1
|
Song H, Zhang J, Lou N, Jiang X, Cui Y, Liu J, Hu F, Jiao J, Pan C, Liu J, Wang Z, Shang D. Emodin nanocapsules inhibit acute pancreatitis by regulating lipid metabolic reprogramming in macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155763. [PMID: 38820661 DOI: 10.1016/j.phymed.2024.155763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Emodin is a chemical compound found in traditional Chinese herbs. It possesses anti-inflammatory and many other pharmacological effects. Our previous study showed that emodin significantly alleviates the inflammation effect of severe acute pancreatitis (SAP). However, its poor solubility, high toxicity and limited pancreas retention time hinder its clinical application. PURPOSE We aimed to prepare emodin nanocapsules with improved bioavailability to achieve the controlled release of emodin by targeting macrophages. Further, the mechanism of mannose-conjugated chitosan-coated lipid nanocapsules loaded with emodin (M-CS-E-LNC) in the treatment of SAP was explored. METHODS M-CS-E-LNC were prepared by the phase inversion method with slight modification. The expression of inflammation mediators and the anti-inflammation efficacy of M-CS-E-LNC were examined by ELISA, IHC and IF in macrophage cells and LPS-induced SAP mice. IVIS spectrum imaging and HPLC were applied to explore the controlled release of M-CS-E-LNC in the pancreas. LC-MS/MS was performed for lipidomics analysis of macrophages. Moreover, a vector-based short hairpin RNA (shRNA) method was used to silence CTP1 gene expression in macrophage cells. RESULTS The levels of inflammatory mediators in macrophages were markedly decreased after treatment with M-CS-E-LNC. The same anti-inflammation effects were detected in SAP mouse through the analysis of serum levels of amylase, TNF-α and IL-6. Importantly, M-CS-E-LNC allowed the emodin to selectively accumulate at pancreas and gastrointestinal tissues, thus exhibiting a targeted release. Mechanistically, the M-CS-E-LNC treatment group showed up-regulated expression of the carnitine palmitoyltransferase 1 (CPT1) protein which promoted intracellular long-chain fatty acid transport, thereby promoting the M2 phenotype polarization of macrophages. CONCLUSION M-CS-E-LNC exhibited significantly improved bioavailability and water solubility, which translated to greater therapeutic effects on macrophage polarization. Our findings also demonstrate, for the first time, that CPT1 may be a new therapeutic target for SAP treatment.
Collapse
Affiliation(s)
- Huiyi Song
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Jianbin Zhang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China
| | - Ni Lou
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Xinyue Jiang
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Yuying Cui
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Jinming Liu
- The Third Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Fenglin Hu
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Juying Jiao
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Chen Pan
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Jianjun Liu
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Zhizhou Wang
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China; The Third Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
2
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
3
|
Fang Y, Lin SY, Chen CH, Lo HC. Algal Oil Mitigates Sodium Taurocholate-Induced Pancreatitis by Alleviating Calcium Overload, Oxidative Stress, and NF-κB Activation in Pancreatic Acinar Cells. Curr Issues Mol Biol 2024; 46:4403-4416. [PMID: 38785535 PMCID: PMC11120270 DOI: 10.3390/cimb46050267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Acute pancreatitis (AP) is characterized by elevated intracellular Ca2+ concentrations, mitochondrial dysfunction, and oxidative stress in pancreatic acinar cells. Algal oil (AO) has demonstrated antioxidant and anti-inflammatory properties. This study aims to explore the effects of algal oil on the microenvironment of AP. Rat pancreatic acinar AR42J cells were pretreated with AO containing 0, 50, 100, or 150 μM of docosahexaenoic acid (DHA) 2 h prior to AP induction using sodium taurocholate (STC). After 1 h of STC treatment, AR42J cells exhibited a significant increase in intracellular Ca2+ concentration and the production of amylase, lipase, reactive oxygen species, and pro-inflammatory mediators, including tumor necrosis factor-α and interleukin-6. These STC-induced increases were markedly reduced in cells pretreated with AO. In comparison to cells without AO, those treated with a high dose of AO before STC exposure demonstrated a significant increase in mitochondrial membrane potential and a decrease in lipid peroxidation. Furthermore, STC-activated nuclear factor kappa-B (NF-κB) was attenuated in AO-pretreated cells, as evidenced by a significant decrease in activated NF-κB. In conclusion, AO may prevent damage to pancreatic acinar cells by alleviating intracellular Ca2+ overload, mitigating mitochondrial dysfunction, reducing oxidative stress, and attenuating NF-κB-targeted inflammation.
Collapse
Affiliation(s)
- Yi Fang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Sung-Yen Lin
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-H.C.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-H.C.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| |
Collapse
|
4
|
Kong M, Hong DH, Paudel S, Yoon NE, Jung BH, Kim M, Kim TH, Jeong J, Choi D, Lee H. Metabolomics and miRNA profiling reveals feature of gallbladder cancer-derived biliary extracellular vesicles. Biochem Biophys Res Commun 2024; 705:149724. [PMID: 38432111 DOI: 10.1016/j.bbrc.2024.149724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Although there are several studies in the development of various human cancers, the role of exosomes is poorly understood in the progression of gallbladder cancer. This study aims to characterize the metabolic changes occurring in exosomes obtained from patients with gallbladder cancer compared with those from other gallbladder disease groups. METHODS Biliary exosomes were isolated from healthy donors (n = 3) and from patients with gallbladder cancer (n = 3), gallbladder polyps (n = 4), or cholecystitis (n = 3) using a validated exosome isolation kit. Afterward, we performed miRNA profiling and untargeted metabolomic analysis of the exosomes. The results were validated by integrating the results of the miRNA and metabolomic analyses. RESULTS The gallbladder cancer group exhibited a significant reduction in the levels of multiple unsaturated phosphatidylethanolamines and phosphatidylcholines compared to the normal group, which resulted in the loss of exosome membrane integrity. Additionally, the gallbladder cancer group demonstrated significant overexpression of miR-181c and palmitic acid, and decreased levels of conjugated deoxycholic acid, all of which are strongly associated with the activation of the PI3K/AKT pathway. CONCLUSIONS Our findings demonstrate that the contents of exosomes are disease-specific, particularly in gallbladder cancer, and that altered metabolites convey critical information regarding their phenotype. We believe that our metabolomic and miRNA profiling results may provide important insights into the development of gallbladder cancer.
Collapse
Affiliation(s)
- Mingyu Kong
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Da Hee Hong
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea; Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Sanjita Paudel
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Na Eun Yoon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Myounghoi Kim
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hun Kim
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaemin Jeong
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Dongho Choi
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea; Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Guo F, Tao X, Wu Y, Dong D, Zhu Y, Shang D, Xiang H. Carfilzomib relieves pancreatitis-initiated pancreatic ductal adenocarcinoma by inhibiting high-temperature requirement protein A1. Cell Death Discov 2024; 10:58. [PMID: 38287020 PMCID: PMC10825157 DOI: 10.1038/s41420-024-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis is a crucial risk factor for pancreatic ductal adenocarcinoma (PDAC), and our previous study had proved high-temperature requirement protein A1 (HTRA1) exacerbates pancreatitis insult; however, the function and mechanism of HTRA1 in pancreatitis-initiated PDAC is still unclear. In the present paper, we clarified the expression of HTRA1 in PDAC using bioinformatics and immunohistochemistry of tissue chip, and found that HTRA1 is significantly upregulated in PDAC. Moreover, the proliferation, migration, invasion and adhesion of PANC-1 and SW1990 cells were promoted by overexpression of HTRA1, but inhibited by knockdown of HTRA1. Meanwhile, we found that HTRA1 arrested PANC-1 and SW1990 cells at G2/M phase. Mechanistically, HTRA1 interacted with CDK1 protein, and CDK1 inhibitor reversed the malignant phenotype of PANC-1 and pancreatitis-initiated PDAC activated by HTRA1 overexpression. Finally, we discovered a small molecule drug that can inhibit HTRA1, carfilzomib, which has been proven to inhibit the biological functions of tumor cells in vitro and intercept the progression of pancreatitis-initiated PDAC in vivo. In conclusion, the activation of HTRA1-CDK1 pathway promotes the malignant phenotype of tumor cells by blocking the cell cycle at the G2/M phase, thereby accelerating pancreatitis-initiated PDAC. Carfilzomib is an innovative candidate drug that can inhibit pancreatitis-initiated PDAC through targeted inhibition of HTRA1.
Collapse
Affiliation(s)
- Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yu Wu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
6
|
Wu Y, Yue Y, Xiong S. Cardiac miR-19a/19b was induced and hijacked by CVB3 to facilitate virus replication via targeting viral genomic RdRp-encoding region. Antiviral Res 2023; 217:105702. [PMID: 37604350 DOI: 10.1016/j.antiviral.2023.105702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Coxsackievirus B3 (CVB3) is one of the major pathogens of viral myocarditis, lacking specific anti-virus therapeutic options. Increasing evidence has shown an important involvement of the miR-17-92 cluster both in virus infection and cardiovascular development and diseases, while its role in CVB3-induced viral myocarditis remains unclear. In this study, we found that miR-19a and miR-19b were significantly up-regulated in heart tissues of CVB3-infected mice and exerted a significant facilitatory impact on CVB3 biosynthesis and replication, with a more pronounced effect observed in miR-19b, by targeting the encoding region of viral RNA-dependent RNA polymerase 3D (RdRp, 3Dpol) to increase viral genomic RNA stability. The virus-promoting effects were nullified by the synonymous mutations in the viral 3Dpol-encoding region, which corresponded to the seed sequence shared by miR-19a and miR-19b. In parallel, treatment with miR-19b antagomir not only resulted in a noteworthy suppression of CVB3 replication and infection in infected cells, but also demonstrated a significant reduction in the cardiac viral load of CVB3-infected mice, resulting in a considerable alleviation of myocarditis. Collectively, our study showed that CVB3-induced cardiac miR-19a/19b contributed to viral myocarditis via facilitating virus biosynthesis and replication, and targeting miR-19a/19b might represent a novel therapeutic target for CVB3-induced viral myocarditis.
Collapse
Affiliation(s)
- Yingchun Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Wang L, Wang X, Li G, Zhou S, Wang R, Long Q, Wang M, Li L, Huang H, Ba Y. Emodin ameliorates renal injury and fibrosis via regulating the miR-490-3p/HMGA2 axis. Front Pharmacol 2023; 14:1042093. [PMID: 36937888 PMCID: PMC10020706 DOI: 10.3389/fphar.2023.1042093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Renal fibrosis is a major pathological feature of chronic kidney disease (CKD). While emodin is reported to elicit anti-fibrotic effects on renal injury, little is known about its effects on microRNA (miRNA)-modulated mechanisms in renal fibrosis. In this study, we established a unilateral ureteral obstruction (UUO) model and a transforming growth factor (TGF)-β1-induced normal rat renal tubular epithelial cell line (NRK-52E) model to investigate the protective effects of emodin on renal fibrosis and its miRNA/target gene mechanisms. Dual-luciferase assay was performed to confirm the direct binding of miRNA and target genes in HEK293 cells. Results showed that oral administration of emodin significantly ameliorated the loss of body weight and the increase in physicochemical parameters, including serum uric acid, creatinine, and urea nitrogen in UUO mice. Inflammatory cytokines, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin (IL)-1β, but not IL-6, were down-regulated by emodin administration. Emodin decreased the expression levels of TGF-β1 and fibrotic-related proteins, including alpha-smooth muscle actin, Collagen IV, and Fibronectin, and increased the expression of E-cadherin. Furthermore, miR-490-3p was decreased in UUO mice and negatively correlated with increased expression of high migration protein A2 (HMGA2). We further confirmed HMGA2 was the target of miR-490-3p. Transfection of miR-490-3p mimics decreased, while transfection of miR-490-3p inhibitors increased fibrotic-related proteins and HMGA2 expression levels in TGF-β1-induced NRK-52E cells. Furthermore, transfection of miR-490-3p mimics enhanced the anti-fibrotic effects of emodin, while transfection of miR-490-3p inhibitors abolished the protective effects of emodin. Thus, as a novel target of emodin that prevents renal fibrosis in the HMGA2-dependent signaling pathway, miR-490-3p has potential implications in CKD pathology.
Collapse
Affiliation(s)
- Liulin Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Gang Li
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Shanshan Zhou
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Rui Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Qi Long
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Min Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Liang Li
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hai Huang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Yuanming Ba
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Lin Z, Zeng H, Cai S, Chen F, Wang X, Wu D, Liu M, Fang Y. Effects of rhubarb peony decoction combined with antibiotics in treating pediatric periappendiceal abscess. Front Pediatr 2023; 11:1112034. [PMID: 37063672 PMCID: PMC10090493 DOI: 10.3389/fped.2023.1112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
Background/purpose Rhubarb peony decoction (RPD) is a formula of traditional Chinese medicine that has been widely used to treat intra-abdominal inflammatory diseases. To investigate the therapeutic efficacy of RPD in pediatric periappendiceal abscess, patients who received intravenous antibiotics alone were compared with those treated with intravenous antibiotics combined with RPD. Methods A retrospective review of children with periappendiceal abscess who received conservative treatment in our hospital between January 2013 and April 2022 was performed. The patients were divided into an intravenous antibiotic group (the control group) and an intravenous antibiotic combined with RPD group (the intervention group). Interval appendectomy (IA) was generally performed 10-12 weeks after conservative treatment. The primary outcome was the cure rate of conservative treatment, while the secondary outcomes included the recurrence rate, days of total intravenous antibiotic use, length of hospital stay (LOS), postoperative complications, and liver injury caused by RPD. Results A total of 142 patients (77 girls and 65 boys) were included, 52 in the control group and 90 in the intervention group. The two groups were similar in demographic data and clinical characteristics (P > 0.05). The mean total course of RPD in the intervention group was 11.82 days. The intervention group had a significantly higher cure rate than the control group (93.33% vs. 80.77%, P = 0.029), and the length of total intravenous antibiotic use (P = 0.150), LOS (P = 0.077), recurrence rate (9.52% vs. 4.76%, P = 0.439), as well as the operation time (P = 0.101), LOS (P = 0.572), and postoperative complications (P = 0.549) were not significantly different between the two groups when the patients received IA. No patient had a liver injury caused by RPD during the treatment. Conclusion Intravenous antibiotics combined with RPD demonstrated high effectiveness and safety for treating pediatric periappendiceal abscess.
Collapse
Affiliation(s)
- Zhixiong Lin
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Huiping Zeng
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Shujie Cai
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Fei Chen
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiang Wang
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Dianming Wu
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Mingkun Liu
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Correspondence: Mingkun Liu Yifan Fang
| | - Yifan Fang
- Department of Pediatric Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Correspondence: Mingkun Liu Yifan Fang
| |
Collapse
|
10
|
Natural Chinese herbs for the prevention and treatment of acute pancreatitis: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
11
|
Emodin Alleviates Sodium Taurocholate-Induced Pancreatic Ductal Cell Damage by Inhibiting the S100A9/VNN1 Signaling Pathway. Pancreas 2022; 51:739-746. [PMID: 36395397 PMCID: PMC9722379 DOI: 10.1097/mpa.0000000000002098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Because the pathogenesis of the disease is unclear, the treatment of patients with acute pancreatitis, especially severe acute pancreatitis, is still a major challenge for clinicians. Emodin is an anthraquinone compound extracted from rhubarb that can alleviate the damage to pancreatic ductal epithelial cells induced by adenosine triphosphate, but whether it has a similar protective effect on sodium taurocholate (STC)-stimulated pancreatic ductal cells and the underlying mechanism has not yet been reported. METHODS A model of STC-induced HPDE6-C7 human pancreatic ductal epithelial cell injury was established, and then apoptosis and the levels of reactive oxygen species (ROS), glutathione, gamma-glutamylcysteine synthetase, and inflammatory cytokines were assessed in the presence or absence of emodin pretreatment. S100 calcium binding protein A9 (S100A9) and Vanin1 (VNN1) protein expression was also measured. RESULTS Emodin significantly increased HPDE6-C7 cell viability, inhibited apoptosis and ROS release, and elevated glutathione levels and gamma-glutamylcysteine synthetase activity. Furthermore, emodin downregulated S100A9 and VNN1 protein expression and inhibited the production of inflammatory factors, such as interleukin (IL)-1β, IL-6, IL-8, and IL-18. CONCLUSIONS Emodin attenuates STC-induced pancreatic ductal cell injury possibly by inhibiting S100A9/VNN1-mediated ROS release. This finding provides evidence for the future development of emodin as a therapeutic agent.
Collapse
|
12
|
Tang DS, Cao F, Yan CS, Cui JT, Guo XY, Cheng L, Li L, Li YL, Ma JM, Fang K, Gao L, Ren NS, Sun B, Wang G, Ji L. Acinar Cell-Derived Extracellular Vesicle MiRNA-183-5p Aggravates Acute Pancreatitis by Promoting M1 Macrophage Polarization Through Downregulation of FoxO1. Front Immunol 2022; 13:869207. [PMID: 35911777 PMCID: PMC9326086 DOI: 10.3389/fimmu.2022.869207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute pancreatitis (AP) is a common cause of a clinically acute abdomen. Crosstalk between acinar cells and leukocytes (especially macrophages) plays an important role in the development of AP. However, the mechanism mediating the interaction between acinar cells and macrophages is still unclear. This study was performed to explore the role of acinar cell extracellular vesicles (EVs) in the crosstalk between acinar cells and macrophages involved in the pathogenesis of AP. EVs derived from caerulein-treated acinar cells induced macrophage infiltration and aggravated pancreatitis in an AP rat model. Further research showed that acinar cell-derived EV miR-183-5p led to M1 macrophage polarization by downregulating forkhead box protein O1 (FoxO1), and a dual-luciferase reporter assay confirmed that FoxO1 was directly inhibited by miR-183-5p. In addition, acinar cell-derived EV miR-183-5p reduced macrophage phagocytosis. Acinar cell-derived EV miR-183-5p promoted the pancreatic infiltration of M1 macrophages and increased local and systemic damage in vivo. Subsequently, miR-183-5p overexpression in macrophages induced acinar cell damage and trypsin activation, thus further exacerbating the disease. In clinical samples, elevated miR-183-5p levels were detected in serum EVs and positively correlated with the severity of AP. EV miR-183-5p might play an important role in the development of AP by facilitating M1 macrophage polarization, providing a new insight into the diagnosis and targeted management of pancreatitis. Graphical abstract of the present study. In our caerulein-induced AP model, miR-183-5p was upregulated in injured acinar cells and transported by EVs to macrophages. miR-183-5p could induce M1 macrophage polarization through downregulation of FoxO1 and the release of inflammatory cytokines, which could aggravate AP-related injuries. Therefore, a vicious cycle might exist between injured ACs and M1 macrophage polarization, which is fulfilled by EV-transported miR-183-5p, leading to sustainable and progressive AP-related injuries.
Collapse
Affiliation(s)
- De-sheng Tang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Chang-sheng Yan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Ji-tao Cui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Xiao-yu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yi-long Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Jia-min Ma
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Kun Fang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Nian-sheng Ren
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- *Correspondence: Gang Wang, ; Liang Ji,
| | - Liang Ji
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Gang Wang, ; Liang Ji,
| |
Collapse
|
13
|
New challenges for microRNAs in acute pancreatitis: progress and treatment. J Transl Med 2022; 20:192. [PMID: 35509084 PMCID: PMC9066850 DOI: 10.1186/s12967-022-03338-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
Acute pancreatitis (AP) is a common clinical abdominal emergency, with a high and increasing incidence each year. Severe AP can easily cause systemic inflammatory response syndrome, multiple organ dysfunction and other complications, leading to higher hospitalization rates and mortality. Currently, there is no specific treatment for AP. Thus, we still need to understand the exact AP pathogenesis to effectively cure AP. With the rise of transcriptomics, RNA molecules, such as microRNAs (miRNAs) transcribed from nonprotein-coding regions of biological genomes, have been found to be of great significance in the regulation of gene expression and to be involved in the occurrence and development of many diseases. Increasing evidence has shown that miRNAs, as regulatory RNAs, can regulate pancreatic acinar necrosis and apoptosis and local and systemic inflammation and play an important role in the development and thus potentially the diagnosis and treatment of AP. Therefore, here, the current research on the relationship between miRNAs and AP is reviewed.
Collapse
|
14
|
Zhang J, Jiang C, Liu X, Jiang CX, Cao Q, Yu B, Ni Y, Mao S. The metabolomic profiling identifies N, N-dimethylglycine as a facilitator of dorsal root ganglia neuron axon regeneration after injury. FASEB J 2022; 36:e22305. [PMID: 35394692 DOI: 10.1096/fj.202101698r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Identifying novel molecules involved in axon regeneration of neurons in the peripheral nervous system (PNS) will be of benefit in obtaining a therapeutic strategy for repairing axon damage both in the PNS and the central nervous system (CNS). Metabolism and axon regeneration are tightly connected. However, the overall metabolic processes and the landscape of the metabolites in axon regeneration of PNS neurons are uncovered. Here, we used an ultra high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOFMS)-based untargeted metabolomics to analyze dorsal root ganglia (DRG) metabolic characteristics at different time points post sciatic nerve injury and acquired hundreds of differentially changed metabolites. In addition, the results reveal that several metabolic pathways were significantly altered, such as 'Histidine metabolism', 'Glycine serine and threonine metabolism', 'Arginine and proline metabolism', 'taurine and hypotaurine metabolism' and so on. Given metabolite could alter a cell's or an organism's phenotype, further investigation demonstrated that N, N-dimethylglycine (DMG) has a promoting effect on the regenerative ability post injury. Overall, our data may serve as a resource useful for further understanding how metabolites contribute to axon regeneration in DRG during sciatic nerve regeneration and suggest DMG may be a candidate drug to repair nerve injury.
Collapse
Affiliation(s)
- Junjie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaohong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | | | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaohui Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
15
|
Yang H, Zhang H, Chen Z, Wang Y, Gao B. Effects of tRNA-derived fragments and microRNAs regulatory network on pancreatic acinar intracellular trypsinogen activation. Bioengineered 2022; 13:3207-3220. [PMID: 35045793 PMCID: PMC8973995 DOI: 10.1080/21655979.2021.2018880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disease with substantial morbidity and mortality. Pancreatic acinar intracellular trypsinogen activation (PAITA) is an important event in the early stage of AP. The present study aimed to investigate the effects of tRNA-derived fragments (tRFs) and the microRNA regulatory network on pancreatic acinar intracellular trypsinogen activation (PAITA) and identify novel key targets in AP. Taurolithocholic acid 3-sulfate (TLC-S)-treated AR42J cells were used to establish a PAITA model. Twenty differentially expressed tRFs and 35 DE microRNAs were identified in PAITA through gene sequencing. Based on these genes, we established the tRF-mRNA and microRNA-mRNA regulatory networks by using bioinformatics methods. The networks revealed 29 hub microRNAs (e.g., Let-7 family, miR-21-3p.) and 19 hub tRFs (e.g., tRF3-Thr-AGT, i-tRF-Met-CAT) in PAITA. GO analysis showed that the functions of the two networks were similar and mainly enriched in RNA splicing, mRNA processing, and so on. tRF3-Thr-AGT, targeting Btg2, Cd44, Zbp1, etc., was significantly decreased in PAITA. Moreover, the trypsinogen activation level was increased significantly in the tRF3-Thr-AGT deficiency groups, but rescued by tRF3-Thr-AGT mimics. The results revealed that downregulated tRF3-Thr-AGT was involved in PAITA. This study provides potential novel targets for researching the underlying mechanisms of AP.
Collapse
Affiliation(s)
- Hao Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huairong Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuomiaoyu Chen
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| | - Yuan Wang
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| | - Bo Gao
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
17
|
Xu Q, Wang M, Guo H, Liu H, Zhang G, Xu C, Chen H. Emodin Alleviates Severe Acute Pancreatitis-Associated Acute Lung Injury by Inhibiting the Cold-Inducible RNA-Binding Protein (CIRP)-Mediated Activation of the NLRP3/IL-1 β/CXCL1 Signaling. Front Pharmacol 2021; 12:655372. [PMID: 33967799 PMCID: PMC8103163 DOI: 10.3389/fphar.2021.655372] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Severe acute pancreatitis (SAP) can lead to acute lung injury (ALI). This study investigated the therapeutic effect of emodin and its molecular mechanisms in a rat model of SAP-ALI. Methods: Forty male Sprague-Dawley rats were randomly divided into the groups: Control (CON), SAP (SAP), emodin (EMO), and C23 (C23). The latter three groups of rats were induced for SAP-ALI by retrograde injection of 5% sodium taurocholate into the biliary-pancreatic duct and were treated with vehicle, emodin or C23, respectively. One day post induction, their pancreatic and lung injury was assessed by histology and arterial blood gas analysis. In vitro, rat alveolar macrophages (NR8383 cells) were treated with recombinant rat CIRP in the presence or absence of TAK242 (a TLR4 inhibitor), C23 or emodin. The CIRP-mediated activation of the NLRP3/IL-1β/CXCL1 signaling in rat lungs and NR8383 cells was determined. Similarly, the role of IL-1β in the CIRP-induced CXCL1 expression was investigated. Results: Emodin treatment significantly reduced inflammation and tissue damages in the pancreatic and lung tissues in rats with SAP-ALI, accompanied by decreasing serum amylase, CIRP and IL-1β levels and improving lung function. Furthermore, emodin significantly mitigated the SAP-up-regulated CIRP expression in the pancreatic islets and lung tissues, and attenuated the SAP-activated NF-κB signaling, NLRP3 inflammasome formation and CXCL1 expression in lung resident macrophages as well as neutrophil infiltration in the lungs of rats. In addition, treatment with CIRP significantly activated the NF-κB signaling and NLRP3 inflammasome formation and induced IL-1β and CXCL1 expression and pyroptosis in NR8383 cells, which were abrogated by TAK242 and significantly mitigated by C23 or emodin. Moreover, CIRP only induced very lower levels of CXCL1 expression in IL-1β-silencing NR8383 cells and treatment with IL-1β induced CXCL1 expression in NR8383 cells in a dose and time-dependent manner. Conclusion: Emodin may inhibit the CIRP-activated NLRP3/IL-1β/CXCL1signaling to decrease neutrophil infiltration and ameliorate the SAP-ALI in rats.
Collapse
Affiliation(s)
- Qiushi Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Huanhuan Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Xu C, Luo Y, Ntim M, Quan W, Li Z, Xu Q, Jiang L, Zhang J, Shang D, Li L, Zhang G, Chen H. Effect of emodin on long non-coding RNA-mRNA networks in rats with severe acute pancreatitis-induced acute lung injury. J Cell Mol Med 2021; 25:1851-1866. [PMID: 33438315 PMCID: PMC7882958 DOI: 10.1111/jcmm.15525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to disease pathogenesis and drug treatment effects. Both emodin and dexamethasone (DEX) have been used for treating severe acute pancreatitis-associated acute lung injury (SAP-ALI). However, lncRNA regulation networks related to SAP-ALI pathogenesis and drug treatment are unreported. In this study, lncRNAs and mRNAs in the lung tissue of SAP-ALI and control rats, with or without drug treatment (emodin or DEX), were assessed by RNA sequencing. Results showed both emodin and DEX were therapeutic for SAP-ALI and that mRNA and lncRNA levels differed between untreated and treated SAP-ALI rats. Gene expression profile relationships for emodin-treated and control rats were higher than DEX-treated and -untreated animals. By comparison of control and SAP-ALI animals, more up-regulated than down-regulated mRNAs and lncRNAs were observed with emodin treatment. For DEX treatment, more down-regulated than up-regulated mRNAs and lncRNAs were observed. Functional analysis demonstrated both up-regulated mRNA and co-expressed genes with up-regulated lncRNAs were enriched in inflammatory and immune response pathways. Further, emodin-associated lncRNAs and mRNAs co-expressed modules were different from those associated with DEX. Quantitative polymerase chain reaction demonstrates selected lncRNA and mRNA co-expressed modules were different in the lung tissue of emodin- and DEX-treated rats. Also, emodin had different effects compared with DEX on co-expression network of lncRNAs Rn60_7_1164.1 and AABR07062477.2 for the blue lncRNA module and Nrp1 for the green mRNA module. In conclusion, this study provides evidence that emodin may be a suitable alternative or complementary medicine for treating SAP-ALI.
Collapse
Affiliation(s)
- Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Michael Ntim
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Weili Quan
- Center for Genome Analysis, ABLife Inc, Wuhan, China
| | - Zhaoxia Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qiushi Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Liu Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jingwen Zhang
- Endoscopy Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Hu F, Tao X, Zhao L, Guo F, Zhou Q, Song H, Xiang H, Shang D. LncRNA-PVT1 aggravates severe acute pancreatitis by promoting autophagy via the miR-30a-5p/Beclin-1 axis. Am J Transl Res 2020; 12:5551-5562. [PMID: 33042437 PMCID: PMC7540137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Severe acute pancreatitis (SAP) is a serious abdominal disease associated with increased morbidity and high mortality rates. The initial pancreatic injury and inflammatory response, which begins within acinar cells, play vital roles in promoting SAP severity. Previous studies have indicated that overactivated autophagy in acinar cells increases the risk of SAP. Autophagy is affected by various signaling pathways, partially through long noncoding RNA (lncRNA)-PVT1. However, few studies have focused on the effect of lncRNA on autophagy in pancreatitis. Our results demonstrate that sodium taurocholate (STC) induces abnormal activation of the autophagic response in pancreatic acinar cells in vitro and in vivo. The lncRNA-PVT1 level was significantly upregulated in this process and was capable of targeting the miR-30a-5p/Beclin-1-mediated autophagy signaling pathway. Additionally, STC-induced pancreatic acinar cells injury and autophagy activation were all abrogated with the downregulation of lncRNA-PVT1 by shRNAs in vitro. Furthermore, we confirmed that the lncRNA-PVT1/miR-30a-5p/Beclin-1 axis induces abnormal autophagy in the pancreas of SAP rats. Collectively, these results demonstrate that the lncRNA-PVT1/miR-30a-5p/Beclin-1 axis is a potential target for improving SAP, thus providing a foundation for further development of therapeutics in the future.
Collapse
Affiliation(s)
- Fenglin Hu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of TechnologyDalian 116024, China
| | - Liang Zhao
- Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
| | - Huiyi Song
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| |
Collapse
|
20
|
Zang L, Song Y, Yu F, Liu X. Emodin relieved lipopolysaccharide-evoked inflammatory damage in WI-38 cells by up-regulating taurine up-regulated gene 1. Biofactors 2020; 46:860-868. [PMID: 31912578 DOI: 10.1002/biof.1609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neonatal pneumonia (NP) has a high fatality rate in neonatal illness. This research investigated the functions of emodin on lipopolysaccharide (LPS)-evoked inflammatory injury in WI-38 cells. METHODS Cell counting kit-8 (CCK-8) assay and flow cytometry were utilized for examining the impacts of LPS and emodin on viability and apoptosis, respectively. Taurine up-regulated gene 1 (TUG1) level was altered through cell transfection and investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, RT-qPCR, western blot and enzyme-linked immunosorbent assay (ELISA) were utilized for investigating expressions of monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-6. Western blot was carried out for investigating the levels of Bcl-2, Bax, pro-Caspase-3, cleaved-Caspase-3 and NF-κB and p38MAPK pathway-related proteins. RESULTS LPS treatment restrained cell viability, enhanced apoptosis, and expressions of inflammation-related IL-6 and MCP-1. Emodin alleviated LPS-evoked inflammatory injury and restrained the NF-κB and p38MAPK pathways. Furthermore, emodin positively regulated TUG1 expression and TUG1 silencing could reverse the efficacy of emodin on IL-6 and MCP-1 expressions. Finally, TUG1 regulates the expression of inflammatory factors through NF-κB and p38MAPK pathways. CONCLUSION Emodin alleviated LPS-evoked inflammatory injury by raising TUG1 expression via NF-κB and p38MAPK pathways in WI-38 cells.
Collapse
Affiliation(s)
- Linlin Zang
- Department of Clinical Laboratory, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, China
| | - Yongqing Song
- Department of Pharmaceutical, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Fengying Yu
- Department of Pharmaceutical, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Xiuxia Liu
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
21
|
Li Q, Gao J, Pang X, Chen A, Wang Y. Molecular Mechanisms of Action of Emodin: As an Anti-Cardiovascular Disease Drug. Front Pharmacol 2020; 11:559607. [PMID: 32973538 PMCID: PMC7481471 DOI: 10.3389/fphar.2020.559607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Emodin is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found to be an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and it is a pleiotropic molecule with diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Moreover, emodin has also been shown to have a wide activity of anti-cardiovascular diseases. It is mainly involved in multiple molecular targets such as inflammatory, anti-apoptosis, anti-hypertrophy, anti-fibrosis, anti-oxidative damage, abnormal, and excessive proliferation of smooth muscle cells in cardiovascular diseases. As a new type of cardiovascular disease treatment drug, emodin has broad application prospects. However, a large amount of evidences detailing the effect of emodin on many signaling pathways and cellular functions in cardiovascular disease, the overall understanding of its mechanisms of action remains elusive. In addition, by describing the evidence of the effects of emodin in detail, the toxicity and poor oral bioavailability of mice have been continuously discovered. This review aims to describe a timely overview of emodin related to the treatment of cardiovascular disease. The emphasis is to summarize the pharmacological effects of emodin as an anti-cardiovascular drug, as well as the targets and its potential mechanisms. Furthermore, the treatment of emodin compared with conventional cardiovascular drugs or target inhibitors, the toxicity, pharmacokinetics and derivatives of emodin were discussed.
Collapse
Affiliation(s)
- Qianqian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohan Pang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Xiang H, Zuo J, Guo F, Dong D. What we already know about rhubarb: a comprehensive review. Chin Med 2020; 15:88. [PMID: 32863857 PMCID: PMC7448319 DOI: 10.1186/s13020-020-00370-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Rhubarb (also named Rhei or Dahuang), one of the most ancient and important herbs in traditional Chinese medicine (TCM), belongs to the Rheum L. genus from the Polygonaceae family, and its application can be traced back to 270 BC in "Shen Nong Ben Cao Jing". Rhubarb has long been used as an antibacterial, anti-inflammatory, anti-fibrotic and anticancer medicine in China. However, for a variety of reasons, such as origin, variety and processing methods, there are differences in the effective components of rhubarb, which eventually lead to decreased quality and poor efficacy. Additionally, although some papers have reviewed the relationship between the active ingredients of rhubarb and pharmacologic actions, most studies have concentrated on one or several aspects, although there has been great progress in rhubarb research in recent years. Therefore, this review aims to summarize recent studies on the geographic distribution, taxonomic identification, pharmacology, clinical applications and safety issues related to rhubarb and provide insights into the further development and application of rhubarb in the future.
Collapse
Affiliation(s)
- Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaxin Zuo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Ferrero-Andrés A, Panisello-Roselló A, Roselló-Catafau J, Folch-Puy E. NLRP3 Inflammasome-Mediated Inflammation in Acute Pancreatitis. Int J Mol Sci 2020; 21:5386. [PMID: 32751171 PMCID: PMC7432368 DOI: 10.3390/ijms21155386] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
The discovery of inflammasomes has enriched our knowledge in the pathogenesis of multiple inflammatory diseases. The NLR pyrin domain-containing protein 3 (NLRP3) has emerged as the most versatile and well-characterized inflammasome, consisting of an intracellular multi-protein complex that acts as a central driver of inflammation. Its activation depends on a tightly regulated two-step process, which includes a wide variety of unrelated stimuli. It is therefore not surprising that the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Inflammasome-mediated inflammation has become increasingly important in acute pancreatitis, an inflammatory disorder of the pancreas that is one of the fatal diseases of the gastrointestinal tract. This review presents an update on the progress of research into the contribution of the NLRP3 inflammasome to acute pancreatic injury, examining the mechanisms of NLRP3 activation by multiple signaling events, the downstream interleukin 1 family of cytokines involved and the current state of the literature on NLRP3 inflammasome-specific inhibitors.
Collapse
Affiliation(s)
- Ana Ferrero-Andrés
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| |
Collapse
|
24
|
Xia S, Ni Y, Zhou Q, Liu H, Xiang H, Sui H, Shang D. Emodin Attenuates Severe Acute Pancreatitis via Antioxidant and Anti-inflammatory Activity. Inflammation 2020; 42:2129-2138. [PMID: 31605249 DOI: 10.1007/s10753-019-01077-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is no specific drug to treat severe acute pancreatitis (SAP), which induces substantial medical and social burden. Many studies have reported the beneficial effects of emodin against SAP in vivo and in vitro. However, the underlying mechanism has been unclear. This paper described the design and implementation of anti-inflammatory and antioxidant activity of emodin. Emodin restored the pathological damage of SAP and simultaneously decreased the high levels of serum amylase, lipase, TNF-α, and IL-18 in the peripheral blood of SAP rat. Emodin reversed reactive oxygen species (ROS) in neutrophils derived from SAP rat. The levels of voltage-dependent anion channel 1 (VDAC1), NOD-like receptor protein 3 (NLRP3), caspase-1, and IL-18 were examined to analyze the change of inflammasome-related mediators between SAP and emodin treatment. These findings suggest that emodin plays its protective role on SAP against oxidative stress and inflammasome signals.
Collapse
Affiliation(s)
- Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, China
| | - Yujia Ni
- Department of Geriatrics, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, Zhejiang, China
| | - Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, China
| | - Hua Sui
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Dong Shang
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China.
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, China.
| |
Collapse
|
25
|
Xu C, Zhang J, Liu J, Li Z, Liu Z, Luo Y, Xu Q, Wang M, Zhang G, Wang F, Chen H. Proteomic analysis reveals the protective effects of emodin on severe acute pancreatitis induced lung injury by inhibiting neutrophil proteases activity. J Proteomics 2020; 220:103760. [PMID: 32244009 DOI: 10.1016/j.jprot.2020.103760] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Acute lung injury (ALI) is the most common remote organ complication induced by severe acute pancreatitis (SAP). Almost 60-70% SAP-induced deaths are caused by ALI. Efficient clinical therapeutic strategy for SAP-induced ALI is still lacking. In this study, we demonstrate that Emodin (EMO) can significantly alleviate SAP-induced ALI. We investigate the therapeutic mechanisms of EMO by proteomic analysis, which indicates that EMO protects lung tissue against SAP-ALI by negative regulation of endopeptidase activity and inhibition of collagen-containing extracellular matrix degradation. Protein-protein interaction analysis showed Lamc2, Serpina1 and Serpinb1 play important roles in the above pathways. This study elucidates the possible mechanism and suggests the candidacy of EMO in the clinical treatment of SAP-ALI. SIGNIFICANCE: ALI is a major leading cause of death in SAP. DEX is the standard of care drug for treatment of SAP-ALI, but often associated with inevitable side effects. In the present study, EMO was demonstrated to greatly alleviate the lung injury induced by SAP. Through proteomic analysis, the recovered protein profiles in response to EMO treatment in SAP-ALI rat models was obtained, among which Lamc2, Serpina1 and Serpinb1 were discovered as crucial regulatory proteins in SAP-ALI disease. Our study provides the underlying mechanisms and novel targets of EMO protective effect against SAP-ALI.
Collapse
Affiliation(s)
- Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Traditional Chinese Medicine, Dalian Obstetrics and Gynecology Hospital, Dalian 116021, China
| | - Jingyu Zhang
- CAS key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning Province 116023, China
| | - Jing Liu
- Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; CAS key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning Province 116023, China
| | - Zhaoxia Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zheyi Liu
- CAS key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning Province 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qiushi Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Mengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Fangjun Wang
- CAS key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning Province 116023, China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
26
|
Huang WJ, Liu WJ, Xiao YH, Zheng HJ, Xiao Y, Jia Q, Jiang HX, Zhu ZB, Xia CH, Han XT, Sun RX, Nan H, Feng ZD, Wang SD, Zhao JX. Tripterygium and its extracts for diabetic nephropathy: Efficacy and pharmacological mechanisms. Biomed Pharmacother 2020; 121:109599. [DOI: 10.1016/j.biopha.2019.109599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
|
27
|
Song Y, Cui X, Zhao R, Hu L, Li Y, Liu C. Emodin protects against lipopolysaccharide-induced inflammatory injury in HaCaT cells through upregulation of miR-21. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2654-2661. [PMID: 31250665 DOI: 10.1080/21691401.2019.1629951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background/aim: Pressure ulcers are a disastrous health issue in which inflammation is involved. Emodin possesses biological properties in inflammation. Our study investigated functions of emodin in lipopolysaccharide (LPS)-treated HaCaT cells. Methods: LPS was used to induce cell inflammation. MTT and flow cytometry were applied for cell viability and apoptosis assays, respectively. Moreover, apoptotic proteins were detected by western blot. Similarly, inflammatory factors and signalling related proteins were also determined by western blot. Results: Emodin increased cell viability and diminished apoptosis in LPS-treated HaCaT cells. Moreover, cleaved-PARP, cleaved-caspase-3 and cleaved-caspase-9 were all downregulated by emodin. Furthermore, inflammatory factors IL-1β, IL-6, Cox-2 and iNOS were inhibited by emodin in LPS-treated cells. In addition, emodin decreased phosphorylation of p65 and IκBα and the level of PTEN while enhanced phosphorylation of PI3K and AKT. Importantly, emodin increased expression of miR-21 suppressed by LPS and miR-21 downregulation negated the protective functions of emodin. Conclusions: Emodin promoted cell growth presented by increasing viability and blocking apoptosis process with inflammation inhibition. The protective activity of emodin was mediated by miR-21 up-regulation.
Collapse
Affiliation(s)
- Yanping Song
- a Department of Health Management, Heze Medical College , Heze , China
| | - Xueling Cui
- b Department of Breast and Thyroid Surgery, Heze Municipal Hospital , Heze , China
| | - Ruilan Zhao
- c Department of General Medicine, Heze Municipal Hospital , Heze , China
| | - Lanying Hu
- d Department of Joint Surgery, Heze Municipal Hospital , Heze , China
| | - Yanjun Li
- e e Department of Nursing, Heze Medical College , Heze , China
| | - Cuiling Liu
- b Department of Breast and Thyroid Surgery, Heze Municipal Hospital , Heze , China
| |
Collapse
|
28
|
Yang Y, Huang Q, Luo C, Wen Y, Liu R, Sun H, Tang L. MicroRNAs in acute pancreatitis: From pathogenesis to novel diagnosis and therapy. J Cell Physiol 2019; 235:1948-1961. [PMID: 31552677 DOI: 10.1002/jcp.29212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder initiated by activation of pancreatic zymogens, leading to pancreatic injury and systemic inflammatory response. MicroRNAs (miRNAs) have emerged as important regulators of gene expression and key players in human physiological and pathological processes. Discoveries over the past decade have confirmed that altered expression of miRNAs is implicated in the pathogenesis of AP. Indeed, a number of miRNAs have been found to be dysregulated in various cell types involved in AP such as acinar cells, macrophages, and lymphocytes. These aberrant miRNAs can regulate acinar cell necrosis and apoptosis, local and systemic inflammatory response, thereby contributing to the initiation and progression of AP. Moreover, patients with AP possess unique miRNA signatures when compared with healthy individuals or those with other diseases. In view of their stability and easy detection, therefore, miRNAs have the potential to act as biomarkers for the diagnosis and assessment of patients with AP. In this review, we provide an overview of the novel cellular and molecular mechanisms underlying the roles of miRNAs during the disease processes of AP, as well as the potential diagnosis and therapeutic biomarkers of miRNAs in patients with AP.
Collapse
Affiliation(s)
- Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Chen Luo
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Ruohong Liu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
29
|
Zeng G, Wang Z, Huang Y, Abedin Z, Liu Y, Randhawa P. Cellular and viral miRNA expression in polyomavirus BK infection. Transpl Infect Dis 2019; 21:e13159. [PMID: 31410940 DOI: 10.1111/tid.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
Polyomavirus BK (BKV) is an important pathogen in kidney transplant patients. Regulation of BKV encoded microRNAs (miRNAs) is not well understood. Therefore, tubular epithelial cells infected with BKV were examined for changes in small RNA expression. The observed changes were further evaluated by real-time PCR and RNA-seq analysis of renal allograft biopsies. BKV-miR-B1-5p and BKV-miR-B1-3p showed a 1000-fold increase over 12 days but did not prevent cell lysis. Downregulation of host miR-10b and miR-30a could be confirmed on all three platforms evaluated. Whereas, the BKV genome expressed more 3p than 5p miRNA species, the reverse was true for the human genome. Decreased expression of TP53INP2, and increased expression of BCL2A1, IL-6, IL8 and other proinflammatory cytokines were shown in biopsies with BKV nephropathy. No change in expression was seen in miR-10a dependent expression of NKG2D ligands ULBP3, MICA, or MICB. In conclusion, BKV infection results in regulation of cellular genes regulated by and possibly amenable to therapies targeting miR-10 and miR-30.
Collapse
Affiliation(s)
- Gang Zeng
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuchen Huang
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Yang Liu
- PrimBio Research Institute LLC, Exton, PA, USA
| | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Cao M, Fang Y, Jia W, Wang Y, Sun J, Tao D. Emodin relieves hypoxia-triggered injury via elevation of microRNA-25 in PC-12 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2678-2687. [PMID: 31257935 DOI: 10.1080/21691401.2019.1633339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emodin (EMO) possesses extensive pharmacological activities, which has been proven to exert the protective impact in diverse nervous system diseases. Nonetheless, whether EMO emerges a neuro-protective activity in hypoxic-evoked ischemic brain injury is still further probed. The intention of the research is to disclose whether EMO emerges neuro-protective activity in hypoxic-evoked ischemic brain injury. PC-12 received hypoxia administration, and then cell viability, apoptosis and autophagy were estimated. After EMO disposition, the above-involved cellular processes were evaluated again. MiR-25 functions in EMO-affected cells were also estimated. The interrelation between miR-25 and neurofilament light-chain polypeptide gene (NEFL) and the conceivable roles of NEFL in hypoxia-disposed cells were investigated. The latent mechanism was uncovered by mTOR and Notch pathways determination. Hypoxia triumphantly triggered apoptosis and autophagy, but EMO repressed these functions in PC-12 cells. Increased miR-25 was induced by EMO, and inhibited miR-25 abated the impacts of EMO on hypoxia-disposed PC-12 cells. NEFL as a neoteric target gene of miR-25 was predicated, and overexpressed NEFL annulled the functions of EMO in hypoxia-injured cells. EMO activated mTOR and Notch pathways through repressing NEFL. The investigations corroborated that EMO weakened hypoxia-triggered injury via elevating miR-25 by targeting NEFL in PC-12 cells.
Collapse
Affiliation(s)
- Mingjuan Cao
- a Department of Rehabilitation, Zibo Integrated Traditional Chinese and Western Medicine Hospital , Zibo , PR China
| | - Yuqing Fang
- b Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University , Jinan , PR China
| | - Wei Jia
- c Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University , Jinan , PR China
| | - Yao Wang
- d Department of Neurology, The First Affiliated Hospital of Dalian Medical University , Dalian , PR China
| | - Jingyi Sun
- d Department of Neurology, The First Affiliated Hospital of Dalian Medical University , Dalian , PR China
| | - Dingbo Tao
- d Department of Neurology, The First Affiliated Hospital of Dalian Medical University , Dalian , PR China
| |
Collapse
|
31
|
Zheng Y, Wu W, Hu G, Qiu L, Bing X, Chen J. Varieties of immunity activities and gut contents in tilapia with seasonal changes. FISH & SHELLFISH IMMUNOLOGY 2019; 90:466-476. [PMID: 31004800 DOI: 10.1016/j.fsi.2019.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We performed 16S rDNA sequencing of tilapia fecal samples to analyze changes in tilapia gut contents after cultivation of the fish in the presence of sandwich-like floating beds of Chinese medicinal herbs (5 and 10% planting-areas; 5% Polygonum cuspidatum). The interactive effects between water quality and blood and hepatic pro- and anti-inflammatory concentrations were also assessed. Our results showed that the water quality (i.e., NO3--N, NO2--N, TP removal rates) improved, and the abundance of Chloroflexi and Cyanobacteria increased. The abundance of Bacteroidetes, Verrucomicrobia, Saccharibacteria, and Actinobacteria showed both significant seasonal decreases and increases in the presence of P. cuspidatum (increases in August and decreases in July). Fish blood and hepatic IL-10 and IFN-γ levels (together with fish sampled in September) significantly increased in the P. cuspidatum group sampled in August, while those of TNF-α (10% sandwich-like, P. cuspidatum), IL-1β (P. cuspidatum), IL-8 (5% sandwich-like in September, S905S) significantly decreased. Heat shock proteins 60 and 70 levels significantly increased in the P. cuspidatum group, and complement C3 and C4 concentrations significantly increased in S905S. This study demonstrated that enhanced immunity through the regulation of pro- and anti-inflammatory proteins was sustained throughout development until harvest, particularly in fish grown with P. cuspidatum.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
32
|
Aoi K, Nishio A, Okazaki T, Takeo M, Masuda M, Fukui T, Uchida K, Okazaki K. Inhibition of the dephosphorylation of eukaryotic initiation factor 2α ameliorates murine experimental pancreatitis. Pancreatology 2019; 19:548-556. [PMID: 31040063 DOI: 10.1016/j.pan.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/31/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress in the pancreas is closely associated with the development of acute pancreatitis. However, the role of the protein kinase RNA-like ER kinase (PERK) in this disease is not fully understood. We investigated whether an inhibitor of the dephosphorylation of eukaryotic initiation factor 2α, salubrinal, could improve murine experimental pancreatitis through the amelioration of ER stress. METHODS Acute pancreatitis was induced by the intraperitoneal administration of cerulein (50 μg/kg) six times at 1-h intervals followed by lipopolysaccharide (10 mg/kg). Salubrinal was administered intraperitoneally immediately after lipopolysaccharide injection and 3 h later. Mice were sacrificed 24 h after the first injection of cerulein, and serum amylase and proinflammatory cytokines were measured. The severity of pancreatitis was evaluated histologically using a scoring system. The expression levels of ER stress-related proteins were evaluated by Western blotting. RESULTS The administration of salubrinal significantly attenuated the increase in serum amylase levels and improved histologically assessed pancreatitis. The serum levels of proinflammatory cytokines were significantly suppressed in salubrinal-treated mice, as was the expression of glucose-regulated protein 78, CCAAT/enhancer-binding protein homologous protein, and cleaved caspase-3. CONCLUSIONS The amelioration of ER stress through augmentation of the PERK-signaling pathway may be a therapeutic target for the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Kazunori Aoi
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Akiyoshi Nishio
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan.
| | - Takashi Okazaki
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Masahiro Takeo
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Masataka Masuda
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Kazushige Uchida
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
33
|
Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. ACTA ACUST UNITED AC 2019; 52:e7994. [PMID: 30810622 PMCID: PMC6393853 DOI: 10.1590/1414-431x20187994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) is a common presentation for ischemic heart disease, which is a leading cause of death. Emodin is a Chinese herbal anthraquinone used in several diseases. However, the effect of emodin in hypoxia-induced injury in cardiomyocytes has not been clearly elucidated. Our study aimed to clarify the functions of emodin in hypoxia-induced injury in rat cardiomyocytes H9c2 and explore the underlying mechanism. The effects of emodin on cell viability and apoptosis were analyzed by the Cell counting kit-8 assay and flow cytometry assay, respectively. The cell proliferation- and cell apoptosis-related proteins were detected by western blot. qRT-PCR was used to determine the relative expression of miR-138. Cell transfection was performed to alter miR-138 and MLK3 expression. miR-138 target was performed by dual luciferase activity assay. Sirt1/AKT and Wnt/β-catenin pathways-related factors phosphorylation were analyzed by western blot. Emodin inhibited hypoxia-induced injury in H9c2 cells by promoting cell viability and reducing cell apoptosis. miR-138 was down-regulated by hypoxia treatment but up-regulated by emodin. Up-regulation of miR-138 alleviated hypoxia-induced cell injury. Down-regulation of miR-138 attenuated the growth-promoting effect of emodin on hypoxia-induced injury, whereas up-regulation of miR-138 enhanced the growth-promoting effects of emodin. The underlying mechanism might be by inactivating Sirt1/AKT and Wnt/β-catenin pathways. MLK3 was negatively regulated by miR-138 expression and inactivated Sirt1/AKT and Wnt/β-catenin pathways. Emodin alleviated hypoxia-induced injury in H9c2 cells via up-regulation of miR-138 modulated by MLK3, as well as by activating Sirt1/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiaoji Qin
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Shanglang Cai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changyong Zhou
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
34
|
Zhou Q, Xia S, Guo F, Hu F, Wang Z, Ni Y, Wei T, Xiang H, Shang D. Transforming growth factor-β in pancreatic diseases: Mechanisms and therapeutic potential. Pharmacol Res 2019; 142:58-69. [PMID: 30682425 DOI: 10.1016/j.phrs.2019.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/27/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
Pancreatic diseases, such as acute pancreatitis, chronic pancreatitis, and pancreatic cancer, are common gastrointestinal diseases resulting in the development of local and systemic complications with a high risk of death. Numerous studies have examined pancreatic diseases over the past few decades; however, the pathogenesis remains unclear, and there is a lack of effective treatment options. Recently, emerging evidence has suggested that transforming growth factor beta (TGF-β) exerts controversial functions in apoptosis, inflammatory responses, and carcinogenesis, indicating its complex role in the pathogenesis of pancreas-associated disease. Therefore, a further understanding of relevant TGF-β signalling will provide new ideas and potential therapeutic targets for preventing disease progression. This is the first systematic review of recent data from animal and human clinical studies focusing on TGF-β signalling in pancreas damage and diseases. This information may aid in the development of therapeutic agents for regulating TGF-β in this pathology to prevent or treat pancreatic diseases.
Collapse
Affiliation(s)
- Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fenglin Hu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yujia Ni
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tianfu Wei
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
35
|
Tao X, Guo F, Zhou Q, Hu F, Xiang H, Xiao GG, Shang D. Bacterial community mapping of the intestinal tract in acute pancreatitis rats based on 16S rDNA gene sequence analysis. RSC Adv 2019; 9:5025-5036. [PMID: 35514649 PMCID: PMC9060666 DOI: 10.1039/c8ra09547g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Numerous studies have revealed that the status of intestinal microbiota has a marked impact on inflammation, which may progressively aggravate the systemic inflammatory response caused by acute pancreatitis (AP).
Collapse
Affiliation(s)
- Xufeng Tao
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine
- Dalian Medical University
- Dalian 116011
- China
| | - Qi Zhou
- Institute (College) of Integrative Medicine
- Dalian Medical University
- Dalian 116011
- China
| | - Fenglin Hu
- Institute (College) of Integrative Medicine
- Dalian Medical University
- Dalian 116011
- China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine
- The First Affiliated Hospital of Dalian Medical University
- Dalian 116011
- China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- China
| | - Dong Shang
- Institute (College) of Integrative Medicine
- Dalian Medical University
- Dalian 116011
- China
- Department of General Surgery, Pancreatico-Biliary Center
| |
Collapse
|
36
|
Nong F, Zhao Z, Luo X, Liu C, Li H, Liu Q, Wen B, Zhou L. Evaluation of the influence of mirabilite on the absorption and pharmacokinetics of the ingredients in Dahuang‐mudan decoction by a validated UPLC/QTOF–MS/MS method. Biomed Chromatogr 2018; 33:e4423. [DOI: 10.1002/bmc.4423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/21/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Feifei Nong
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou China
- Pi‐Wei InstituteGuangzhou University of Chinese Medicine Guangzhou China
| | - Zhongxiang Zhao
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou China
| | - Xia Luo
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou China
| | - Chang Liu
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou China
| | - Hui Li
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou China
| | - Qi Liu
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou China
| | - Bin Wen
- Pi‐Wei InstituteGuangzhou University of Chinese Medicine Guangzhou China
| | - Lian Zhou
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
37
|
Zhang Q, Tao X, Xia S, Qu J, Song H, Liu J, Li H, Shang D. Emodin attenuated severe acute pancreatitis via the P2X ligand‑gated ion channel 7/NOD‑like receptor protein 3 signaling pathway. Oncol Rep 2018; 41:270-278. [PMID: 30542707 PMCID: PMC6278370 DOI: 10.3892/or.2018.6844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is an aseptic inflammation characterized with an annual incidence rate, and ~20% patients progressing to severe AP (SAP) with a high mortality rate. Although Qingyi decoction has been frequently used for SAP treatment over the past 3 decades in clinic, the actual mechanism of its protective effects remains unknown. As the major active ingredient of Qingyi decoction, emodin was selected in the present study to investigate the effect of emodin against severe acute pancreatitis (SAP) in rats through NOD-like receptor protein 3 (NLRP3) inflammasomes. The rats were randomly divided into a sham operation group, an SAP model group induced by a standard retrograde infusion of 5.0% sodium taurocholate into the biliopancreatic duct, and low-dose (30 mg/kg) and high-dose (60 mg/kg) emodin-treated groups. At 12 h after the event, the plasma amylase, lipase, interleukin (IL)-1β, IL-18 and myeloperoxidase (MPO) activities were examined. Furthermore, the pathological scores of pancreases were evaluated by hematoxylin and eosin staining. The expression levels of P2X ligand-gated ion channel 7 (P2X7), NLRP3, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain and caspase-1 were also analyzed by western blot analysis. The data demonstrated that, compared with the SAP group, emodin could significantly relieve the pancreatic histopathology and acinar cellular structure injury, and notably downregulate the plasma amylase and lipase levels, as well as the MPO activities in pancreatic tissues, in a dose-dependent manner. Furthermore, emodin inhibited the P2X7/NLRP3 signaling pathway followed by the decrease of pro-inflammatory factors, and the latter is beneficial for the recovery of SAP. Collectively, the data indicated that emodin may be an efficient candidate natural product for SAP treatment.
Collapse
Affiliation(s)
- Qingkai Zhang
- Department of Integrative Medicine Surgery, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xufeng Tao
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shilin Xia
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jialin Qu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Huiyi Song
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jianjun Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hailong Li
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Dong Shang
- Department of Integrative Medicine Surgery, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
38
|
Fan L, Zhang H, Li X, Yang G, Ru J, Liu T. RETRACTED: Emodin protects hyperglycemia-induced injury in PC-12 cells by up-regulation of miR-9. Mol Cell Endocrinol 2018; 474:194-200. [PMID: 29577942 DOI: 10.1016/j.mce.2018.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editors decided to retract the article.
Collapse
Affiliation(s)
- Lei Fan
- Department of Orthopedic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Huifeng Zhang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Xiaobin Li
- Department of Orthopedic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Guang Yang
- Department of Orthopedic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Jingtao Ru
- Department of Orthopedic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Tao Liu
- Department of Orthopedic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
39
|
Zhang Y, Yan L, Han W. Elevated Level of miR-551b-5p is Associated With Inflammation and Disease Progression in Patients With Severe Acute Pancreatitis. Ther Apher Dial 2018; 22:649-655. [PMID: 29989302 DOI: 10.1111/1744-9987.12720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/03/2018] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
Abstract
Circulating microRNAs have the potential to be noninvasive biomarkers for assessing disease progression. MicroRNA-551b-5p (miR-551b-5p) was previously reported to be differentially expressed in pancreatic patients. The serum miR-551b-5p level was measured in patients with mild acute pancreatitis (MAP), severe acute pancreatitis (SAP), and healthy controls using quantitative real-time polymerase chain reaction (RT-PCR) analysis to evaluate its impact on inflammatory response. Acute Physiology and Chronic Health Evaluation II (APACHE II), Multiple Organ Dysfunction Score (MODS), Sequential Organ Assessment Score (SOFA), and Ranson's scores were recorded. Inflammatory cytokines, IL-6, IL-17, IL-1β, and Tumor Necrosis Factor-α (TNF-α), were detected in serum samples obtained from MAP and SAP patients on admission day 1, day 3, and day 5 using Enzyme Linked Immunosorbent Assay (ELISA). Inflammatory cytokines were analyzed in peripheral blood mononuclear cells (PBMCs), which were transfected with miR-551b-5p-negative controls and inhibitors. The serum miR-551b-5p level was significantly higher in MAP and SAP patients compared to controls (P < 0.001). An elevated miR-551b-5p level is positively associated with APACHE II, MODS, SOFA, and Ranson's scores (P < 0.001). Serum cytokines levels were significantly elevated in MAP and SAP patients compared to controls (P < 0.05). In addition, the level of these inflammatory cytokines was increased in PBMCs of SAP patients in comparison with those of healthy controls (P < 0.05), and this rise was significantly reduced with the addition of an miR-551b-5p inhibitor. In conclusion, serum miR-551b-5p is elevated in patients with MAP and SAP and is involved in the regulation of inflammatory response. It may be a useful biomarker for assessing the severity of SAP.
Collapse
Affiliation(s)
- Yongpeng Zhang
- Department of Emergency, People's Hospital of Dongying, Dongying, Shandong, China
| | - Liying Yan
- Department of Emergency, People's Hospital of Dongying, Dongying, Shandong, China
| | - Wang Han
- Department of Emergency, People's Hospital of Dongying, Dongying, Shandong, China
| |
Collapse
|
40
|
Wan Y, Sun SS, Fu HY, Xu YK, Liu Q, Yin JT, Wan B. Adjuvant rhubarb alleviates organs dysfunction and inhibits inflammation in heat stroke. Exp Ther Med 2018; 16:1493-1498. [PMID: 30116399 DOI: 10.3892/etm.2018.6327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the effects of adjuvant rhubarb on the recovery of patients with heat stroke. A total of 85 patients with heat stroke were randomly assigned to two treatment groups: One group receiving conventional treatment for heat stroke (conventional group) and one group receiving rhubarb supplement in addition to conventional treatment (rhubarb group). Liver and kidney function parameters, Acute Physiology and Chronic Health Evaluation (APACHE) II scores, plasma interleukin-6 (IL-6), procalcitonin (PCT), C-reactive protein (CRP) levels and venous white blood cell count (WBC) were analyzed. The length of stay in the intensive care units (ICUs) and hospital were recorded. Kaplan-Meier curves were drawn to determine the 30-day survival of the patients. The results indicated that rhubarb supplementation significantly reduced the WBC, as well as CRP, PCT and IL-6 levels at treatment days 3-5. Furthermore, rhubarb intake was observed to limit heat stroke-induced damage to liver and kidney function by decreasing the abnormally high levels of plasma aspartate aminotransferase, alanine aminotransferase and creatinine. Finally, patients in the rhubarb group had shorter ICU and hospital stays as well as a lower APACHE II score than those in the conventional group. However, no significant difference in the 30-day mortality rate was observed between the two groups. In conclusion, rhubarb intake provided a significant benefit for patients with heat stroke by inhibiting systemic inflammation and mitigating liver and kidney injury.
Collapse
Affiliation(s)
- Ying Wan
- Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shuang-Shuang Sun
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hai-Yan Fu
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yin-Kun Xu
- Intensive Care Unit, Zhenjiang No. 2 People's Hospital, Zhenjiang, Jiangsu 212000, P.R. China
| | - Qing Liu
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiang-Tao Yin
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bing Wan
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Respiratory Medicine, The Affiliated Jiangning Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
41
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026 10.1016/j.redox.2019.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
42
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16:189-198. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
43
|
Wang W, Li DB, Li RY, Zhou X, Yu DJ, Lan XY, Li JP, Liu JL. Diagnosis of Hyperacute and Acute Ischaemic Stroke: The Potential Utility of Exosomal MicroRNA-21-5p and MicroRNA-30a-5p. Cerebrovasc Dis 2018; 45:204-212. [PMID: 29627835 DOI: 10.1159/000488365] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Early and accurate diagnosis of ischaemic stroke (IS) requires the use of an optimized biomarker. Exosomal microRNAs have the potential to serve as biomarkers owing to their stability and specificity. We investigated the expression levels of plasma-derived exosomal microRNA-21-5p and microRNA-30a-5p in the different phases of IS. METHODS One hundred forty-three patients with IS and 24 non-stroke controls were enrolled. The patients were divided into the following 5 groups: 1 group for the hyperacute phase IS (HIS, within 6 h); two for the acute phase IS (AIS, including days 1-3 and days 4-7); one for the subacute phase IS (SIS, days 8-14); and one for the recovery phase IS (RIS, days >14). Plasma exosomes were isolated using a QIAGEN exoRNeasy kit and examined by transmission electron -microscopy, nanoparticle tracking, and flow cytometry. The expression levels of miRNA-21-5p and miRNA-30a-5p were detected by quantitative real-time polymerase chain reaction. RESULTS The plasma exosomal miR-21-5p levels in SIS and RIS were significantly higher than that in controls (p < 0.05 and p < 0.01 respectively). The levels of miR-30a-5p in HIS were significantly higher (p < 0.05) and in AIS (days 1-3) were lower than that in controls (p < 0.05). In AIS (days 1-3), both miRNAs were decreased compared with the HIS group (p = 0.053 and 0.001, respectively). The area under the curve (AUC) of the miR-21-5p was 0.714 for SIS (95% CI 0.570-0.859, p = 0.007), 0.734 for RIS (95% CI 0.596-0.871, p = 0.003); the AUC of the miR-30a-5p was 0.826 for HIS (95% CI 0.665-0.988, p = 0.001), 0.438 for AIS (days 1-3; 95% CI 0.240-0.635, p = 0.516). CONCLUSIONS The plasma-derived exosomal miR-21-5p and miRNA-30a-5p in combination are promising biomarkers for diagnosing IS and distinguishing among HIS, SIS, and RIS, especially miRNA-30a-5p for the diagnosis of the HIS phase. Our results provide a new reference for clinicians to apply in early-stage diagnosis and identifies the possible value of biomarkers for IS thrombolysis therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dong-Bin Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ru-Ying Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dong-Ju Yu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Yan Lan
- Department of Neurology, The Third People's Hospital of Nanning, Nanning, China
| | - Jin-Pin Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|