1
|
Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel) 2024; 12:554. [PMID: 38793805 PMCID: PMC11125816 DOI: 10.3390/vaccines12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yeqing Sun
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
2
|
Das S, Parray HA, Chiranjivi AK, Kumar P, Goswami A, Bansal M, Rathore DK, Kumar R, Samal S. Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation. Protein J 2024; 43:375-386. [PMID: 37794304 DOI: 10.1007/s10930-023-10161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Efficiently cleaved HIV-1 Envs are the closest mimics of functional Envs as they specifically expose only bNAb (broadly neutralizing antibody) epitopes and not non-neutralizing ones, making them suitable for developing vaccine immunogens. We have previously identified several efficiently cleaved Envs from clades A, B, C and B/C. We also described that truncation of the CT (C-terminal tail) of a subset of these Envs, but not others, impairs their ectodomain conformation/antigenicity on the cell surface in a CT conserved hydrophilic domain (CHD) or Kennedy epitope (KE)-dependent manner. Here, we report that those Envs (4 - 2.J41 and JRCSF), whose native-like ectodomain conformation/antigenicity on the cell surface is disrupted upon CT truncation, but not other Envs like JRFL, whose CT truncation does not have an effect on ectodomain integrity on the cell surface, are also defective in retrograde transport from early to late endosomes. Restoration of the CHD/KE in the CT of these Envs restores wild-type levels of distribution between early and late endosomes. In the presence of retrograde transport inhibitor Retro 2, cell surface expression of 4 - 2.J41 and JRCSF Envs increases [as does in the presence of Rab7a DN and Rab7b DN (DN: dominant negative)] but particle formation decreases for 4 - 2.J41 and JRCSF Env pseudotyped viruses. Our results show for the first time a correlation between CT-dependent, CHD/KE regulated retrograde transport and cell surface expression/viral particle formation of these efficiently cleaved Envs. Based on our results we hypothesize that a subset of these efficiently cleaved Envs use a CT-dependent, CHD/KE-mediated mechanism for assembly and release from late endosomes.
Collapse
Affiliation(s)
- Supratik Das
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India.
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India.
| | - Hilal Ahmad Parray
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Adarsh Kumar Chiranjivi
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Prince Kumar
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Abhishek Goswami
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Manish Bansal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Deepak Kumar Rathore
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sweety Samal
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| |
Collapse
|
3
|
Kreider EF, Bar KJ. HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Curr HIV/AIDS Rep 2022; 19:194-206. [PMID: 35404007 PMCID: PMC10443186 DOI: 10.1007/s11904-022-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), a viral reservoir persists in individuals living with HIV that can reignite systemic replication should treatment be interrupted. Understanding how HIV-1 persists through effective ART is essential to develop cure strategies to induce ART-free virus remission. RECENT FINDINGS The HIV-1 reservoir resides in a pool of CD4-expressing cells as a range of viral species, a subset of which is genetically intact. Recent studies suggest that the reservoir on ART is highly dynamic, with expansion and contraction of virus-infected cells over time. Overall, the intact proviral reservoir declines faster than defective viruses, suggesting enhanced immune clearance or cellular turnover. Upon treatment interruption, rebound viruses demonstrate escape from adaptive and innate immune responses, implicating these selective pressures in restriction of virus reactivation. Cure strategies employing immunotherapy are poised to test whether host immune pressure can be augmented to enhance reservoir suppression or clearance. Alternatively, genomic engineering approaches are being applied to directly eliminate intact viruses and shrink the replication-competent virus pool. New evidence suggests host immunity exerts selective pressure on reservoir viruses and clears HIV-1 infected cells over years on ART. Efforts to build on the detectable, but insufficient, reservoir clearance via empiric testing in clinical trials will inform our understanding of mechanisms of viral persistence and the direction of future cure strategies.
Collapse
Affiliation(s)
- Edward F Kreider
- Perelman School of Medicine, University of Pennsylvania, Stemmler Hall Room 130-150, 3450 Hamilton Walk, Philadelphia, PA, 19104-6073, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, 502D Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104‑0673, USA.
| |
Collapse
|
4
|
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021; 9:vaccines9121376. [PMID: 34960121 PMCID: PMC8706198 DOI: 10.3390/vaccines9121376] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective response longevity, as well as supporting donor selection criteria for convalescent plasma therapy. In the current manuscript, we review the essential concepts of NAbs, examining their concept, mechanisms of action, production, and the techniques used for their detection; as well as presenting an overview of the clinical use of antibodies in COVID-19.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | | | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
- Correspondence: ; Tel.: +52-333-450-9355
| |
Collapse
|
5
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
6
|
Roles of fragment crystallizable-mediated effector functions in broadly neutralizing antibody activity against HIV. Curr Opin HIV AIDS 2021; 15:316-323. [PMID: 32732552 DOI: 10.1097/coh.0000000000000644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW 'Broadly neutralizing antibodies' (bNAbs), are rare HIV-specific antibodies which exhibit the atypical ability to potently neutralize diverse viral isolates. While efforts to elicit bNAbs through vaccination have yet to succeed, recent years have seen remarkable preclinical and clinical advancements of passive immunization approaches targeting both HIV prevention and cure. We focus here on the potential to build upon this success by moving beyond neutralization to additionally harness the diverse effector functionalities available to antibodies via fragment crystallizable-effector (Fc) functions. RECENT FINDINGS Recent studies have leveraged the ability to engineer bNAb Fc domains to either enhance or abrogate particular effector functions to demonstrate that activities such as antibody-dependent cell-mediated cytotoxicity contribute substantially to in-vivo antiviral activity. Intriguingly, recent studies in both nonhuman primates and in humans have suggested that passive bNAb infusion can lead to durable immunity by enhancing virus-specific T-cell responses through a 'vaccinal effect'. SUMMARY The combination of antibody engineering strategies designed to enhance effector functions, with the broad and potent antigen recognition profile of bNAbs, has the potential to give rise to powerful new therapeutics for HIV. We aim to provide a timely review of recent advances to catalyze this development.
Collapse
|
7
|
Ding C, Patel D, Ma Y, Mann JFS, Wu J, Gao Y. Employing Broadly Neutralizing Antibodies as a Human Immunodeficiency Virus Prophylactic & Therapeutic Application. Front Immunol 2021; 12:697683. [PMID: 34354709 PMCID: PMC8329590 DOI: 10.3389/fimmu.2021.697683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the discovery that the human immunodeficiency virus 1 (HIV-1) is the pathogen of acquired immunodeficiency syndrome (AIDS) in 1983, there is still no effective anti-HIV-1 vaccine. The major obstacle to the development of HIV-1 vaccine is the extreme diversity of viral genome sequences. Nonetheless, a number of broadly neutralizing antibodies (bNAbs) against HIV-1 have been made and identified in this area. Novel strategies based on using these bNAbs as an efficacious preventive and/or therapeutic intervention have been applied in clinical. In this review, we summarize the recent development of bNAbs and its application in HIV-1 acquisition prevention as well as discuss the innovative approaches being used to try to convey protection within individuals at risk and being treated for HIV-1 infection.
Collapse
Affiliation(s)
- Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Darshit Patel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Yunjing Ma
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jianjun Wu
- Department of AIDS Research, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Allan-Blitz LT, Mena LA, Mayer KH. The ongoing HIV epidemic in American youth: challenges and opportunities. Mhealth 2021; 7:33. [PMID: 33898602 PMCID: PMC8063015 DOI: 10.21037/mhealth-20-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023] Open
Abstract
The incidence of human immunodeficiency virus (HIV) infection has been decreasing in the United States overall, except among youth, and in particular among Black and Latinx young men who have sex with men (MSM). In this review we summarize key drivers of the HIV epidemic among youth, as well as novel interventions geared specifically towards combating the epidemic among high-risk populations. Many factors driving the HIV epidemic among youth are related to systemic inequities, including lack of access to healthcare, inadequate education, and internalized and experience homophobia and racism. Developmentally, youth may feel that they are invulnerable and be willing to engage in risks. Moreover, HIV is often invisible for youth given advances in treatment and community stigma, limiting open discussion of risk and new preventive modalities. Outcomes from the HIV treatment cascade suggest that youth are less likely to be aware of their HIV infection status, less likely to link to and be engaged in care, and less likely to be virologically suppressed than older MSM and other populations of people living with HIV. Importantly, pre-exposure prophylaxis (PrEP) has been shown to be an effective tool for prevention of HIV infection that also appears to have disproportionately poor uptake among youth. Barriers to PrEP utilization appear to be quite heterogeneous, and include patient-, provider-, and structural-level barriers. Interventions important in improving HIV prevention will thus have to be multipronged and developed for culturally diverse populations. Cognitive behavioral therapy-based interventions are promising strategies as they are able to address a diverse array of barriers. New formulations of PrEP will also likely be instrumental in improving adherence. Since youth spend considerable amounts of time accessing digital media, the deployment of apps and other mobile phone-based interfaces offer unique opportunities to increase education and to facilitate HIV prevention for at risk youth. Multiple studies are underway to better inform the optimal delivery of treatment and prevention services for this complex and diverse population, and include novel sociobiological interventions and new modes of medication delivery that may lend themselves to overcoming obstacles specific to youth.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Department of Medicine, Division of Global Health Equity, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Leandro A. Mena
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kenneth H. Mayer
- Fenway Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Abstract
In the last decade, over a dozen potent broadly neutralizing antibodies (bnAbs) to several HIV envelope protein epitopes have been identified, and their in vitro neutralization profiles have been defined. Many have demonstrated prevention efficacy in preclinical trials and favorable safety and pharmacokinetic profiles in early human clinical trials. The first human prevention efficacy trials using 10 sequential, every-two-month administrations of a single anti-HIV bnAb are anticipated to conclude in 2020. Combinations of complementary bnAbs and multi-specific bnAbs exhibit improved breadth and potency over most individual antibodies and are entering advanced clinical development. Genetic engineering of the Fc regions has markedly improved bnAb half-life, increased mucosal tissue concentrations of antibodies (especially in the genital tract), and enhanced immunomodulatory and Fc effector functionality, all of which improve antibodies' preventative and therapeutic potential. Human-derived monoclonal antibodies are likely to enter the realm of primary care prevention and therapy for viral infections in the near future.
Collapse
Affiliation(s)
- Shelly T Karuna
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Lawrence Corey
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; , .,Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Silva Júnior JVJ, Lopes TRR, de Oliveira PSB, Weiblen R, Flores EF. Letter to the Editor: Issues on COVID-19 Pathogenesis. Viral Immunol 2020; 34:358-360. [PMID: 32339089 DOI: 10.1089/vim.2020.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- José Valter Joaquim Silva Júnior
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil.,Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil.,Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Thaísa Regina Rocha Lopes
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Rudi Weiblen
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eduardo Furtado Flores
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
11
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
12
|
Coelho LE, Torres TS, Veloso VG, Landovitz RJ, Grinsztejn B. Pre-exposure prophylaxis 2.0: new drugs and technologies in the pipeline. Lancet HIV 2019; 6:e788-e799. [PMID: 31558423 DOI: 10.1016/s2352-3018(19)30238-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/17/2023]
Abstract
Pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate and emtricitabine was adopted by WHO as a strategy to reduce HIV incidence. Although shown to be highly effective in reducing HIV acquisition, the protective efficacy of oral tenofovir disoproxil fumarate and emtricitabine relies on optimal adherence, which poses a challenge for a key portion of the most at-risk populations (women, young individuals [15-24 years], racial and ethnic minority men who have sex with men, and transgender women). New PrEP agents in clinical development include novel oral agents (eg, tenofovir alafenamide and islatravir [also known as MK-8591]), long-acting injectables (eg, cabotegravir), vaginal rings, broadly neutralising monoclonal antibodies, topical products (including gels, films, and enemas), and multipurpose technologies. In addition, new drug delivery systems, such as implants and transdermal devices, are promising strategies that are being developed for HIV prevention. The ultimate goal of this new PrEP research agenda is to expand the available PrEP regimens and offer preventive technologies that will appeal to a wide variety of individuals with different needs over the course of their sexually active lifespan.
Collapse
Affiliation(s)
- Lara Esteves Coelho
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thiago Silva Torres
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Valdiléa Gonçalves Veloso
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Raphael J Landovitz
- UCLA Center for Clinical AIDS Research and Education, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beatriz Grinsztejn
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Calenda G, Frank I, Arrode-Brusés G, Pegu A, Wang K, Arthos J, Cicala C, Rogers KA, Shirreff L, Grasperge B, Blanchard JL, Maldonado S, Roberts K, Gettie A, Villinger F, Fauci AS, Mascola JR, Martinelli E. Delayed vaginal SHIV infection in VRC01 and anti-α4β7 treated rhesus macaques. PLoS Pathog 2019; 15:e1007776. [PMID: 31083697 PMCID: PMC6533011 DOI: 10.1371/journal.ppat.1007776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/23/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
VRC01 protects macaques from vaginal SHIV infection after a single high-dose challenge. Infusion of a simianized anti-α4β7 mAb (Rh-α4β7) just prior to, and during repeated vaginal exposures to SIVmac251 partially protected macaques from vaginal SIV infection and rescued CD4+ T cells. To investigate the impact of combining VRC01 and Rh-α4β7 on SHIV infection, 3 groups of macaques were treated with a suboptimal dosing of VRC01 alone or in combination with Rh-α4β7 or with control antibodies prior to the initiation of weekly vaginal exposures to a high dose (1000 TCID50) of SHIVAD8-EO. The combination Rh-α4β7-VRC01 significantly delayed SHIVAD8-EO vaginal infection. Following infection, VRC01-Rh-α4β7-treated macaques maintained higher CD4+ T cell counts and exhibited lower rectal SIV-DNA loads compared to controls. Interestingly, VRC01-Rh-α4β7-treated macaques had fewer IL-17-producing cells in the blood and the gut during the acute phase of infection. Moreover, higher T cell responses to the V2-loop of the SHIVAD8-EO envelope in the VRC01-Rh-α4β7 group inversely correlated with set point viremia. The combination of suboptimal amounts of VRC01 and Rh-α4β7 delayed infection, altered antiviral immune responses and minimized CD4+ T cell loss. Further exploration of the effect of combining bNAbs with Rh-α4β7 on SIV/HIV infection and antiviral immune responses is warranted and may lead to novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Calenda
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Géraldine Arrode-Brusés
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, United States of America
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - James L. Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Stephanie Maldonado
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Kevin Roberts
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
14
|
Novel therapies/hopes for HIV cure in perinatally acquired HIV-positive adolescents. Curr Opin HIV AIDS 2019; 13:281-287. [PMID: 29547411 DOI: 10.1097/coh.0000000000000455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Successful roll-out of paediatric antiretroviral therapy (ART) has led to a significant increase in survival of adolescents and young people growing up with HIV. Those on suppressive ART since childhood represent a unique group particularly well positioned to interrupt ART and achieve post-treatment control (PTC), or HIV remission. This maybe a consequence of early and sustained treatment since infancy, the small size of the HIV reservoir, the presence of a functioning thymus and a more 'flexible' immune system better able to respond to novel immune therapeutic interventions when compared with adults who acquired HIV at a time of immunological maturity and thymic involution. RECENT FINDINGS In the past year, there have been additional case reports of post-treatment viral control amongst perinatally acquired HIV adolescents and young adults (PaHIV-AYA). In this article, we review and compare the characteristics of PTC in PaHIV-AYA and discuss the potential implications of these observations for the growing population of adolescents living with HIV. The correlation between low levels of HIV DNA and seroreversion may provide a feasible screening tool to select candidates most suitable for future intervention studies and viral remission. CONCLUSION Whilst it is premature to anticipate an HIV cure, there is much anticipation that with early ART and additional interventions to perturb the residual viral reservoir, future viral remission off ART might be feasible for PaHIV-AYA. However, given the safety and effectiveness of current ART, a critical debate must evaluate the risks against benefits of any novel intervention, especially amongst adolescents as they become sexually active.
Collapse
|
15
|
Measuring the ability of HIV-specific antibodies to mediate trogocytosis. J Immunol Methods 2018; 463:71-83. [PMID: 30240705 DOI: 10.1016/j.jim.2018.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
Antibody Fc effector functions contribute to HIV control and have been implicated in the partial efficacy seen in the RV144 vaccine trial. Fc-mediated trogocytosis has been previously described for anti-cancer antibodies and results in the removal of membrane fragments from target cells. Here we developed a flow cytometry-based assay which measures the transfer of membrane fragments from a gp120-coated CD4+ lymphocytic cell line (CEM.NKR-CCR5 cells stained with a membrane dye PKH26) to monocytic cells (THP-1 cells stained with CFSE). We showed that this transfer occurred rapidly, within 1 h, and was mediated through engagement of the FcγRIIa/b receptors on the THP-1 cells. HIV-specific IgG as well as gp120 and CD4 could be detected on the surface of THP-1 cells in a process that we demonstrated was distinct from phagocytosis. Furthermore, while the THP-1 effector cells remained intact following the receipt of new membrane proteins, the viability of the target CEM.NKR-CCR5 cells decreased over time. Analysis of HIV-specific plasma revealed that antibodies with trogocytic activity were common in acute and chronic HIV infection but were higher in individuals with broadly neutralizing antibody responses We also examined trogocytosis mediated by broadly neutralizing antibodies (bNAbs) targeting multiple epitopes on the BG505.SOSIP.664 trimer and show that levels of binding correlated with the trogocytosis score. Overall, our data describe a new antiviral Fc effector function mediated by HIV-specific antibodies that could be harnessed for vaccination and cure strategies.
Collapse
|
16
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
17
|
Saag MS, Benson CA, Gandhi RT, Hoy JF, Landovitz RJ, Mugavero MJ, Sax PE, Smith DM, Thompson MA, Buchbinder SP, Del Rio C, Eron JJ, Fätkenheuer G, Günthard HF, Molina JM, Jacobsen DM, Volberding PA. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2018 Recommendations of the International Antiviral Society-USA Panel. JAMA 2018; 320:379-396. [PMID: 30043070 PMCID: PMC6415748 DOI: 10.1001/jama.2018.8431] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Importance Antiretroviral therapy (ART) is the cornerstone of prevention and management of HIV infection. Objective To evaluate new data and treatments and incorporate this information into updated recommendations for initiating therapy, monitoring individuals starting therapy, changing regimens, and preventing HIV infection for individuals at risk. Evidence Review New evidence collected since the International Antiviral Society-USA 2016 recommendations via monthly PubMed and EMBASE literature searches up to April 2018; data presented at peer-reviewed scientific conferences. A volunteer panel of experts in HIV research and patient care considered these data and updated previous recommendations. Findings ART is recommended for virtually all HIV-infected individuals, as soon as possible after HIV diagnosis. Immediate initiation (eg, rapid start), if clinically appropriate, requires adequate staffing, specialized services, and careful selection of medical therapy. An integrase strand transfer inhibitor (InSTI) plus 2 nucleoside reverse transcriptase inhibitors (NRTIs) is generally recommended for initial therapy, with unique patient circumstances (eg, concomitant diseases and conditions, potential for pregnancy, cost) guiding the treatment choice. CD4 cell count, HIV RNA level, genotype, and other laboratory tests for general health and co-infections are recommended at specified points before and during ART. If a regimen switch is indicated, treatment history, tolerability, adherence, and drug resistance history should first be assessed; 2 or 3 active drugs are recommended for a new regimen. HIV testing is recommended at least once for anyone who has ever been sexually active and more often for individuals at ongoing risk for infection. Preexposure prophylaxis with tenofovir disoproxil fumarate/emtricitabine and appropriate monitoring is recommended for individuals at risk for HIV. Conclusions and Relevance Advances in HIV prevention and treatment with antiretroviral drugs continue to improve clinical management and outcomes for individuals at risk for and living with HIV.
Collapse
Affiliation(s)
| | | | - Rajesh T Gandhi
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer F Hoy
- The Alfred Hospital and Monash University, Melbourne, Australia
| | | | | | - Paul E Sax
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Susan P Buchbinder
- San Francisco Department of Public Health and University of California San Francisco
| | - Carlos Del Rio
- Emory University Rollins School of Public Health and School of Medicine, Atlanta, Georgia
| | - Joseph J Eron
- University of North Carolina at Chapel Hill School of Medicine
| | - Gerd Fätkenheuer
- University Hospital of Cologne, Department I of Internal Medicine, Cologne, Germany, and German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Huldrych F Günthard
- University Hospital Zurich and Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
18
|
Malecki M, Saetre B. HIV Apheresis Tags (HIVAT) Aided Elimination of Viremia. MOLECULAR AND CELLULAR THERAPIES 2018; 6:6. [PMID: 30931130 PMCID: PMC6438618 DOI: 10.26781/2052-8426-2018-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION HIV viremia is the essential element for progression of an initial HIV infection into AIDS and death. The currently approved management relies primarily on chemotherapy repressing the HIV replication in the infected CD4+ cells, although with severe systemic adverse effects. The problem is that it does not physically eliminate viruses, which then not only keep infecting healthy cells of these patients, but also promote infections of other people. SPECIFIC AIM An overall objective of our work is biomolecular engineering of virus apheresis tags (VAT) that eliminate viremias without adverse effects. The specific aim of this project was biomolecular engineering of Human Immunodeficiency Virus Apheresis Tags (HIVAT): CD4-Au-Fe3O4, CD4-SiO2-Fe3O4, anti-gp120-Au-Fe3O4, and anti-gp120-SiO2-Fe3O4. HEALTHY DONORS AND PATIENTS Per the Institutional Review Board's approval and in compliance with Declaration of Helsinki, healthy donors and patients were presented with Patient Bill of Rights and provided Patient Informed Consent, while all the procedures were pursued by the licensed physicians. MATERIALS AND METHODS CD4, gp120, gp41, gp160, anti-gp120, p24 were transgenomically expressed. Superparamagnetic core-shell particles (SPM-CSP) were synthesized. SPM-CSP were used as the nucleation centers for assembling the expressed molecules upon them to create virus apheresis tags (VAT). VAT were injected into the blood or lymph acquired from the HIV+ and HBV+ patients followed by apheresis at 0.47 - 9.4 T. VAT efficacy in eliminating viremia was determined through immunoblots, NMR and q-RT-PCR. RESULTS Treatment of blood or lymph of the HIV+ patients' with VAT followed by virus apheresis resulted in rapid elimination of the HIV viremia. Efficacy of apheresis was contingent upon the gravity of viremia versus doses and regimens of VAT. Importantly, administration of VAT also effectively improved levels of non-infected CD4+ lymphocytes. DISCUSSION / CONCLUSIONS Herein, we present the proof of concept for a new, effective treatment with virus apheresis tags (VAT), specifically Human Immunodeficiency Virus Apheresis Tags (HIVAT), of the HIV+ patients' blood and lymph, which is eliminating the HIV viremia.It can be easily adapted as treatments of viremias perpetrated by other deadly viruses, which we vigorously pursue.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| | - Bianka Saetre
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| |
Collapse
|
19
|
Malecki M, Saetre B. HIV Apheresis Tags (HIVAT) Aided Elimination of Viremia. MOLECULAR AND CELLULAR THERAPIES 2018; 6:6. [PMID: 30931130 PMCID: PMC6438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
INTRODUCTION HIV viremia is the essential element for progression of an initial HIV infection into AIDS and death. The currently approved management relies primarily on chemotherapy repressing the HIV replication in the infected CD4+ cells, although with severe systemic adverse effects. The problem is that it does not physically eliminate viruses, which then not only keep infecting healthy cells of these patients, but also promote infections of other people. SPECIFIC AIM An overall objective of our work is biomolecular engineering of virus apheresis tags (VAT) that eliminate viremias without adverse effects. The specific aim of this project was biomolecular engineering of Human Immunodeficiency Virus Apheresis Tags (HIVAT): CD4-Au-Fe3O4, CD4-SiO2-Fe3O4, anti-gp120-Au-Fe3O4, and anti-gp120-SiO2-Fe3O4. HEALTHY DONORS AND PATIENTS Per the Institutional Review Board's approval and in compliance with Declaration of Helsinki, healthy donors and patients were presented with Patient Bill of Rights and provided Patient Informed Consent, while all the procedures were pursued by the licensed physicians. MATERIALS AND METHODS CD4, gp120, gp41, gp160, anti-gp120, p24 were transgenomically expressed. Superparamagnetic core-shell particles (SPM-CSP) were synthesized. SPM-CSP were used as the nucleation centers for assembling the expressed molecules upon them to create virus apheresis tags (VAT). VAT were injected into the blood or lymph acquired from the HIV+ and HBV+ patients followed by apheresis at 0.47 - 9.4 T. VAT efficacy in eliminating viremia was determined through immunoblots, NMR and q-RT-PCR. RESULTS Treatment of blood or lymph of the HIV+ patients' with VAT followed by virus apheresis resulted in rapid elimination of the HIV viremia. Efficacy of apheresis was contingent upon the gravity of viremia versus doses and regimens of VAT. Importantly, administration of VAT also effectively improved levels of non-infected CD4+ lymphocytes. DISCUSSION / CONCLUSIONS Herein, we present the proof of concept for a new, effective treatment with virus apheresis tags (VAT), specifically Human Immunodeficiency Virus Apheresis Tags (HIVAT), of the HIV+ patients' blood and lymph, which is eliminating the HIV viremia.It can be easily adapted as treatments of viremias perpetrated by other deadly viruses, which we vigorously pursue.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| | - Bianka Saetre
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| |
Collapse
|