1
|
Gonzales-Huerta LE, Williams TJ, Aljohani R, Robertson B, Evans CA, Armstrong-James D. Mycobacterial lipoarabinomannan negatively interferes with macrophage responses to Aspergillus fumigatus in-vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623945. [PMID: 39605324 PMCID: PMC11601501 DOI: 10.1101/2024.11.18.623945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Introduction Over 1 million people have chronic pulmonary aspergillosis (CPA) secondary to pulmonary tuberculosis. Additionally, Aspergillus fumigatus (Af) has been reported as one of the most common pathogens associated with mycobacteria in patients with cystic fibrosis. Mycobacterial virulence factors, like lipoarabinomannan, have been shown to interfere with host's intracellular pathways required for an effective immune response, however, the immunological basis for mycobacterial-fungal coinfection is still unknown. We therefore investigated the effect of lipoarabinomannan on macrophage responses against Af. Methods Bone marrow-derived macrophages (BMDMs) were stimulated with non-mannose-capped lipoarabinomannan (LAM) from Mycobacterium smegmatis or mannose-capped lipoarabinomannan (ManLAM) from Mycobacterium tuberculosis for 2 hours and then infected with swollen Af conidia. Cell death was assessed by lactate dehydrogenase release. Cytokine release was measured in supernatant using Enzyme Linked Immuno-Sorbent Assay (ELISA). Colony forming units counting and time-lapse fluorescence microscopy was performed for studying conidia killing by macrophages. Results BMDMs stimulated with LAM showed increased cell death and inflammatory cytokine release in a dose-dependent manner, characterised by a significant increase of IL-1β release. Time-lapse fluorescence microscopy and CFUs revealed that both LAM and ManLAM significantly decrease the capacity of macrophages to kill Af conidia within the first 6 hours of infection. Conclusions The mycobacterial virulence factor, lipoarabinomannan, disrupts macrophage capacity to efficiently clear Af at early stages of infection in-vitro.
Collapse
Affiliation(s)
- L E Gonzales-Huerta
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
- Carrera de Medicina Humana, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima 15024 Peru
- Departamento de Investigación, Instituto de Medicina Traslacional, Lima 15072, Peru
| | - T J Williams
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - R Aljohani
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - B Robertson
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - C A Evans
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
- Innovación Por la Salud Y Desarrollo (IPSYD), Asociación Benéfica PRISMA, Lima, 15073, Peru
- IFHAD: Innovation For Health And Development, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima 150135 Peru
- IFHAD: Innovation For Health And Development, Department of infectious disease, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2024:1-20. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
4
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
5
|
Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura‐Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye X, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021; 22:e51678. [PMID: 33987949 PMCID: PMC8256295 DOI: 10.15252/embr.202051678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor β-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.
Collapse
|
6
|
Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of Tuberculosis: How Far Are We to Use It? Front Microbiol 2021; 12:638047. [PMID: 33935997 PMCID: PMC8081860 DOI: 10.3389/fmicb.2021.638047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a severe public health problem; the current diagnostic tests have limitations that delay treatment onset. Lipoarabinomannan (LAM) is a glycolipid that is a component of the cell wall of the bacillus Mycobacterium tuberculosis, the etiologic agent of TB. This glycolipid is excreted as a soluble form in urine. The World Health Organization has established that the design of new TB diagnostic methods is one of the priorities within the EndTB Strategy. LAM has been suggested as a biomarker to develop diagnostic tests based on its identification in urine, and it is one of the most prominent candidates to develop point-of-care diagnostic test because urine samples can be easily collected. Moreover, LAM can regulate the immune response in the host and can be found in the serum of TB patients, where it probably affects a wide variety of host cell populations, consequently influencing the quality of both innate and adaptive immune responses during TB infection. Here, we revised the evidence that supports that LAM could be used as a tool for the development of new point-of-care tests for TB diagnosis, and we discussed the mechanisms that could contribute to the low sensitivity of diagnostic testing.
Collapse
Affiliation(s)
- Julio Flores
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico.,Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos Cancino
- Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
7
|
Iwasaki-Hozumi H, Chagan-Yasutan H, Ashino Y, Hattori T. Blood Levels of Galectin-9, an Immuno-Regulating Molecule, Reflect the Severity for the Acute and Chronic Infectious Diseases. Biomolecules 2021; 11:biom11030430. [PMID: 33804076 PMCID: PMC7998537 DOI: 10.3390/biom11030430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding lectin capable of promoting or suppressing the progression of infectious diseases. This protein is susceptible to cleavage of its linker-peptides by several proteases, and the resulting cleaved forms, N-terminal carbohydrate recognition domain (CRD) and C-terminal CRD, bind to various glycans. It has been suggested that full-length (FL)-Gal-9 and the truncated (Tr)-Gal-9s could exert different functions from one another via their different glycan-binding activities. We propose that FL-Gal-9 regulates the pathogenesis of infectious diseases, including human immunodeficiency virus (HIV) infection, HIV co-infected with opportunistic infection (HIV/OI), dengue, malaria, leptospirosis, and tuberculosis (TB). We also suggest that the blood levels of FL-Gal-9 reflect the severity of dengue, malaria, and HIV/OI, and those of Tr-Gal-9 markedly reflect the severity of HIV/OI. Recently, matrix metallopeptidase-9 (MMP-9) was suggested to be an indicator of respiratory failure from coronavirus disease 2019 (COVID-19) as well as useful for differentiating pulmonary from extrapulmonary TB. The protease cleavage of FL-Gal-9 may lead to uncontrolled hyper-immune activation, including a cytokine storm. In summary, Gal-9 has potential to reflect the disease severity for the acute and chronic infectious diseases.
Collapse
Affiliation(s)
- Hiroko Iwasaki-Hozumi
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
| | - Haorile Chagan-Yasutan
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Toshio Hattori
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Correspondence: ; Tel.: +81-866-22-9454
| |
Collapse
|
8
|
Flow Cytometry: From Experimental Design to Its Application in the Diagnosis and Monitoring of Respiratory Diseases. Int J Mol Sci 2020; 21:ijms21228830. [PMID: 33266385 PMCID: PMC7700151 DOI: 10.3390/ijms21228830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the field of flow cytometry (FCM) have highlighted the importance of incorporating it as a basic analysis tool in laboratories. FCM not only allows the identification of cell subpopulations by detecting the expression of molecules in the cell membrane or cytoplasm, but it can also quantify and identify soluble molecules. The proper functioning of the FCM requires six fundamental systems, from those related to the transport of events to the systems dedicated to the analysis of information. In this review, we have identified the main considerations that every FCM user must know for an optimal antibody panel design, the quality systems that must govern the FCM protocols to guarantee reproducible results in research or clinical laboratories. Finally, we have introduced the current evidence that highlights the relevance of FCM in the investigation and clinical diagnosis of respiratory diseases, establishing important advances in the basic and clinical study of diseases as old as Tuberculosis along with the recent proposals for the monitoring and classification of patients infected with the new SARS-CoV2 virus.
Collapse
|
9
|
DHX36, BAX, and ARPC1B May Be Critical for the Diagnosis and Treatment of Tuberculosis. Can Respir J 2020; 2020:4348371. [PMID: 32774561 PMCID: PMC7396107 DOI: 10.1155/2020/4348371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Tuberculosis (TB) is usually caused by Mycobacterium tuberculosis, which has the highest mortality rate among infectious diseases. This study is designed to identify the key genes affecting the diagnosis and treatment of TB. Methods GSE54992, which included 39 peripheral blood mononuclear cell (PBMC) samples, was extracted from the Gene Expression Omnibus database. After the samples were classified into type and time groups by limma package, the differentially expressed genes (DEGs) were analyzed using the Analysis of Variance. Using pheatmap package, hierarchical cluster analysis was performed for the DEGs. Then, the key modules correlated with TB were selected using the WGCNA package. Finally, functional and pathway enrichment analyses were carried out using clusterProfiler package. Results The DEGs in subclusters 3, 6, 7, and 8 were chosen for further analyses. Based on WGCNA analysis, blue and green modules in type group and pink module in time group were selected as key modules. From the key modules, 9 (including BAX and ARPC1B) hub genes in type group and 6 (including DHX36) hub genes in time group were screened. Through pathway enrichment analysis, the TNF signaling pathway was enriched for the green module. Conclusion DHX36, BAX, and ARPC1B might be key genes acting in the mechanisms of TB. Besides, the TNF signaling pathway might also be critical for the diagnosis and therapy of the disease.
Collapse
|
10
|
Shete A, Bichare S, Pujari V, Virkar R, Thakar M, Ghate M, Patil S, Vyakarnam A, Gangakhedkar R, Bai G, Niki T, Hattori T. Elevated Levels of Galectin-9 but Not Osteopontin in HIV and Tuberculosis Infections Indicate Their Roles in Detecting MTB Infection in HIV Infected Individuals. Front Microbiol 2020; 11:1685. [PMID: 32765475 PMCID: PMC7380070 DOI: 10.3389/fmicb.2020.01685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Galectin-9 (Gal-9) and osteopontin (OPN) play immunomodulatory roles in tuberculosis and HIV infections. Evaluation of their levels as well as their interplay with different pro-inflammatory cytokines is critical to understand their role in immunopathogenesis of HIV/tuberculosis co-infection considering the complexity of the disease. Plasma levels of these proteins were measured by ELISAs in HIV-negative individuals with pulmonary (n = 21), extrapulmonary (n = 33), and latent tuberculosis (n = 22) and in HIV infected patients with pulmonary (n = 14), latent tuberculosis (n = 17), and without tuberculosis (n = 41). Levels of pro-inflammatory cytokines were estimated by Luminex assay. Receiver operated characteristic curve analysis was performed to evaluate discriminatory roles of these proteins. Spearman's correlation analysis was performed with the markers of HIV and tuberculosis disease progression to evaluate their immunopathogenic roles. Gal-9 and OPN levels were higher in HIV uninfected patients with active tuberculosis than with latent tuberculosis. Gal-9 but not OPN levels were higher in HIV infected patients with active tuberculosis than with latent tuberculosis. Area under curve for Galectin-9 was >0.9 in HIV/tuberculosis co-infection and extrapulmonary tuberculosis. OPN and IL-6 levels were higher in patients with severe chest X-ray grade indicating its association with severity of the disease and positively correlated with each other. Stronger positive and negative correlations of Gal-9 levels, respectively, with viral loads and CD4 cell counts in HIV infected patients were observed than OPN levels indicating their association with HIV disease progression. Thus, significantly elevated Gal-9 levels were reported for the first time in HIV/tuberculosis co-infection and extrapulmonary tuberculosis in our study than single infections with HIV and tuberculosis. The study indicated a need for further evaluation of monitoring role of Gal-9 for detection of developing tuberculosis in HIV infected individuals. The findings also indicated differential roles of Gal-9 and OPN in the pathogenesis of tuberculosis and HIV infections.
Collapse
Affiliation(s)
| | | | | | - Rashmi Virkar
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, India
| | | | | | - Sandip Patil
- ICMR-National AIDS Research Institute, Pune, India
| | | | | | - Gaowa Bai
- Department of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| | - Toshiro Niki
- Department of Immunology, Faculty of Medicine, Kagawa University, Kita-gun, Japan
| | - Toshio Hattori
- Department of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| |
Collapse
|
11
|
Li G, Hou C, Dou S, Zhang J, Zhang Y, Liu Y, Wang Z, Xiao H, Wang R, Chen G, Li Y, Feng J, Shen B, Han G. Monoclonal antibody against human Tim-3 enhances antiviral immune response. Scand J Immunol 2019; 89:e12738. [DOI: 10.1111/sji.12738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Li
- Institute of Beijing Brain Sciences; Beijing China
- Wenzhou Medical University; Wenzhou China
| | - Chunmei Hou
- Institute of Beijing Brain Sciences; Beijing China
| | - Shuaijie Dou
- Institute of Beijing Brain Sciences; Beijing China
| | | | | | - Yiqiong Liu
- Institute of Beijing Brain Sciences; Beijing China
| | - Zhiding Wang
- Institute of Beijing Brain Sciences; Beijing China
| | - He Xiao
- Institute of Beijing Brain Sciences; Beijing China
| | - Renxi Wang
- Institute of Beijing Brain Sciences; Beijing China
| | | | - Yan Li
- Institute of Beijing Brain Sciences; Beijing China
| | - Jiannan Feng
- Institute of Beijing Brain Sciences; Beijing China
| | - Beifen Shen
- Institute of Beijing Brain Sciences; Beijing China
| | - Gencheng Han
- Institute of Beijing Brain Sciences; Beijing China
| |
Collapse
|
12
|
Mohareer K, Asalla S, Banerjee S. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:99-121. [PMID: 30514519 DOI: 10.1016/j.tube.2018.09.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) continues to be the leading cause of death by any single infectious agent, accounting for around 1.7 million annual deaths globally, despite several interventions and support programs by national and international agencies. With the development of drug resistance in Mycobacterium tuberculosis (M. tb), there has been a paradigm shift in TB research towards host-directed therapy. The potential targets include the interactions between host and bacterial proteins that are crucial for pathogenesis. Hence, collective efforts are being made to understand the molecular details of host-pathogen interaction for possible translation into host-directed therapy. The present review focuses on 'host cell death modalities' of host-pathogen interaction, which play a crucial role in determining the outcome of TB disease progression. Several cell death modalities that occur in response to mycobacterial infection have been identified in human macrophages either as host defences for bacterial clearance or as pathogen strategies for multiplication and dissemination. These cell death modalities include apoptosis, necrosis, pyroptosis, necroptosis, pyronecrosis, NETosis, and autophagy. These processes are highly overlapping with several mycobacterial proteins participating in more than one cell death pathway. Until now, reviews in M. tb and host cell death have discussed either focusing on host evasion strategies, apoptosis, autophagy, and necrosis or describing all these forms with limited discussions of their role in host-pathogen interactions. Here, we present a comprehensive review of various mycobacterial factors modulating host cell death pathways and the cross-talk between them. Besides this, we have discussed the networking of host cell death pathways including the interference of host miRNA during M. tb infection with their respective targets. Through this review, we present the host targets that overlap across several cell death modalities and the technical limitations of methodology in cell death research. Given the compelling need to discover alternative drug target(s), this review identifies these overlapping cell death factors as potential targets for host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046.
| |
Collapse
|
13
|
Casals C, Campanero-Rhodes MA, García-Fojeda B, Solís D. The Role of Collectins and Galectins in Lung Innate Immune Defense. Front Immunol 2018; 9:1998. [PMID: 30233589 PMCID: PMC6131309 DOI: 10.3389/fimmu.2018.01998] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Different families of endogenous lectins use complementary defense strategies against pathogens. They may recognize non-self glycans typically found on pathogens and/or host glycans. The collectin and galectin families are prominent examples of these two lectin categories. Collectins are C-type lectins that contain a carbohydrate recognition domain and a collagen-like domain. Members of this group include surfactant protein A (SP-A) and D (SP-D), secreted by the alveolar epithelium to the alveolar fluid. Lung collectins bind to several microorganisms, which results in pathogen aggregation and/or killing, and enhances phagocytosis of pathogens by alveolar macrophages. Moreover, SP-A and SP-D influence macrophage responses, contributing to resolution of inflammation, and SP-A is essential for tissue-repair functions of macrophages. Galectins also function by interacting directly with pathogens or by modulating the immune system in response to the infection. Direct binding may result in enhanced or impaired infection of target cells, or can have microbicidal effects. Immunomodulatory effects of galectins include recruitment of immune cells to the site of infection, promotion of neutrophil function, and stimulation of the bactericidal activity of infected macrophages. Moreover, intracellular galectins can serve as danger receptors, promoting autophagy of the invading pathogen. This review will focus on the role of collectins and galectins in pathogen clearance and immune response activation in infectious diseases of the respiratory system.
Collapse
Affiliation(s)
- Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - María A Campanero-Rhodes
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - Belén García-Fojeda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Solís
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|