral genome integration, epigenetic alterations and genetic mutations, oncolytic effects and reactivation of dormant cancer cells. We also investigated the potential long-term effects and impact of the antiviral therapy used in COVID-19 on cancer development and its progression.
Collapse
Affiliation(s)
- Natalia Ogarek
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Paulina Oboza
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Piotr Kocelak
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| |
Collapse
|
22
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Heabah NAEG, Darwish SA, Eid AM. Evaluation of the prognostic significance of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in lung carcinoma and its relation to lymphangiogenesis and epithelial mesenchymal transition. Pathol Res Pract 2023; 248:154703. [PMID: 37481855 DOI: 10.1016/j.prp.2023.154703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Exploring the carcinogenic mechanisms of lung carcinoma helps to discover novel prognostic biomarkers and develop new therapeutic options to improve patient's survival. Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1), a transmembrane protein, contributes to cancer progression and metastasis; via stimulation of epithelial mesenchymal transition (EMT) and promotion of angiogenesis. This makes ROR1 an important target for tumor therapy. This study aimed to evaluate expression of ROR1, E-cadherin (a marker of EMT), and D2-40 (a marker of lymphangiogenesis) in lung carcinoma and associate their expressions with the available clinicopathological parameters and patients' survival. Immunohistochemical staining using ROR1, E-cadherin, and D2-40 was performed for 78 cases of lung carcinoma. Kaplan-Meier survival curves and Cox-regression analysis were done. High ROR1 expression was detected in 46.2% of cases. Significant relations were found between high ROR1 expression and larger tumor size (P < 0.001), poorly differentiated tumors (P = 0.001), advanced tumor stages (P < 0.001), positive lymph nodal status (P < 0.001), decreased E-cadherin expression (P < 0.001), and high lymphovascular density (LVD) (P < 0.001). Patients' progression free survival (PFS) and overall survival (OS) were shorter with high ROR1 expression. High ROR1 expression, high LVD, large tumor size, and adenocarcinoma histopathological type were independent risk factors for OS in lung carcinoma patients. High ROR1 expression is associated with poor prognostic parameters in lung carcinoma patients including higher grade, advanced stages, high LVD, epithelial mesenchymal transition, as well as decreased PFS and OS.
Collapse
Affiliation(s)
| | - Sara A Darwish
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Tanta University, Egypt
| | | |
Collapse
|
24
|
Pathways Affected by Falcarinol-Type Polyacetylenes and Implications for Their Anti-Inflammatory Function and Potential in Cancer Chemoprevention. Foods 2023; 12:foods12061192. [PMID: 36981118 PMCID: PMC10048309 DOI: 10.3390/foods12061192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Polyacetylene phytochemicals are emerging as potentially responsible for the chemoprotective effects of consuming apiaceous vegetables. There is some evidence suggesting that polyacetylenes (PAs) impact carcinogenesis by influencing a wide variety of signalling pathways, which are important in regulating inflammation, apoptosis, cell cycle regulation, etc. Studies have shown a correlation between human dietary intake of PA-rich vegetables with a reduced risk of inflammation and cancer. PA supplementation can influence cell growth, gene expression and immunological responses, and has been shown to reduce the tumour number in rat and mouse models. Cancer chemoprevention by dietary PAs involves several mechanisms, including effects on inflammatory cytokines, the NF-κB pathway, antioxidant response elements, unfolded protein response (UPR) pathway, growth factor signalling, cell cycle progression and apoptosis. This review summarises the published research on falcarinol-type PA compounds and their mechanisms of action regarding cancer chemoprevention and also identifies some gaps in our current understanding of the health benefits of these PAs.
Collapse
|
25
|
MAPK4 silencing in gastric cancer drives liver metastasis by positive feedback between cancer cells and macrophages. Exp Mol Med 2023; 55:457-469. [PMID: 36797541 PMCID: PMC9981715 DOI: 10.1038/s12276-023-00946-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 02/18/2023] Open
Abstract
Liver metastasis is a major cause of death in gastric cancer patients, but the underlying mechanisms are poorly understood. Through a combination of in vivo screening and transcriptome profiling followed by quantitative RT-PCR and tissue array analyses, we found that mitogen-activated protein kinase 4 (MAPK4) downregulation in gastric cancer tissues from patients is significantly associated with liver metastasis and poor prognosis. The knockdown of MAPK4 in gastric cancer cells promotes liver metastasis in orthotopic mouse models. MAPK4 depletion in gastric cancer cells induces the secretion of macrophage migration inhibitory factor (MIF) to polarize tumor-associated macrophages (TAMs) in orthotopic xenograft tumors. Moreover, TAMs activate epithelial-mesenchymal transition of gastric cancer cells to suppress MAPK4 expression, which further increases MIF secretion to polarize TAMs. Taken together, our results suggest a previously undescribed positive feedback loop between cancer cells and macrophages mediated by MAPK4 silencing that facilitates gastric cancer liver metastasis.
Collapse
|
26
|
Liu Z, Chen S, Jia W, Qian Y, Yang X, Zhang M, Fang T, Liu H. Comprehensive analysis reveals CCDC60 as a potential biomarker correlated with prognosis and immune infiltration of head and neck squamous cell carcinoma. Front Oncol 2023; 13:1113781. [PMID: 37064086 PMCID: PMC10098326 DOI: 10.3389/fonc.2023.1113781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Background Coiled-coil domain containing 60 (CCDC60) is a member of the CCDC family, which participates in the progression of many types of cancer. However, the prognostic value of CCDC60 in head and neck squamous cell carcinoma (HNSC) and its function in tumor immunity remain unclear. Methods CCDC60 expression and its prognostic potential in HNSC were evaluated by bioinformatics approaches, which was validated in human HNSC samples. Genetic alteration analysis of CCDC60 and the underlying biological function of CCDC60 related co-expressed genes in HNSC were analyzed. The impact of CCDC60 on the regulation of immune infiltration in HNSC was comprehensively investigated. In vitro, a series of functional assays on CCDC60 were performed in HNSC cells. Results Our study has indicated that compared with the adjacent normal tissues, CCDC60 expression was considerably downregulated in HNSC tissues. High CCDC60 expression was connected with favorable outcome of HNSC patients, and its prognostic significance was examined by distinct clinical characteristics. We identified the CCDC60-related co-expression genes, which were mainly enriched in the NOD-like receptor signaling pathway associated with the inhibition of tumor growth, leading to a better prognosis of HNSC patients. In vitro, CCDC60 overexpression significantly inhibited the growth, migration and invasiveness but regulated cell cycle progression, and promoted cell adhesion of Fadu and Cal27 cells. Additionally, high CCDC60 expression had strong connections with the infiltrating levels of immune cells, immune marker sets, immunomodulators and chemokines in HNSC, suggesting that targeting CCDC60 could be a promising strategy to enhance the efficacy of immunotherapy for HNSC patients. Conclusion Tumor suppressor CCDC60 may be identified as a prognostic and immune-related indicator in HNSC, which had the potential functions in regulating the immune infiltration of HNSC and improving the response to immunotherapy for HNSC patients.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuai Chen
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenming Jia
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ye Qian
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqi Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Minfa Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tianhe Fang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Heng Liu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Heng Liu,
| |
Collapse
|
27
|
Noureldeen AFH, Aziz SW, Shouman SA, Mohamed MM, Attia YM, Ramadan RM, Elhady MM. Molecular Design, Spectroscopic, DFT, Pharmacological, and Molecular Docking Studies of Novel Ruthenium(III)-Schiff Base Complex: An Inhibitor of Progression in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013624. [PMID: 36294202 PMCID: PMC9603487 DOI: 10.3390/ijerph192013624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/03/2023]
Abstract
A novel ruthenium(III)-pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 μM for HepG2, 38.5 μM for T47D, 39.7 μM for HCT, and 46.7 μM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3-treated cells. The score values for the two receptors were -3.25 and -3.91 kcal/mol.
Collapse
Affiliation(s)
- Amani F. H. Noureldeen
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Safa W. Aziz
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Samia A. Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Magdy M. Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yasmin M. Attia
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ramadan M. Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Mostafa M. Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
28
|
chen L, Huang Y, Dong B, Gu Y, Li Y, Cang W, Sun P, Xiang Y. Low Level FLT3LG is a Novel Poor Prognostic Biomarker for Cervical Cancer with Immune Infiltration. J Inflamm Res 2022; 15:5889-5904. [PMID: 36274829 PMCID: PMC9579815 DOI: 10.2147/jir.s384908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction The FMS-related tyrosine kinase 3 (FLT3) ligand (FLT3LG), a growth factor, binds to FLT3 on dendritic cell (DCs) to enhance their differentiation and expansion. It has shown great potential as an immunotherapy target for cancers. However, the expression and function of FLT3LG in cervical cancer remain largely unknown. Materials and Methods In this study, we obtained the expression of FLT3LG, the clinical prognosis in cervical cancer, via multiple databases, including The Cancer Genome Atlas (TCGA), the TISIDB database, and Tumor Immune Estimate Resource (TIMER). The results were further investigated using real-time quantitative PCR (qPCR) cytology specimens in 489 patients. Furthermore, Kaplan-Meier Cox regression and prognostic nomogram analyses were used to assess FLT3LG's clinical significance in cervical cancer patients. All calculations used the R package. Results As a result, FLT3LG expression decreased in cervical cancer compared with standard samples. And the low expression of FLT3LG was associated with a poor prognosis. Furthermore, Receiver Operating Characteristics (ROC) analysis indicated that FLT3LG might serve as a valuable diagnostic biomarker for cervical cancer. Additionally, it indicated that the FLT3LG had the highest odds ratio (OR=10.519; (7.371-27.071)) for detecting CIN 2+. In addition, our result also demonstrated that expression of FLT3LG was closely related to immune cells, immune inhibitors, immunostimulators, receptors, and chemokines in CESC. Conclusion Research on FLT3LG provided insight into its critical function. Hence, the low expression of FLT3LG may be a valuable biomarker in CESC patients linked with immune infiltration.
Collapse
Affiliation(s)
- Lihua chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuxuan Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Ye Li
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China
| | - Wei Cang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China,Pengming Sun, Fujian Provincial Maternity and Child Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, People’s Republic of China, Tel +86-591-87558732; +86-591-97279671, Fax +86-591-87551247, Email
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,Correspondence: Yang Xiang, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuai Fu Yuan Wang Fu Jing, Dong Cheng District, Beijing, 100730, People’s Republic of China, Tel +86-1065296068, Fax +86-1065296218, Email
| |
Collapse
|
29
|
Wang YF, Yu L, Hu ZL, Fang YF, Shen YY, Song MF, Chen Y. Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer. Cell Death Dis 2022; 13:748. [PMID: 36038549 PMCID: PMC9424193 DOI: 10.1038/s41419-022-05169-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023]
Abstract
Tumor associated macrophages (TAMs) play an important role in tumorigenesis, development and anti-cancer drug therapy. However, very few epigenetic compounds have been elucidated to affect tumor growth by educating TAMs in the tumor microenvironment (TME). Herein, we identified that EZH2 performs a crucial role in the regulation of TAMs infiltration and protumoral polarization by interacting with human breast cancer (BC) cells. We showed that EZH2 inhibitors-treated BC cells induced M2 macrophage polarization in vitro and in vivo, while EZH2 knockdown exhibited the opposite effect. Mechanistically, inhibition of EZH2 histone methyltransferase alone by EZH2 inhibitors in breast cancer cells could reduce the enrichment of H3K27me3 on CCL2 gene promoter, elevate CCL2 transcription and secretion, contributing to the induction of M2 macrophage polarization and recruitment in TME, which reveal a potential explanation behind the frustrating results of EZH2 inhibitors against breast cancer. On the contrary, EZH2 depletion led to DNA demethylation and subsequent upregulation of miR-124-3p level, which inhibited its target CCL2 expression in the tumor cells, causing arrest of TAMs M2 polarization. Taken together, these data suggested that EZH2 can exert opposite regulatory effects on TAMs polarization through its enzymatic or non-enzymatic activities. Our results also imply that the effect of antitumor drugs on TAMs may affect its therapeutic efficacy, and the combined application with TAMs modifiers should be warranted to achieve great clinical success.
Collapse
Affiliation(s)
- Ya-fang Wang
- grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China ,grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, PR China
| | - Lei Yu
- grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Zong-long Hu
- grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Yan-fen Fang
- grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Yan-yan Shen
- grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Min-fang Song
- grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - Yi Chen
- grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Chabeli MS, Wang X, Yinghao L, Chen C, Yang C, Shou Y, Wang S, Chen K. Similarities between wound re-epithelialization and Metastasis in ESCC and the crucial involvement of macrophages: A review. Cancer Treat Res Commun 2022; 32:100621. [PMID: 36007473 DOI: 10.1016/j.ctarc.2022.100621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
In cancer, tumor-associated macrophages (TAMs) possess crucial functions in facilitating epithelial-mesenchymal transition (EMT). EMT is a crucial process in tumor metastasis. Tumor metastasis is one of the hallmarks of cancer and leads to patient mortality. Cancer cells often find ways to evade being detected and attacked by the immune system. This is achieved by cross-talk between cancer cells and the altered microenvironment. The accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) creates an immunosuppressive and tumor-supportive environment. Circulating monocytes and macrophages which are recruited into tumors are defined as tumor-associated macrophages once in the TME. Based on the activated stimuli and function, macrophages can be divided into M1 macrophages and M2 macrophages. M1 macrophages, also known as classically activated macrophages, exhibit pro-inflammatory and antitumor activities. M2 macrophages, also known as alternatively activated macrophages, exhibit anti-inflammatory, pro-tumorigenic, and wound healing activities. TAMs are considered to be of the M2 phenotype. The TME polarizes recruited macrophages into M2 macrophages as they provide an immunosuppressive pro-tumoral environment. Accumulating studies show that the presence of TAMs in esophageal squamous cell carcinoma (ESCC) leads to tumor progression. In this review, we discuss how EMT can be used by TAMs to cause tumor migration and metastasis in ESCC. We also discuss the potential therapies targeting TAMs.
Collapse
Affiliation(s)
- Maletsooa Story Chabeli
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China,.
| | - Xiaoqian Wang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Yinghao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chao Chen
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Chenbo Yang
- Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Yuwei Shou
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Shuaiyuan Wang
- Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Kuisheng Chen
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China,.
| |
Collapse
|
31
|
Narayanan S, Teng QX, Wu ZX, Nazim U, Karadkhelkar N, Acharekar N, Yoganathan S, Mansoor N, Ping FF, Chen ZS. Anticancer effect of Indanone-based thiazolyl hydrazone derivative on p53 mutant colorectal cancer cell lines: An in vitro and in vivo study. Front Oncol 2022; 12:949868. [PMID: 35992866 PMCID: PMC9386487 DOI: 10.3389/fonc.2022.949868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is a major health problem, and it is the third most diagnosed cancer in the United States. The current treatment for colorectal cancer includes irinotecan, a topoisomerase I inhibitor, and other targeted drugs, such as bevacizumab and regorafenib. The low response rates and incidence of high toxicity caused by these drugs instigated an evaluation of the anticancer efficacy of a series of 13 thiazolyl hydrazone derivatives of 1-indanone, and four compounds among them show favorable anticancer activity against some of the tested colorectal cancer cell lines with IC50 values ranging from 0.41 ± 0.19 to 6.85 ± 1.44 μM. It is noteworthy that one of the indanone-based thiazolyl hydrazone (ITH) derivatives, N-Indan-1-ylidene-N’-(4-Biphenyl-4-yl-thiazol-2-yl)-hydrazine (ITH-6), has a better cytotoxicity profile against p53 mutant colorectal cancer cells HT-29, COLO 205, and KM 12 than a p53 wild-type colorectal cancer cell line, such as HCT 116. Mechanistic studies show that ITH-6 arrests these three cancer cell lines in the G2/M phase and induces apoptosis. It also causes a rise in the reactive oxygen species level with a remarkable decrease in the glutathione (GSH) level. Moreover, ITH-6 inhibits the expression of NF-κB p65 and Bcl-2, which proves its cytotoxic action. In addition, ITH-6 significantly decreased tumor size, growth rate, and tumor volume in mice bearing HT-29 and KM 12 tumor xenografts. Moreover, CRISPR/Cas9 was applied to establish an NF-κB p65 gene knockout HT-29 cell line model to validate the target of ITH-6. Overall, the results suggest that ITH-6 could be a potential anticancer drug candidate for p53 mutant colorectal cancers.
Collapse
Affiliation(s)
- Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Urooj Nazim
- Department of Pharmaceutical Chemistry, University of Karachi, Karachi, Pakistan
| | - Nishant Karadkhelkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Najia Mansoor
- Department of Pharmaceutical Chemistry, University of Karachi, Karachi, Pakistan
| | - Feng-Feng Ping
- Department of Reproductive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wu-xi, China
- *Correspondence: Zhe-Sheng Chen, ; Feng-Feng Ping,
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- *Correspondence: Zhe-Sheng Chen, ; Feng-Feng Ping,
| |
Collapse
|
32
|
Méndez-Clemente A, Bravo-Cuellar A, González-Ochoa S, Santiago-Mercado M, Palafox-Mariscal L, Jave-Suárez L, Solorzano-Ibarra F, Villaseñor-García M, Ortiz-Lazareno P, Hernández-Flores G. Dual STAT‑3 and IL‑6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL‑6/IL‑6R/STAT‑3 axis. Oncol Rep 2022; 48:138. [PMID: 35703345 PMCID: PMC9245073 DOI: 10.3892/or.2022.8349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is a key public health problem worldwide; at diagnosis, a high percentage of patients exhibit tumor cell invasion of adjacent tissue. STAT‑3, IL‑6 receptor (R) and IL‑6 serum levels are associated with enhanced PCa migratory, invasive, clonogenic and metastatic ability. Inhibiting the STAT‑3 pathway at different levels (cytokines, receptors, and kinases) exhibits relative success in cancer. The present study investigated the effect of Stattic (Stt) + Tocilizumab (Tcz) on proliferative, clonogenic, migratory and invasive ability of human metastatic PCa (assessed by colony formation, wound healing and migration assay). RWPE‑1 (epithelial prostate immortalized cells), 22Rv1 (Tumor cells), LNCaP (Metastatic cells) and DU‑145 (metastatic, castration‑resistant prostate cells) cells were used in vitro to evaluate levels of cytokines, chemokines, growth factors (Cytometric Bead Array), STAT‑3, phosphorylated STAT‑3 (In‑Cell Western), IL‑6R, vimentin and epithelial (E‑) cadherin (Western Blot). The effect of inhibition of STAT‑3 (expressed constitutively in DU‑145 cells) with Stt and/or Tcz on expression levels of vimentin, VEGF, and E‑cadherin, as well as proliferative, clonogenic, migratory and invasive capacity of metastatic PCa cells was assessed. The expression levels of IL‑6, C‑X‑C chemokine ligand 8, VEGF and vimentin, as well as proliferation and migration, were increased in metastatic PCa cells. Treatment with Stt or Tcz decreased vimentin and VEGF and increased E‑cadherin expression levels and inhibited proliferative, clonogenic, migratory and invasive capacity of DU‑145 cells; addition of IL‑6 decreased this inhibitory effect. However, Stt + Tcz maintained inhibition even in the present of high concentrations of IL‑6. Stt + Tcz decreased expression of vimentin and VEGF and inhibited the proliferative, clonogenic, migratory and invasive capacity of metastatic PCa cells. To the best of our knowledge, the present study is the first to combine Stt, a STAT‑3 inhibitor, with Tcz, an antibody against IL‑6R, to target tumor cells.
Collapse
Affiliation(s)
- Anibal Méndez-Clemente
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Alejandro Bravo-Cuellar
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Salvador González-Ochoa
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Maria Santiago-Mercado
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Luis Palafox-Mariscal
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Luis Jave-Suárez
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Fabiola Solorzano-Ibarra
- Chronic Degenerative Diseases Research Institute Postdoctoral Stays Program for Mexico 2021, Department of Molecular and Genomic Biology, University of Guadalajara (UdeG), University Center for Health Sciences (CUCS), Guadalajara, Jalisco 44340, México
| | - Maria Villaseñor-García
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Pablo Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Georgina Hernández-Flores
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| |
Collapse
|
33
|
A systematic characterization of microglia-like cell occurrence during retinal organoid differentiation. iScience 2022; 25:104580. [PMID: 35789843 PMCID: PMC9250027 DOI: 10.1016/j.isci.2022.104580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
|
34
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
35
|
Li Z, Wang R, Qiu C, Cao C, Zhang J, Ge J, Shi Y. Role of DTL in Hepatocellular Carcinoma and Its Impact on the Tumor Microenvironment. Front Immunol 2022; 13:834606. [PMID: 35392073 PMCID: PMC8980229 DOI: 10.3389/fimmu.2022.834606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
Background The crucial role of DTL has been previously implicated in genomic stability; however, its prognostic value and its relation with tumor immunity in hepatocellular carcinoma (HCC) remain to be further explored. Methods Transcriptional and mutational datasets as well as clinical information were retrieved from the GEO, ICGC, and TCGA databases. Differentially expressed genes (DEGs) were obtained from the comparison of DTLhigh and DTLlow expression groups of the TCGA-HCC cohort. Those genes were under KEGG and gene ontology (GO) analyses to decipher the influence of the DTL gene on the biological behavior of HCC tumor cells. The survival status and mutational characteristics of patients according to DTL levels were depicted and analyzed. The DTL overexpression in HCC and its impact on prognosis were further confirmed by a cohort of 114 HCC patients (validation cohort). The TIMER, GEPIA, and TISIDB databases were adopted to investigate the potential relations between DTL levels and the status of immune cells, as well as immune cell infiltrations. Results The DTL gene is overexpressed in tumor tissues compared with distant non-malignant liver tissues, and DTL overexpression in HCC would enhance the HCC cells in the activities of cell cycle and division. HCC patients with high DTL expression have unfavorable clinical outcomes and harbor more somatic mutations than those with low DTL expression, and multivariate analysis also revealed that DTL overexpression could act as an independent biomarker for prognosis. Moreover, the DTL gene was positively linked to marker sets of infiltrating activated CD8+ and CD4+ T cells; however, these cells demonstrated to be functionally exhausted. Conclusions Patients with a DTL overexpression phenotype in HCC have poorer prognosis than those in the DTLlow group due to the role of the DTL gene in the process of pro-cell proliferation, accompanied by the immunosuppressive microenvironment and T cell exhaustion.
Collapse
Affiliation(s)
- Zuyin Li
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China.,Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rangrang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Can Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of People's Liberation Army (PLA)-Peking University Teaching Hospital, Beijing, China
| | - Yuanping Shi
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
37
|
Zhang J, Wang H, Yuan C, Wu J, Xu J, Chen S, Zhang C, He Y. ITGAL as a Prognostic Biomarker Correlated With Immune Infiltrates in Gastric Cancer. Front Cell Dev Biol 2022; 10:808212. [PMID: 35399517 PMCID: PMC8987306 DOI: 10.3389/fcell.2022.808212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Integrin alpha L (ITGAL) is a member of the integrin family in which the abnormal expression is linked with carcinogenesis and immune regulation. However, the relation between ITGAL and the prognosis of gastric cancer (GC) and tumor-infiltrating lymphocytes (TILs) are not well understood. The differential expressions of ITGAL in human tumors and the clinical prognosis in GC were systematically analyzed via multiple databases including Gene Expression Profiling Interaction Analysis (GEPIA), UALCAN, Tumor Immune Estimation Resource (TIMER), and Kaplan–Meier (KM) plotter. TIMER, GEPIA, and TISIDB databases were used to comprehensively investigate the correlation between ITGAL and tumor infiltration immune cells. Also, further results were investigated by immunohistochemistry, qRT-PCR, and Western blot. We found that ITGAL expression in GC samples was considerably increased than in peritumor samples. Sample type, subgroup, cancer stage, lymphatic node stage, and worse survival were strongly related to high ITGAL expression. Moreover, upregulated ITGAL expression was strongly connected with immunomodulators, chemokines, and infiltrating levels of CD8+, CD4+ T cell, B cell, monocyte, neutrophil, macrophage, T-cell regulatory, NK cell, and myeloid dendritic cell in stomach adenocarcinoma (STAD). Specifically, immunohistochemistry and bioinformatic analysis showed that ITGAL expression was shown to have strong relationships with various immunological marker sets including PD1 (T-cell exhaustion marker). In conclusion, ITGAL is a prognostic biomarker for GC patients. It might regulate tumor immune microenvironment leading to poor prognosis. Furthermore, studies are essential to explore therapeutic targeting ITGAL.
Collapse
Affiliation(s)
- Junchang Zhang
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Han Wang
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cheng Yuan
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jing Wu
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiannan Xu
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Songyao Chen
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changhua Zhang
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Changhua Zhang, ; Yulong He,
| | - Yulong He
- Department of Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Zhang, ; Yulong He,
| |
Collapse
|
38
|
Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-Associated Macrophages: Key Players in Triple-Negative Breast Cancer. Front Oncol 2022; 12:772615. [PMID: 35237507 PMCID: PMC8882594 DOI: 10.3389/fonc.2022.772615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Triple negative breast cancer (TNBC) refers to the subtype of breast cancer which is negative for ER, PR, and HER-2 receptors. Tumor-associated macrophages (TAMs) refer to the leukocyte infiltrating tumor, derived from circulating blood mononuclear cells and differentiating into macrophages after exuding tissues. TAMs are divided into typical activated M1 subtype and alternately activated M2 subtype, which have different expressions of receptors, cytokines and chemokines. M1 is characterized by expressing a large amount of inducible nitric oxide synthase and TNF-α, and exert anti-tumor activity by promoting pro-inflammatory and immune responses. M2 usually expresses Arginase 1 and high levels of cytokines, growth factors and proteases to support their carcinogenic function. Recent studies demonstrate that TAMs participate in the process of TNBC from occurrence to metastasis, and might serve as potential biomarkers for prognosis prediction.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Luo
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| |
Collapse
|
39
|
Rahimmanesh I, Shariati L, Dana N, Esmaeili Y, Vaseghi G, Haghjooy Javanmard S. Cancer Occurrence as the Upcoming Complications of COVID-19. Front Mol Biosci 2022; 8:813175. [PMID: 35155571 PMCID: PMC8831861 DOI: 10.3389/fmolb.2021.813175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggested that patients with comorbidities including cancer had a higher risk of mortality or developing more severe forms of COVID-19. The interaction of cancer and COVID-19 is unrecognized and potential long-term effects of COVID-19 on cancer outcome remain to be explored. Furthermore, whether COVID-19 increases the risk of cancer in those without previous history of malignancies, has not yet been studied. Cancer progression, recurrence and metastasis depend on the complex interaction between the tumor and the host inflammatory response. Extreme proinflammatory cytokine release (cytokine storm) and multi-organ failure are hallmarks of severe COVID-19. Besides impaired T-Cell response, elevated levels of cytokines, growth factors and also chemokines in the plasma of patients in the acute phase of COVID-19 as well as tissue damage and chronic low-grade inflammation in "long COVID-19" syndrome may facilitate cancer progression and recurrence. Following a systemic inflammatory response syndrome, some counterbalancing compensatory anti-inflammatory mechanisms will be activated to restore immune homeostasis. On the other hand, there remains the possibility of the integration of SARS- CoV-2 into the host genome, which potentially may cause cancer. These mechanisms have also been shown to be implicated in both tumorigenesis and metastasis. In this review, we are going to focus on potential mechanisms and the molecular interplay, which connect COVID-19, inflammation, and immune-mediated tumor progression that may propose a framework to understand the possible role of COVID-19 infection in tumorgenesis and cancer progression.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
40
|
Lee SW, Yang CC, Lai HY, Tsai HH, Yeh CF, Kuo YH, Kang NW, Chen TJ, Chang SL. Roundabout Guidance Receptor 1 Is an Emerging Prognostic Biomarker for Nasopharyngeal Carcinoma. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221113244. [PMID: 35898392 PMCID: PMC9310334 DOI: 10.1177/11795549221113244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharynx with high morbidity and mortality in Southeast Asia and south of China. Roundabout guidance receptor 1 (ROBO1) can regulate axonogenesis (axon-like protrusion), which may play an important role in migration. However, the roles of ROBO1 in NPC have not been clarified. Methods: A comparative analysis employing the NPC transcriptome (GSE12452) and the axonogenesis-related genes (GO: 0050772) was performed. In total, 124 tissue blocks from patients primarily diagnosed as NPC (1993-2002) were examined using immunohistochemical staining. The connections between clinicopathological variables and protein immunoexpression were analyzed by Pearson’s chi-square test. The Kaplan–Meier method with a log-rank test was employed to plot survival curves. Multivariate analysis was performed using the Cox proportional hazards model to identify independent prognostic biomarker. Results: According to transcriptome analysis, we found that ROBO1 is significantly highly expressed in NPC tissues compared with normal tissues. The immunohistochemistry (IHC) staining showed that high expression of ROBO1 was significantly related to primary tumor (T1T2 and T3T4) ( P = .024), nodal metastasis status (N0N1 and N2N3) ( P = .030), stage (I-II and III-IV) ( P = .019), and histological grade (keratinizing, non-keratinizing, and undifferentiated) ( P = .065). Importantly, NPC patients with high ROBO1 expression had poorer disease-specific survival (DSS) ( P = .0001), distal metastasis-free survival (DMeFS) ( P < .0001), and local recurrence-free survival (LRFS) ( P = .0001) compared with NPC patients with low ROBO1 expression through the uni-/multivariate and the Kaplan–Meier survival analyses. Conclusion: Our report indicates that ROBO1 might be a potential prognostic biomarker for NPC.
Collapse
Affiliation(s)
- Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, Tainan
| | - Hsin-Hwa Tsai
- Department of Medical Research, Chi Mei Medical Center, Tainan
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, Tainan
| | - Cheng-Fa Yeh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan
- College of Pharmacy and Science, Chia Nan University, Tainan
| | - Nai-Wen Kang
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan
| | - Tzu-Ju Chen
- Department of Pet care and grooming, Chung Hwa University of Medical Technology, Tainan
- Department of Clinical Pathology, Chi-Mei Medical Center, Tainan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung
| | - Shih-Lun Chang
- Department of Pet care and grooming, Chung Hwa University of Medical Technology, Tainan
- Department of Otolaryngology, Chi Mei Medical Center, Tainan
| |
Collapse
|
41
|
Szulc-Kielbik I, Kielbik M. Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:107-140. [PMID: 35165862 DOI: 10.1007/978-3-030-91311-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor microenvironment (TME) is a complex and constantly evolving entity that consists not only of cancer cells, but also of resident host cells and immune-infiltrating cells, among which macrophages are significant components, due to their diversity of functions through which they can influence the immune response against tumor cells. Macrophages present in tumor environment are termed as tumor-associated macrophages (TAMs). They are strongly plastic cells, and depending on the TME stimuli (i.e., cytokines, chemokines), TAMs polarize to antitumoral (M1-like TAMs) or protumoral (M2-like TAMs) phenotype. Both types of TAMs differ in the surface receptors' expression, activation of intracellular signaling pathways, and ability of production and various metabolites release. At the early stage of tumor formation, TAMs are M1-like phenotype, and they are able to eliminate tumor cells, i.e., by reactive oxygen species formation or by presentation of cancer antigens to other effector immune cells. However, during tumor progression, TAMs M2-like phenotype is dominating. They mainly contribute to angiogenesis, stromal remodeling, enhancement of tumor cells migration and invasion, and immunosuppression. This wide variety of TAMs' functions makes them an excellent subject for use in developing antitumor therapies which mainly is based on three strategies: TAMs' elimination, reprograming, or recruitment inhibition.
Collapse
Affiliation(s)
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
42
|
Ramundo V, Zanirato G, Aldieri E. The Epithelial-to-Mesenchymal Transition (EMT) in the Development and Metastasis of Malignant Pleural Mesothelioma. Int J Mol Sci 2021; 22:ijms222212216. [PMID: 34830097 PMCID: PMC8621591 DOI: 10.3390/ijms222212216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor mainly associated with asbestos exposure and is characterized by a very difficult pharmacological approach. One of the molecular mechanisms associated with cancer onset and invasiveness is the epithelial-to-mesenchymal transition (EMT), an event induced by different types of inducers, such as transforming growth factor β (TGFβ), the main inducer of EMT, and oxidative stress. MPM development and metastasis have been correlated to EMT; On one hand, EMT mediates the effects exerted by asbestos fibers in the mesothelium, particularly via increased oxidative stress and TGFβ levels evoked by asbestos exposure, thus promoting a malignant phenotype, and on the other hand, MPM acquires invasiveness via the EMT event, as shown by an upregulation of mesenchymal markers or, although indirectly, some miRNAs or non-coding RNAs, all demonstrated to be involved in cancer onset and metastasis. This review aims to better describe how EMT is involved in driving the development and invasiveness of MPM, in an attempt to open new scenarios that are useful in the identification of predictive markers and to improve the pharmacological approach against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Giada Zanirato
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
43
|
Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, Li D, Calvo R, Dashnyam M, Singh A, Guerin T, White J, Ravichandran S, Kumar P, Talsania K, Chen V, Ghebremedhin A, Karanam B, Bin Salam A, Amin R, Odzorig T, Aiken T, Nguyen V, Bian Y, Zarif JC, de Groot AE, Mehta M, Fan L, Hu X, Simeonov A, Pate N, Abu-Asab M, Ferrer M, Southall N, Ock CY, Zhao Y, Lopez H, Kozlov S, de Val N, Yates CC, Baljinnyam B, Marugan J, Rudloff U. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med 2021; 12:12/530/eaax6337. [PMID: 32051227 DOI: 10.1126/scitranslmed.aax6337] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.
Collapse
Affiliation(s)
- Jesse M Jaynes
- College of Agriculture, Environment and Nutrition Sciences, Integrative Biosciences Program, Tuskegee University, Tuskegee, AL 36088, USA.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Rushikesh Sable
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wendy Bautista
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Zachary Knotts
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Abisola Abisoye-Ogunniyan
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Raul Calvo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Myagmarjav Dashnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anju Singh
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Parimal Kumar
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Keyur Talsania
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Vicky Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ruksana Amin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Taivan Odzorig
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Taylor Aiken
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Victoria Nguyen
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yansong Bian
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amber E de Groot
- James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Mehta
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick, MD 21701, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, MD 20892, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Chan-Young Ock
- Department of Hemato Oncology, Seoul National University Hospital, Seoul 03080, Korea
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | | | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA.,Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 21701, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Pradhan R, Chatterjee S, Hembram KC, Sethy C, Mandal M, Kundu CN. Nano formulated Resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J Nutr Biochem 2021; 92:108624. [PMID: 33705943 DOI: 10.1016/j.jnutbio.2021.108624] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/02/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022]
Abstract
Tumor associated macrophages in the tumor microenvironment secrete multiple cytokines, which regulate cancer cells growth and invasiveness. We systematically studied the role of cytokines in the induction of cancer stem like cells (CSCs) in oral cancer cells niche and evaluated the mechanism of Resveratrol nanoparticle (Res-Nano) mediated-reduction of CSCs properties in cells. A highly M1-like macrophages-enriched conditioned medium (CM) was generated by treating fixed doses of PMA and LPS in THP-1 cells alone as well as co-cultured of H-357 plus THP-1 cells. These M1-like macrophages increased the production of cytokines (e.g., TNF-α, IL-6, IL-1β, etc.). A CSCs populated environment was created after addition of cytokine-enriched-CM of co-culture of H-357 and THP-1 cells to cancer cells and cytokine enriched CM of THP-1 cells to patient derived primary oral cancer cells, respectively. After incubation with CM, enhancement of stemness, angiogenic and metastatic properties of both H-357 and primary oral cancer cells were noted. Res-NP decreased the cytokines level in CSCs-enriched cells and reduced the invasion, proliferation and growth of CSCs. Representative metastatic (CD133, ALDH1, CXCR4, etc.) and angiogenic markers (MMPs, iNOS, VEGF-A, etc.) were decreased after Res-NP treatment in CSCs enriched oral cancer cells niche. It also disrupted angiogenesis, depleted nitric oxide production in fertilized chick embryos and reduced the expression of metastatic and angiogenic markers in xenograft mice model system. Thus, this study concluded that CSCs-mediated stemness is a cytokine dependent phenomena and treatment of Res-NP inhibit this process in in vitro, in vivo and ex vivo systems.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Krushna Chandra Hembram
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur-721302, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India.
| |
Collapse
|
45
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
46
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
47
|
He Y, Pei JH, Li XQ, Chi G. IL-35 promotes EMT through STAT3 activation and induces MET by promoting M2 macrophage polarization in HCC. Biochem Biophys Res Commun 2021; 559:35-41. [PMID: 33932898 DOI: 10.1016/j.bbrc.2021.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment and interplay with cancer cells could promote tumor growth and metastasis. Here we report that polarization state of macrophages could affect epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). IL-35 level secreted by M1 macrophage was significantly higher than M2 macrophage and it facilitated EMT process through activation of STAT3 in hepatocellular carcinoma cells. Interestingly, IL-35 could not directly promote MET, but it could indirectly induce MET of HCC cells through M2 macrophage polarization. These results indicated the level of IL-35 in tumor microenvironment may fluctuate at different stages of oncogenesis to regulate epithelial plasticity of HCC and provide potential therapeutic targets for tumor metastasis.
Collapse
Affiliation(s)
- Yuan He
- Department of General Surgery, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jin-Hong Pei
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Xue-Qing Li
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Gang Chi
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| |
Collapse
|
48
|
Woo Y, Lee HJ, Kim J, Kang SG, Moon S, Han JA, Jung YM, Jung YJ. Rapamycin Promotes ROS-Mediated Cell Death via Functional Inhibition of xCT Expression in Melanoma Under γ-Irradiation. Front Oncol 2021; 11:665420. [PMID: 33959512 PMCID: PMC8093631 DOI: 10.3389/fonc.2021.665420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Although many cancer patients are administered radiotherapy for their treatment, the interaction between tumor cells and macrophages in the tumor microenvironment attenuates the curative effects of radiotherapy. The enhanced activation of mTOR signaling in the tumors promotes tumor radioresistance. In this study, the effects of rapamycin on the interaction between tumor cells and macrophages were investigated. Rapamycin and 3BDO were used to regulate the mTOR pathway. In vitro, tumor cells cocultured with macrophages in the presence of each drug under normoxic or hypoxic conditions were irradiated with γ–rays. In vivo, mice were irradiated with γ–radiation after injection with DMSO, rapamycin and 3BDO into tumoral regions. Rapamycin reduced the secretion of IL-4 in tumor cells as well as YM1 in macrophages. Mouse recombinant YM1 decreased the enhanced level of ROS and the colocalized proportion of both xCT and EEA1 in irradiated tumor cells. Human recombinant YKL39 also induced results similar to those of YM1. Moreover, the colocalized proportion of both xCT and LC3 in tumor tissues was elevated by the injection of rapamycin into tumoral regions. Overall, the suppression of mTOR signaling in the tumor microenvironment might be useful for the improvement of tumor radioresistance.
Collapse
Affiliation(s)
- Yunseo Woo
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea
| | - Jeongyeon Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon, South Korea
| | - Seung Goo Kang
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea.,Department of Systems Immunology, Kangwon National University, Chuncheon, South Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea
| | - Jeong A Han
- Department of Biochemistry and Molecular Biology, Kangwon National University, Chuncheon, South Korea
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea.,Department of Chemistry, Kangwon National University, Chuncheon, South Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea.,Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
49
|
Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N, Mandai M. Tumor Immune Microenvironment during Epithelial-Mesenchymal Transition. Clin Cancer Res 2021; 27:4669-4679. [PMID: 33827891 DOI: 10.1158/1078-0432.ccr-20-4459] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been shown to play a critical role in tumor development from initiation to metastasis. EMT could be regarded as a continuum, with intermediate hybrid epithelial and mesenchymal phenotypes having high plasticity. Classical EMT is characterized by the phenotype change of epithelial cells to cells with mesenchymal properties, but EMT is also associated with multiple other molecular processes, including tumor immune evasion. Some previous studies have shown that EMT is associated with the cell number of immunosuppressive cells, such as myeloid-derived suppressor cells, and the expression of immune checkpoints, such as programmed cell death-ligand 1, in several cancer types. At the molecular level, EMT transcriptional factors, including Snail, Zeb1, and Twist1, produce or attract immunosuppressive cells or promote the expression of immunosuppressive checkpoint molecules via chemokine production, leading to a tumor immunosuppressive microenvironment. In turn, immunosuppressive factors induce EMT in tumor cells. This feedback loop between EMT and immunosuppression promotes tumor progression. For therapy directly targeting EMT has been challenging, the elucidation of the interactive regulation of EMT and immunosuppression is desirable for developing new therapeutic approaches in cancer. The combination of immune checkpoint inhibitors and immunotherapy targeting immunosuppressive cells could be a promising therapy for EMT.
Collapse
Affiliation(s)
- Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Fushimi-ku, Kyoto, Japan
| | - Masayo Ukita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
50
|
Jiang X, Yan Q, Xie L, Xu S, Jiang K, Huang J, Wen Y, Yan Y, Zheng J, Tang S, Nie K, Zheng Z, Pan J, Liu P, Huang Y, Yan X, Zou Y, Chen X, Liu F, Li P, Zhuang K. Construction and Validation of a Ferroptosis-Related Prognostic Model for Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6635526. [PMID: 33727924 PMCID: PMC7937463 DOI: 10.1155/2021/6635526] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer (GC), an extremely aggressive tumor with a very different prognosis, is the third leading cause of cancer-related mortality. We aimed to construct a ferroptosis-related prognostic model that can be distinguished prognostically. METHODS The gene expression and the clinical data of GC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO). The ferroptosis-related genes were obtained from the FerrDb. Using the "limma" R package and univariate Cox analysis, ferroptosis-related genes with differential expression and prognostic value were identified in the TCGA cohort. Last absolute shrinkage and selection operator (LASSO) Cox regression was applied to shrink ferroptosis-related predictors and construct a prognostic model. Functional enrichment, ESTIMATE algorithm, and single-sample gene set enrichment analysis (ssGSEA) were applied for exploring the potential mechanism. GC patients from the GEO cohort were used for validation. RESULTS An 8-gene prognostic model was constructed and stratified GC patients from TCGA and meta-GEO cohort into high-risk groups or low-risk groups. GC patients in high-risk groups have significantly poorer OS compared with those in low-risk groups. The risk score was identified as an independent predictor for OS. Functional analysis revealed that the risk score was mainly associated with the biological function of extracellular matrix (ECM) organization and tumor immunity. CONCLUSION In conclusion, the ferroptosis-related model can be utilized for the clinical prognostic prediction in GC.
Collapse
Affiliation(s)
- Xiaotao Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Qiaofeng Yan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- No. 1 Traditional Chinese Medicine Hospital in Changde, Changde 415000, Hunan, China
| | - Linling Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Shijie Xu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kailin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Jiahua Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yanhua Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Junhui Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Shuting Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kechao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhihua Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Jinglin Pan
- Department of Gastroenterology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou 570100, Hainan, China
| | - Peng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yuancheng Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Xingrui Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yushan Zou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Xuan Chen
- Ningde Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Ningde 352100, Fujian, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510470, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kunhai Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| |
Collapse
|