1
|
Khodadadi H, Salles ÉL, Naeini SE, Bhandari B, Rogers HM, Gouron J, Meeks W, Terry AV, Pillai A, Yu JC, Morgan JC, Vaibhav K, Hess DC, Dhandapani KM, Wang LP, Baban B. Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11764. [PMID: 39519315 PMCID: PMC11546302 DOI: 10.3390/ijms252111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a challenging medical issue that requires efficacious treatment options to improve long-term quality of life. Cannabidiol (CBD) is a cannabis-derived phytocannabinoid with potential health benefits, including reports from our laboratory and others showing a therapeutic role in the pre-clinical treatment of AD; however, the mechanisms whereby CBD affects AD progression remain undefined. Innate lymphoid cells (ILCs) are recently discovered immune cells that initiate and orchestrate inflammatory responses. ILC2, a sub-class of ILCs, is proposed to have a role in cognitive function via unknown mechanisms. In this present study, we explored whether CBD ameliorates AD symptoms via the enhancement of acetylcholine (ACh), a cholinergic neurotransmitter involved in cognition that may regulate ILC2. 5xFAD mice were chronically treated by inhalation of a formulation of broad-spectrum CBD for seven months. ACh production, ILC2s profile, brain histopathology, and long-term behavior were assessed. Together, our studies showed that long-term inhalation of CBD improved cognitive function and reduced senile plaques in a murine AD model, effects that were associated with enhanced ACh production and altered ILC2s distribution within the CNS. These findings indicate that inhaled CBD could offer a cost-effective, non-invasive, and effective treatment for managing AD. The beneficial effects of CBD inhalation may be linked to increased ACh production and an altered distribution of ILC2s, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Hannah M. Rogers
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jules Gouron
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - John C. Morgan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - Lei P. Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
2
|
Qi LJ, Gao S, Ning YH, Chen XJ, Wang RZ, Feng X. Bimin Kang ameliorates the minimal persistent inflammation in allergic rhinitis by reducing BCL11B expression and regulating ILC2 plasticity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118454. [PMID: 38852638 DOI: 10.1016/j.jep.2024.118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Minimal persistent inflammation (MPI) is a major contributor to the recurrence of allergic rhinitis (AR). The traditional Chinese herbal medicine known as Bimin Kang Mixture (BMK) have been used in clinics for decades to treat AR, which can relieve AR symptoms, reduce inflammatory response and improve immune function. However, its mechanism in controlling MPI is still unclear. AIM OF THE STUDY This study aims to assess the therapeutic effect of BMK on MPI, and elaborate the mechanism involved in BMK intervention in BCL11B regulation of type 2 innate lymphoid cell (ILC2) plasticity in the treatment of MPI. MATERIAL AND METHODS The effect of BMK (9.1 ml/kg) and Loratadine (15.15 mg/kg) on MPI was evaluated based on symptoms, pathological staining, and ELISA assays. RT-qPCR and flow cytometry were also employed to assess the expression of BCL11B, IL-12/IL-12Rβ2, and IL-18/IL-18Rα signaling pathways associated with ILC2 plasticity in the airway tissues of MPI mice following BMK intervention. RESULTS BMK restored the airway epithelial barrier, and markedly reduced inflammatory cells (eosinophils, neutrophils) infiltration (P < 0.01) and goblet cells hyperplasia (P < 0.05). BCL11B expression positively correlated with the ILC2 proportion in the lungs and nasal mucosa of AR and MPI mice (P < 0.01). BMK downregulated BCL11B expression (P < 0.05) and reduced the proportion of ILC2, ILC3 and ILC3-like ILC2 subsets (P < 0.05). Moreover, BMK promoted the conversion of ILC2 into an ILC1-like phenotype through IL-12/IL-12Rβ2 and IL-18/IL-18Rα signaling pathways in MPI mice. CONCLUSION By downregulating BCL11B expression, BMK regulates ILC2 plasticity and decreases the proportion of ILC2, ILC3, and ILC3-like ILC2 subsets, promoting the conversion of ILC2 to ILC1, thus restoring balance of ILC subsets in airway tissues and control MPI.
Collapse
Affiliation(s)
- Li-Jie Qi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Yun-Hong Ning
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Chen Y, Xiao L, Zhou M, Zhang H. The microbiota: a crucial mediator in gut homeostasis and colonization resistance. Front Microbiol 2024; 15:1417864. [PMID: 39165572 PMCID: PMC11333231 DOI: 10.3389/fmicb.2024.1417864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
The gut microbiota is a complex and diverse community of microorganisms that colonizes the human gastrointestinal tract and influences various aspects of human health. These microbes are closely related to enteric infections. As a foreign entity for the host, commensal microbiota is restricted and regulated by the barrier and immune system in the gut and contributes to gut homeostasis. Commensals also effectively resist the colonization of pathogens and the overgrowth of indigenous pathobionts by utilizing a variety of mechanisms, while pathogens have developed strategies to subvert colonization resistance. Dysbiosis of the microbial community can lead to enteric infections. The microbiota acts as a pivotal mediator in establishing a harmonious mutualistic symbiosis with the host and shielding the host against pathogens. This review aims to provide a comprehensive overview of the mechanisms underlying host-microbiome and microbiome-pathogen interactions, highlighting the multi-faceted roles of the gut microbiota in preventing enteric infections. We also discuss the applications of manipulating the microbiota to treat infectious diseases in the gut.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Ling Xiao
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Min Zhou
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wong P, Foltz JA, Chang L, Neal CC, Yao T, Cubitt CC, Tran J, Kersting-Schadek S, Palakurty S, Jaeger N, Russler-Germain DA, Marin ND, Gang M, Wagner JA, Zhou AY, Jacobs MT, Foster M, Schappe T, Marsala L, McClain E, Pence P, Becker-Hapak M, Fisk B, Petti AA, Griffith OL, Griffith M, Berrien-Elliott MM, Fehniger TA. T-BET and EOMES sustain mature human NK cell identity and antitumor function. J Clin Invest 2023; 133:e162530. [PMID: 37279078 PMCID: PMC10313375 DOI: 10.1172/jci162530] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.
Collapse
Affiliation(s)
- Pamela Wong
- Department of Medicine, Division of Oncology
| | | | - Lily Chang
- Department of Medicine, Division of Oncology
| | | | - Tony Yao
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | | | | | | | | | | | | | - Mark Foster
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | - Bryan Fisk
- Department of Medicine, Division of Oncology
| | | | | | | | | | - Todd A. Fehniger
- Department of Medicine, Division of Oncology
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Mo Y, Kang SY, Bang JY, Kim Y, Jeong J, Jeong EM, Kim HY, Cho SH, Kang HR. Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model. Mol Cells 2022; 45:833-845. [PMID: 36380733 PMCID: PMC9676992 DOI: 10.14348/molcells.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti- asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.
Collapse
Affiliation(s)
- Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Yoon Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yujin Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jiung Jeong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eui-Man Jeong
- Department of Pharmacy, Jeju National University College of Pharmacy, Jeju 63243, Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
6
|
Mukherjee N, Ji N, Tan X, Lin C, Rios E, Chen C, Huang T, Svatek RS. Bladder tumor ILC1s undergo Th17-like differentiation in human bladder cancer. Cancer Med 2021; 10:7101-7110. [PMID: 34496133 PMCID: PMC8525153 DOI: 10.1002/cam4.4243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Human innate lymphoid cells (hILCs) are lineage-negative immune cells that do not express rearranged adaptive antigen receptors. Natural killer (NK) cells are hILCs that contribute to cancer defense. The role of non-NK hILCs in cancer is unclear. Our study aimed to characterize non-NK hILCs in bladder cancer. EXPERIMENTAL DESIGN Mass cytometry was used to characterize intratumoral non-NK hILCs based on 35 parameters, including receptors, cytokines, and transcription factors from 21 muscle-invasive bladder tumors. Model-based clustering was performed on t-distributed stochastic neighbor embedding (t-SNE) coordinates of hILCs, and the association of hILCs with tumor stage was analyzed. RESULTS Most frequent among intratumoral non-NK hILCs were hILC1s, which were increased in higher compared with lower stage tumors. Intratumoral hILC1s were marked by Th17-like phenotype with high RORγt, IL-17, and IL-22 compared to Th1 differentiation markers, including Tbet, perforin, and IFN-γ. Compared with intratumoral hILC2s and hILC3s, hILC1s also had lower expression of activation markers (NKp30, NKp46, and CD69) and increased expression of exhaustion molecules (PD-1 and Tim3). Unsupervised clustering identified nine clusters of bladder hILCs, which were not defined by the primary hILC subtypes 1-3. hILC1s featured in all the nine clusters indicating that intratumoral hILC1s displayed the highest phenotypic heterogeneity among all hILCs. CONCLUSIONS hILC1s are increased in higher stage tumors among patients with muscle-invasive bladder cancer. These intratumoral hILC1s exhibit an exhausted phenotype and Th17-like differentiation, identifying them as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Neelam Mukherjee
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Niannian Ji
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Xi Tan
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Lin Lin
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Emily Rios
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Liang Chen
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Tim Huang
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Robert S. Svatek
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| |
Collapse
|
7
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
8
|
Quintino-de-Carvalho IL, Gonçalves-Pereira MH, Ramos MF, de Aguiar Milhim BHG, Da Costa ÚL, Santos ÉG, Nogueira ML, Da Costa Santiago H. ILC1 and NK cells are sources of IFN-γ and other inflammatory cytokines associated to distinct clinical presentation in early dengue infection. J Infect Dis 2021; 225:84-93. [PMID: 34125227 DOI: 10.1093/infdis/jiab312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increased levels of inflammatory cytokines are associated to severe dengue evolution, but the source of such hypercytokinemia is elusive. We investigated the contribution of innate lymphocytes, innate lymphoid cells (ILC) and NK cells in cytokine production in early dengue infection. METHODS PBMCs of individuals with DWS- (dengue without warning signs) and DWS+ (dengue with warning signs and severe dengue presentation combined) were obtained between 2 and 7 days since fever onset and submitted to flow cytometry without specific antigen stimulation to evaluate cytokines in ILC and NK cells subpopulations. RESULTS ILCs and NK cells were found to be important sources of cytokines during dengue. ILCs of DWS+/SD group displayed higher production of IFN-γand IL-4/IL-13 when compared to DWS- individuals. On the other hand, NK EOMES+ cells of DWS- patients displayed higher IFN-γ production levels, when compared to DWS+/SD group. Interestingly, when NK cells were identified by CD56 expression, DWS+/SD displayed higher frequency of IL-17 production when compared to DWS- group. CONCLUSION These results indicate that ILCs and NK cells are important sources of inflammatory cytokines during acute dengue infection and display distinct profiles associated with different clinical forms.
Collapse
Affiliation(s)
| | | | - Michele Faria Ramos
- Departamento de Imunologia e Bioquímica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | - Helton Da Costa Santiago
- Departamento de Imunologia e Bioquímica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
9
|
Huang Q, Jacquelot N, Preaudet A, Hediyeh-zadeh S, Souza-Fonseca-Guimaraes F, McKenzie ANJ, Hansbro PM, Davis MJ, Mielke LA, Putoczki TL, Belz GT. Type 2 Innate Lymphoid Cells Protect against Colorectal Cancer Progression and Predict Improved Patient Survival. Cancers (Basel) 2021; 13:559. [PMID: 33535624 PMCID: PMC7867134 DOI: 10.3390/cancers13030559] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammation of the gastrointestinal (GI) tract contributes to colorectal cancer (CRC) progression. While the role of adaptive T cells in CRC is now well established, the role of innate immune cells, specifically innate lymphoid cells (ILCs), is not well understood. To define the role of ILCs in CRC we employed complementary heterotopic and chemically-induced CRC mouse models. We discovered that ILCs were abundant in CRC tumours and contributed to anti-tumour immunity. We focused on ILC2 and showed that ILC2-deficient mice developed a higher tumour burden compared with littermate wild-type controls. We generated an ILC2 gene signature and using machine learning models revealed that CRC patients with a high intratumor ILC2 gene signature had a favourable clinical prognosis. Collectively, our results highlight a critical role for ILC2 in CRC, suggesting a potential new avenue to improve clinical outcomes through ILC2-agonist based therapeutic approaches.
Collapse
Affiliation(s)
- Qiutong Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Adele Preaudet
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Soroor Hediyeh-zadeh
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, Australia
| | | | | | - Philip M. Hansbro
- Center for Inflammation, Centenary Institute and the School of Life Sciences, University of Technology Sydney, Sydney 2050, Australia;
| | - Melissa J. Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Lisa A. Mielke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg 3084, Australia
| | - Tracy L. Putoczki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Gabrielle T. Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne 3052, Australia; (Q.H.); (N.J.); (A.P.); (S.H.-z.); (M.J.D.); (L.A.M.); (T.L.P.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, Australia
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane 4102, Australia;
| |
Collapse
|
10
|
PlGF Immunological Impact during Pregnancy. Int J Mol Sci 2020; 21:ijms21228714. [PMID: 33218096 PMCID: PMC7698813 DOI: 10.3390/ijms21228714] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother’s immune system has to tolerate the persistence of paternal alloantigens without affecting the anti-infectious immune response. Consequently, several mechanisms aimed at preventing allograft rejection, occur during a pregnancy. In fact, the early stages of pregnancy are characterized by the correct balance between inflammation and immune tolerance, in which proinflammatory cytokines contribute to both the remodeling of tissues and to neo-angiogenesis, thus, favoring the correct embryo implantation. In addition to the creation of a microenvironment able to support both immunological privilege and angiogenesis, the trophoblast invades normal tissues by sharing the same behavior of invasive tumors. Next, the activation of an immunosuppressive phase, characterized by an increase in the number of regulatory T (Treg) cells prevents excessive inflammation and avoids fetal immuno-mediated rejection. When these changes do not occur or occur incompletely, early pregnancy failure follows. All these events are characterized by an increase in different growth factors and cytokines, among which one of the most important is the angiogenic growth factor, namely placental growth factor (PlGF). PlGF is initially isolated from the human placenta. It is upregulated during both pregnancy and inflammation. In this review, we summarize current knowledge on the immunomodulatory effects of PlGF during pregnancy, warranting that both innate and adaptive immune cells properly support the early events of implantation and placental development. Furthermore, we highlight how an alteration of the immune response, associated with PlGF imbalance, can induce a hypertensive state and lead to the pre-eclampsia (PE).
Collapse
|
11
|
Sheikh AA, Groom JR. Transcription tipping points for T follicular helper cell and T-helper 1 cell fate commitment. Cell Mol Immunol 2020; 18:528-538. [PMID: 32999454 PMCID: PMC7525231 DOI: 10.1038/s41423-020-00554-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
During viral infection, immune cells coordinate the induction of inflammatory responses that clear infection and humoral responses that promote protection. CD4+ T-cell differentiation sits at the center of this axis. Differentiation toward T-helper 1 (Th1) cells mediates inflammation and pathogen clearance, while T follicular helper (Tfh) cells facilitate germinal center (GC) reactions for the generation of high-affinity antibodies and immune memory. While Th1 and Tfh differentiation occurs in parallel, these CD4+ T-cell identities are mutually exclusive, and progression toward these ends is determined via the upregulation of T-bet and Bcl6, respectively. These lineage-defining transcription factors act in concert with multiple networks of transcriptional regulators that tip the T-bet and Bcl6 axis in CD4+ T-cell progenitors to either a Th1 or Tfh fate. It is now clear that these transcriptional networks are guided by cytokine cues that are not only varied between distinct viral infections but also dynamically altered throughout the duration of infection. Thus, multiple intrinsic and extrinsic factors combine to specify the fate, plasticity, and function of Th1 and Tfh cells during infection. Here, we review the current information on the mode of action of the lineage-defining transcription factors Bcl6 and T-bet and how they act individually and in complex to govern CD4+ T-cell ontogeny. Furthermore, we outline the multifaceted transcriptional regulatory networks that act upstream and downstream of Bcl6 and T-bet to tip the differentiation equilibrium toward either a Tfh or Th1 fate and how these are impacted by dynamic inflammatory cues.
Collapse
Affiliation(s)
- Amania A Sheikh
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
12
|
Nutt SL, Keenan C, Chopin M, Allan RS. EZH2 function in immune cell development. Biol Chem 2020; 401:933-943. [DOI: 10.1515/hsz-2019-0436] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
AbstractThe polycomb repressive complex 2 (PRC2) consists of three core components EZH2, SUZ12 and EED. EZH2 catalyzes the methylation of lysine 27 of histone H3, a modification associated with gene silencing. Through gene duplication higher vertebrate genomes also encode a second partially redundant methyltransferase, EZH1. Within the mammalian immune system most research has concentrated on EZH2 which is expressed predominantly in proliferating cells. EZH2 and other PRC2 components are required for hematopoietic stem cell function and lymphocyte development, at least in part by repressing cell cycle inhibitors. At later stages of immune cell differentiation, EZH2 plays essential roles in humoral and cell-mediated adaptive immunity, as well as the maintenance of immune homeostasis. EZH2 is often overactive in cancers, through both gain-of-function mutations and over-expression, an observation that has led to the development and clinical testing of specific EZH2 inhibitors. Such inhibitors may also be of use in inflammatory and autoimmune settings, as EZH2 inhibition dampens the immune response. Here, we will review the current state of understanding of the roles for EZH2, and PRC2 more generally, in the development and function of the immune system.
Collapse
Affiliation(s)
- Stephen L. Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Keenan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Verma R, Er JZ, Pu RW, Sheik Mohamed J, Soo RA, Muthiah HM, Tam JKC, Ding JL. Eomes Expression Defines Group 1 Innate Lymphoid Cells During Metastasis in Human and Mouse. Front Immunol 2020; 11:1190. [PMID: 32625207 PMCID: PMC7311635 DOI: 10.3389/fimmu.2020.01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have attempted to uncover the role of Group 1 Innate lymphoid cells (ILCs) in multiple physiological contexts, including cancer. However, the definition and precise contribution of Group 1 ILCs (constituting ILC1 and NK subsets) to metastasis is unclear due to the lack of well-defined cell markers. Here, we first identified ILC1 and NK cells in NSCLC patient blood and differentiated them based on the expression of transcription factors, T-bet and Eomes. Interestingly, Eomes downregulation in the peripheral blood NK cells of NSCLC patients positively correlated with disease progression. Additionally, we noted higher Eomes expression in NK cells (T-bet+Eomeshi) compared to ILC1s (T-bet+Eomeslo). We asked whether the decrease in Eomes was associated with the conversion of NK cells into ILC1 using Eomes as a reliable marker to differentiate ILC1s from NK cells. Utilizing a murine model of experimental metastasis, we observed an association between increase in metastasis and Eomes downregulation in NKp46+NK1.1+ Group 1 ILCs, which was consistent to that of human NSCLC samples. Further confirmation of this trend was achieved by flow cytometry, which identified tissue-specific Eomeslo ILC1-like and Eomeshi NK-like subsets in the murine metastatic lung based on cell surface markers and adoptive transfer experiments. Next, functional characterization of these cell subsets showed reduced cytotoxicity and IFNγ production in Eomeslo ILC1s compared to Eomeshi cells, suggesting that lower Eomes levels are associated with poor cancer immunosurveillance by Group 1 ILCs. These findings provide novel insights into the regulation of Group 1 ILC subsets during metastasis, through the use of Eomes as a reliable marker to differentiate between NK and ILC1s.
Collapse
Affiliation(s)
- Riva Verma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jun Zhi Er
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ren Wei Pu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jameelah Sheik Mohamed
- Division of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Harish Mithiran Muthiah
- Division of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Kit Chung Tam
- Division of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front Immunol 2020; 11:282. [PMID: 32153586 PMCID: PMC7047319 DOI: 10.3389/fimmu.2020.00282] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging concept of microbiota contributing to local mucosal homeostasis has fueled investigation into its specific role in immunology. Gut microbiota is mostly responsible for maintaining the balance between host defense and immune tolerance. Dysbiosis of gut microbiota has been shown to be related to various alterations of the immune system. This review focuses on the reciprocal relationship between gut microbiota and innate immunity compartment, with emphasis on gut-associated lymphoid tissue, innate lymphoid cells, and phagocytes. From a clinical perspective, the review gives a possible explanation of how the “gut microbiota—innate immunity” axis might contribute to the pathogenesis of autoimmune diseases like rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yuhao Jiao
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Centre for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xuan Zhang
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Cella M, Gamini R, Sécca C, Collins PL, Zhao S, Peng V, Robinette ML, Schettini J, Zaitsev K, Gordon W, Bando JK, Yomogida K, Cortez V, Fronick C, Fulton R, Lin LL, Gilfillan S, Flavell RA, Shan L, Artyomov MN, Bowman M, Oltz EM, Jelinsky SA, Colonna M. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat Immunol 2019; 20:980-991. [PMID: 31209406 PMCID: PMC6685551 DOI: 10.1038/s41590-019-0425-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
Innate lymphoid cells (ILCs) are tissue-resident lymphocytes categorized on the basis of their core regulatory programs and the expression of signature cytokines. Human ILC3s that produce the cytokine interleukin-22 convert into ILC1-like cells that produce interferon-γ in vitro, but whether this conversion occurs in vivo remains unclear. In the present study we found that ILC3s and ILC1s in human tonsils represented the ends of a spectrum that included additional discrete subsets. RNA velocity analysis identified an intermediate ILC3-ILC1 cluster, which had strong directionality toward ILC1s. In humanized mice, the acquisition of ILC1 features by ILC3s showed tissue dependency. Chromatin studies indicated that the transcription factors Aiolos and T-bet cooperated to repress regulatory elements active in ILC3s. A transitional ILC3-ILC1 population was also detected in the human intestine. We conclude that ILC3s undergo conversion into ILC1-like cells in human tissues in vivo, and that tissue factors and Aiolos were required for this process.
Collapse
Affiliation(s)
- Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- These authors contributed equally
| | - Ramya Gamini
- Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
- These authors contributed equally
| | - Cristiane Sécca
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Patrick L. Collins
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Present address: Department of Microbial Infection and Immunity, Ohio State University, Wexner School of Medicine, Columbus, OH 43210, USA
| | - Shanrong Zhao
- Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michelle L. Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Present address: Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Jorge Schettini
- Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Present Address: Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | - William Gordon
- Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
- Present address: Cogen Therapeutics, Cambridge MA 02139, USA
| | - Jennifer K. Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kentaro Yomogida
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Victor Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Present address: Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Catrina Fronick
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Fulton
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Lih-Ling Lin
- Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
- Present address: Immunology and Inflammation, Sanofi, Cambridge MA 02139, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Richard A. Flavell
- Department of Immunobiology Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Liang Shan
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael Bowman
- Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
- Present address: Immunology and Inflammation, Sanofi, Cambridge MA 02139, USA
| | - Eugene M. Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Present address: Department of Microbial Infection and Immunity, Ohio State University, Wexner School of Medicine, Columbus, OH 43210, USA
| | - Scott A. Jelinsky
- Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
16
|
Almeida FF, Jacquelot N, Belz GT. Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunol Rev 2019; 286:6-22. [PMID: 30294966 PMCID: PMC6446816 DOI: 10.1111/imr.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
The study of the immune system has shifted from a purely dichotomous separation between the innate and adaptive arms to one that is now highly complex and reshaping our ideas of how steady‐state health is assured. It is now clear that immune cells do not neatly fit into these two streams and immune homeostasis depends on continual dialogue between multiple lineages of the innate (including dendritic cells, innate lymphoid cells, and unconventional lymphocytes) and adaptive (T and B lymphocytes) arms together with a finely tuned synergy between the host and microbes which is essential to ensure immune homeostasis. Innate lymphoid cells are critical players in this new landscape. Here, we discuss recent studies that have elucidated in detail the development of ILCs from their earliest progenitors and examine factors that influence their identification and ability to drive immune homeostasis and long‐term immune protection.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolas Jacquelot
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
18
|
Cohan SL, Lucassen EB, Romba MC, Linch SN. Daclizumab: Mechanisms of Action, Therapeutic Efficacy, Adverse Events and Its Uncovering the Potential Role of Innate Immune System Recruitment as a Treatment Strategy for Relapsing Multiple Sclerosis. Biomedicines 2019; 7:biomedicines7010018. [PMID: 30862055 PMCID: PMC6480729 DOI: 10.3390/biomedicines7010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/07/2023] Open
Abstract
Daclizumab (DAC) is a humanized, monoclonal antibody that blocks CD25, a critical element of the high-affinity interleukin-2 receptor (IL-2R). DAC HYP blockade of CD25 inhibits effector T cell activation, regulatory T cell expansion and survival, and activation-induced T-cell apoptosis. Because CD25 blockade reduces IL-2 consumption by effector T cells, it increases IL-2 bioavailability allowing for greater interaction with the intermediate-affinity IL-2R, and therefore drives the expansion of CD56bright natural killer (NK) cells. Furthermore, there appears to be a direct correlation between CD56bright NK cell expansion and DAC HYP efficacy in reducing relapses and MRI evidence of disease activity in patients with RMS in phase II and phase III double-blind, placebo- and active comparator-controlled trials. Therapeutic efficacy was maintained during open-label extension studies. However, treatment was associated with an increased risk of rare adverse events, including cutaneous inflammation, autoimmune hepatitis, central nervous system Drug Reaction with Eosinophilia Systemic Symptoms (DRESS) syndrome, and autoimmune Glial Fibrillary Acidic Protein (GFAP) alpha immunoglobulin-associated encephalitis. As a result, DAC HYP was removed from clinical use in 2018. The lingering importance of DAC is that its use led to a deeper understanding of the underappreciated role of innate immunity in the potential treatment of autoimmune disease.
Collapse
Affiliation(s)
- Stanley L Cohan
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR 97225, USA.
| | - Elisabeth B Lucassen
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR 97225, USA.
| | - Meghan C Romba
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR 97225, USA.
| | - Stefanie N Linch
- Providence Health and Services, Regional Research Department, Portland, OR 97213, USA.
| |
Collapse
|
19
|
Abstract
In this review from Murre, the evolution of HLH genes, the structures of HLH domains, and the elaborate activities of HLH proteins in multicellular life are discussed. Helix–loop–helix (HLH) proteins are dimeric transcription factors that control lineage- and developmental-specific gene programs. Genes encoding for HLH proteins arose in unicellular organisms >600 million years ago and then duplicated and diversified from ancestral genes across the metazoan and plant kingdoms to establish multicellularity. Hundreds of HLH proteins have been identified with diverse functions in a wide variety of cell types. HLH proteins orchestrate lineage specification, commitment, self-renewal, proliferation, differentiation, and homing. HLH proteins also regulate circadian clocks, protect against hypoxic stress, promote antigen receptor locus assembly, and program transdifferentiation. HLH proteins deposit or erase epigenetic marks, activate noncoding transcription, and sequester chromatin remodelers across the chromatin landscape to dictate enhancer–promoter communication and somatic recombination. Here the evolution of HLH genes, the structures of HLH domains, and the elaborate activities of HLH proteins in multicellular life are discussed.
Collapse
Affiliation(s)
- Cornelis Murre
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92903, USA
| |
Collapse
|