1
|
Zhao L, Wang H, Zhang Y, Shi Y, Zhou C, Yu M, Wang Y, Zhang L, Xu Z, Zhang Z, Gao L, Zhang J, Yang B, Huang H, Wang FS. Characteristics and functions of an atypical inflammation-associated GZMK +GZMB +CD8 + T subset in people living with HIV-1. Mol Immunol 2024; 173:40-52. [PMID: 39053388 DOI: 10.1016/j.molimm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
HIV-1 chronically infects host CD4+ T lymphocytes and further affects a variety of immune cells, including CD8+ T cells. In our previous study, by analyzing unbiased high-dimensional single-cell RNA-seq data (scRNA-seq), we found that the frequency of GZMK+CD8+ T cells expressing granzyme K (GZMK) was increased in people living with HIV-1 (PLWHs). However, the phenotypic and functional characteristics of these cells in chronic HIV-1 infection and their correlation with disease are not well understood. In this study, we conducted a comprehensive analysis of scRNA-seq and matched T-cell receptor repertoire (TCR) sequencing data to delve into the characterizations of GZMK+CD8+ T cells, which was further validated by flow cytometry. We observed heterogeneity within the GZMK+CD8+ T cells, which could be further subdivided into a GZMK+GZMB- subset and a GZMK+GZMB+ subset, with the latter being significantly enriched in PLWHs. The GZMK+GZMB+ cells are a unique subset within CD8+ T cells, characterized by high proliferation, activation, inflammatory response, clone transition, etc., and are one of the differentiation endpoints by pseudotemporal analysis of CD8+αβ T cells. Despite being predominantly composed of effector memory T cells (Tem), similar to the GZMK+GZMB- subset, the GZMK+GZMB+ subset exhibits differentiation at a later stage than the GZMK+GZMB- subset. We also observed that the frequency/count of GZMK+GZMB+CD8+ T cells was negatively correlated with CD4/CD8 ratio, and positively correlated with HIV DNA, IP-10, and MIG levels in PLWHs. In vitro experiments demonstrate that GZMK can potentiate the stimulatory effects of lipopolysaccharide (LPS) on THP-1 macrophages via the TLR-4 pathway, significantly enhancing the secretion of IP-10, MIG, and MCP-1, as well as increasing the proportion of TNF-α+ cells. In conclusion, in PLWHs, GZMK+GZMB+CD8+ T cells are a highly reactive and inflammatory-inducing subset that may be associated with systemic inflammation.
Collapse
Affiliation(s)
- Liang Zhao
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huifang Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Senior Department of Infectious Diseases and Hepatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanze Shi
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunbao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Minrui Yu
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanhu Wang
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liping Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang, China
| | - Ziying Zhang
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingyu Gao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiyuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baopeng Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Huihuang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Peng Y, Yang H, Chen Q, Jin H, Xue YH, Du MQ, Liu S, Yao SY. An angel or a devil? Current view on the role of CD8 + T cells in the pathogenesis of myasthenia gravis. J Transl Med 2024; 22:183. [PMID: 38378668 PMCID: PMC10877804 DOI: 10.1186/s12967-024-04965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Myasthenia gravis (MG) and the experimental autoimmune MG (EAMG) animal model are characterized by T-cell-induced and B-cell-dominated autoimmune diseases that affect the neuromuscular junction. Several subtypes of CD4+ T cells, including T helper (Th) 17 cells, follicular Th cells, and regulatory T cells (Tregs), contribute to the pathogenesis of MG. However, increasing evidence suggests that CD8+ T cells also play a critical role in the pathogenesis and treatment of MG. MAIN BODY Herein, we review the literature on CD8+ T cells in MG, focusing on their potential effector and regulatory roles, as well as on relevant evidence (peripheral, in situ, cerebrospinal fluid, and under different treatments), T-cell receptor usage, cytokine and chemokine expression, cell marker expression, and Treg, Tc17, CD3+CD8+CD20+ T, and CXCR5+ CD8+ T cells. CONCLUSIONS Further studies on CD8+ T cells in MG are necessary to determine, among others, the real pattern of the Vβ gene usage of autoantigen-specific CD8+ cells in patients with MG, real images of the physiology and function of autoantigen-specific CD8+ cells from MG/EAMG, and the subset of autoantigen-specific CD8+ cells (Tc1, Tc17, and IL-17+IFN-γ+CD8+ T cells). There are many reports of CD20-expressing T (or CD20 + T) and CXCR5+ CD8 T cells on autoimmune diseases, especially on multiple sclerosis and rheumatoid arthritis. Unfortunately, up to now, there has been no report on these T cells on MG, which might be a good direction for future studies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China.
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| |
Collapse
|
3
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
4
|
Augello M, Bono V, Rovito R, Tincati C, d'Arminio Monforte A, Marchetti G. Six-month immune responses to mRNA-1273 vaccine in combination antiretroviral therapy treated late presenter people with HIV according to previous SARS-CoV-2 infection. AIDS 2023; 37:1503-1517. [PMID: 37199415 PMCID: PMC10355808 DOI: 10.1097/qad.0000000000003585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in people with HIV (PWH) with a history of late presentation (LP) and their durability have not been fully characterized. DESIGN In this prospective, longitudinal study, we sought to assess T-cell and humoral responses to SARS-CoV-2 mRNA vaccination up to 6 months in LP-PWH on effective combination antiretroviral therapy (cART) as compared to HIV-negative healthcare workers (HCWs), and to evaluate whether previous SARS-CoV-2 infection modulates immune responses to vaccine. METHODS SARS-CoV-2 spike (S)-specific T-cell responses were determined by two complementary flow cytometry methodologies, namely activation-induced marker (AIM) assay and intracellular cytokine staining (ICS), whereas humoral responses were measured by ELISA [anti-receptor binding domain (RBD) antibodies) and receptor-binding inhibition assay (spike-ACE2 binding inhibition activity), before vaccination (T0), 1 month (T1) and 5 months (T2) after the second dose. RESULTS LP-PWH showed at T1 and T2 significant increase of: S-specific memory and circulating T follicular helper (cTfh) CD4 + T cells; polyfunctional Th1-cytokine (IFN-γ, TNF-α, IL-2)- and Th2-cytokine (IL-4)-producing S-specific CD4 + T cells; anti-RBD antibodies and spike-ACE2 binding inhibition activity. Immune responses to vaccine in LP-PWH were not inferior to HCWs overall, yet S-specific CD8 + T cells and spike-ACE2 binding inhibition activity correlated negatively with markers of immune recovery on cART. Interestingly, natural SARS-CoV-2 infection, while able to sustain S-specific antibody response, seems less efficacious in inducing a T-cell memory and in boosting immune responses to vaccine, possibly reflecting an enduring partial immunodeficiency. CONCLUSIONS Altogether, these findings support the need for additional vaccine doses in PWH with a history of advanced immune depression and poor immune recovery on effective cART.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Inamo J, Keegan J, Griffith A, Ghosh T, Horisberger A, Howard K, Pulford J, Murzin E, Hancock B, Jonsson AH, Seifert J, Feser ML, Norris JM, Cao Y, Apruzzese W, Louis Bridges S, Bykerk V, Goodman S, Donlin L, Firestein GS, Perlman H, Bathon JM, Hughes LB, Tabechian D, Filer A, Pitzalis C, Anolik JH, Moreland L, Guthridge JM, James JA, Brenner MB, Raychaudhuri S, Sparks JA, Michael Holers V, Deane KD, Lederer JA, Rao DA, Zhang F. Deep immunophenotyping reveals circulating activated lymphocytes in individuals at risk for rheumatoid arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547507. [PMID: 37461737 PMCID: PMC10349983 DOI: 10.1101/2023.07.03.547507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with currently no universally highly effective prevention strategies. Identifying pathogenic immune phenotypes in 'At-Risk' populations prior to clinical disease onset is crucial to establishing effective prevention strategies. Here, we applied mass cytometry to deeply characterize the immunophenotypes in blood from At-Risk individuals identified through the presence of serum antibodies to citrullinated protein antigens (ACPA) and/or first-degree relative (FDR) status (n=52), as compared to established RA (n=67), and healthy controls (n=48). We identified significant cell expansions in At-Risk individuals compared with controls, including CCR2+CD4+ T cells, T peripheral helper (Tph) cells, type 1 T helper cells, and CXCR5+CD8+ T cells. We also found that CD15+ classical monocytes were specifically expanded in ACPA-negative FDRs, and an activated PAX5 low naïve B cell population was expanded in ACPA-positive FDRs. Further, we developed an "RA immunophenotype score" classification method based on the degree of enrichment of cell states relevant to established RA patients. This score significantly distinguished At-Risk individuals from controls. In all, we systematically identified activated lymphocyte phenotypes in At-Risk individuals, along with immunophenotypic differences among both ACPA+ and ACPA-FDR At-Risk subpopulations. Our classification model provides a promising approach for understanding RA pathogenesis with the goal to further improve prevention strategies and identify novel therapeutic targets.
Collapse
|
6
|
Collins DR, Hitschfel J, Urbach JM, Mylvaganam GH, Ly NL, Arshad U, Racenet ZJ, Yanez AG, Diefenbach TJ, Walker BD. Cytolytic CD8 + T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Sci Immunol 2023; 8:eade5872. [PMID: 37205767 DOI: 10.1126/sciimmunol.ade5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Follicular CD8+ T cells (fCD8) mediate surveillance in lymph node (LN) germinal centers against lymphotropic infections and cancers, but the precise mechanisms by which these cells mediate immune control remain incompletely resolved. To address this, we investigated functionality, clonotypic compartmentalization, spatial localization, phenotypic characteristics, and transcriptional profiles of LN-resident virus-specific CD8+ T cells in persons who control HIV without medications. Antigen-induced proliferative and cytolytic potential consistently distinguished spontaneous controllers from noncontrollers. T cell receptor analysis revealed complete clonotypic overlap between peripheral and LN-resident HIV-specific CD8+ T cells. Transcriptional analysis of LN CD8+ T cells revealed gene signatures of inflammatory chemotaxis and antigen-induced effector function. In HIV controllers, the cytotoxic effectors perforin and granzyme B were elevated among virus-specific CXCR5+ fCD8s proximate to foci of HIV RNA within germinal centers. These results provide evidence consistent with cytolytic control of lymphotropic infection supported by inflammatory recruitment, antigen-specific proliferation, and cytotoxicity of fCD8s.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Julia Hitschfel
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Umar Arshad
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Adrienne G Yanez
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Vieira V, Lim N, Singh A, Leitman E, Dsouza R, Adland E, Muenchhoff M, Roider J, Marin Lopez M, Carabelli J, Giandhari J, Groll A, Jooste P, Prado JG, Thobakgale C, Dong K, Kiepiela P, Prendergast AJ, Tudor-Williams G, Frater J, Walker BD, Ndung’u T, Ramsuran V, Leslie A, Kløverpris HN, Goulder P. Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype. JCI Insight 2023; 8:e156049. [PMID: 36602861 PMCID: PMC9977437 DOI: 10.1172/jci.insight.156049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
HIV nonprogression despite persistent viremia is rare among adults who are naive to antiretroviral therapy (ART) but relatively common among ART-naive children. Previous studies indicate that ART-naive pediatric slow progressors (PSPs) adopt immune evasion strategies similar to those described in natural hosts of SIV. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T cells immediately before ATI was the main predictor of slow progression during ATI. PD-1+CD8+ T cell frequency was also negatively correlated with CCR5 and HLA-DR expression on CD4+ T cells and predicted stronger HIV-specific T lymphocyte responses. In the CD8+ T cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas pediatric progressors and viremic adults had a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T cells was associated with higher proliferative activity and stronger Gag-specific effector functionality. These data prompted the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in infants who received early ART with a preserved and nonexhausted T cell compartment.
Collapse
Affiliation(s)
- Vinicius Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alveera Singh
- Africa Health Research Institute, Durban, South Africa
| | - Ellen Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Reena Dsouza
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Maximilian Muenchhoff
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Julia Roider
- German Center for Infection Research, Munich, Germany
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Christina Thobakgale
- Faculty of Health Sciences, Centre for HIV and STIs, National Institute for Communicable Diseases, University of the Witwatersrand, Johannesburg, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Photini Kiepiela
- South African Medical Research Council, Durban, South Africa
- Wits Health Consortium, Johannesburg, South Africa
| | - Andrew J. Prendergast
- Blizard Institute, Queen Mary University of London, London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Bruce D. Walker
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Martínez LE, Ibarrondo J, Guo Y, Penichet ML, Epeldegui M. Follicular CD8+ T Cells Are Elevated in HIV Infection and Induce PD-L1 on B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:33-39. [PMID: 36445393 PMCID: PMC9840893 DOI: 10.4049/jimmunol.2200194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Follicular CD8+CXCR5+ T cells are a specialized CD8+ T cell subset with unique follicular-homing capabilities that have been reported to display effector functions in viral immunity, tumor immunity, and autoimmunity. CD8+CXCR5+ T cells exhibit B cell helper functions and express CD40L, ICOS, programmed cell death protein 1 (PD-1), and BCL-6, the transcriptional regulator of CD4+CXCR5+ T follicular helper cells and of germinal center B cells. HIV is known to be sequestered in lymphoid follicles, and CD8+CXCR5+ T cell frequency is a marker for disease severity, given that HIV-infected patients with lower numbers of circulating CD8+CXCR5+ T cells display lower CD4+ T cell counts. Likewise, several groups have reported a direct correlation between the quantity of CD8+CXCR5+ T cells and suppression of HIV viral load. In this study, we observed elevated absolute numbers of CD8+CXCR5+ and CD8+CXCR5+BCL-6+PD-1+ T cells in the blood of HIV-infected participants of the Multicenter AIDS Cohort Study. We further demonstrated in vitro that activated human CD8+CXCR5+ T cells isolated from peripheral blood and tonsil from healthy donors show increased CD40L expression and induce the production of PD ligand 1 (PD-L1)+IgG+ B cells. Moreover, absolute numbers of CD8+CXCR5+ T cells significantly and positively correlated with numbers of PD-L1+ B cells found in blood of HIV-infected individuals. Altogether, these results show that activated CD8+CXCR5+ T cells have the ability to activate B cells and increase the percentage of PD-L1+ and PD-L1+IgG+ B cells, which provides insights into the early events of B cell activation and differentiation and may play a role in disease progression and lymphomagenesis in HIV-infected individuals.
Collapse
Affiliation(s)
- Laura E. Martínez
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Yu Guo
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Manuel L. Penichet
- AIDS Institute, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA
- The Molecular Biology Institute, University of California, Los Angeles, CA
| | - Marta Epeldegui
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
| |
Collapse
|
9
|
Lv Y, Ricard L, Gaugler B, Huang H, Ye Y. Biology and clinical relevance of follicular cytotoxic T cells. Front Immunol 2022; 13:1036616. [PMID: 36591286 PMCID: PMC9794565 DOI: 10.3389/fimmu.2022.1036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Follicular cytotoxic T (Tfc) cells are a newly identified subset of CD8+ T cells enriched in B cell follicles and their surroundings, which integrate multiple functions such as killing, memory, supporting and regulation. Tfc cells share similarities with follicular helper T (Tfh) cells, conventional cytotoxic CD8+ T (Tc cells)cells and follicular regulatory T (Tfr) cells, while they express distinct transcription factors, phenotype, and perform different functions. With the participation of cytokines and cell-cell interactions, Tfc cells modulate Tfh cells and B cells and play an essential role in regulating the humoral immunity. Furthermore, Tfc cells have been found to change in their frequencies and functions during the occurrence and progression of chronic infections, immune-mediated diseases and cancers. Strategies targeting Tfc cells are under investigations, bringing novel insights into control of these diseases. We summarize the characteristics of Tfc cells, and introduce the roles and potential targeting modalities of Tfc cells in different diseases.
Collapse
Affiliation(s)
- Yuqi Lv
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China
| | - Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| |
Collapse
|
10
|
Sayın Ekinci N, Darbaş Ş, Uçar F. CXCR5+CD8+ Follicular Cytotoxic T Cell Biology and Its Relationship with Diseases. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.04796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Global transcriptomic characterization of T cells in individuals with chronic HIV-1 infection. Cell Discov 2022; 8:29. [PMID: 35351857 PMCID: PMC8964811 DOI: 10.1038/s41421-021-00367-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
To obtain a comprehensive scenario of T cell profiles and synergistic immune responses, we performed single-cell RNA sequencing (scRNA-seq) on the peripheral T cells of 14 individuals with chronic human immunodeficiency virus 1 (HIV-1) infection, including nine treatment-naive (TP) and eight antiretroviral therapy (ART) participants (of whom three were paired with TP cases), and compared the results with four healthy donors (HD). Through analyzing the transcriptional profiles of CD4+ and CD8+ T cells, coupled with assembled T cell receptor sequences, we observed the significant loss of naive T cells, prolonged inflammation, and increased response to interferon-α in TP individuals, which could be partially restored by ART. Interestingly, we revealed that CD4+ and CD8+ Effector-GNLY clusters were expanded in TP cases, and persistently increased in ART individuals where they were typically correlated with poor immune restoration. This transcriptional dataset enables a deeper understanding of the pathogenesis of HIV-1 infection and is also a rich resource for developing novel immune targeted therapeutic strategies.
Collapse
|
12
|
Fan JW, Yan L, Wang XQ, Li YM, Bai YJ, Ou XQ, Wan ZL, Li Y. The diagnostic role of PD-1 + CXCR5 + follicular helper CD8 + T cell in renal allograft dysfunction. J Clin Lab Anal 2021; 36:e24200. [PMID: 34957609 PMCID: PMC8842189 DOI: 10.1002/jcla.24200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The roles of PD-1+ CXCR5+ follicular helper CD8+ T cell were reported in different disease conditions, but their roles in transplantation are unclear. In this study, the association between PD-1+ CXCR5+ follicular helper CD8+ T cell and renal allograft dysfunction in kidney transplant recipients (KTRs) was investigated. METHODS 82 KTRs were enrolled in this study. 45 KTRs were included in the chronic allograft dysfunction (CAD) group, and 37 KTRs were included in the stable recipients group. Among the CAD group, 12 cases of antibody-mediated rejection (ABMR) and 4 cases of T cell-mediated rejection (TCMR) were diagnosed by biopsy. The percentage of CXCR5+ CD8+ T cells and the co-expression of signal transducers and activators of transcription 4 (STAT4), STAT5, and PD-1 in peripheral blood were determined by flow cytometry. RESULTS The expression of CXCR5 on CD3+ CD8+ T cells and the percentage of STAT5+ CXCR5+ cells in the CD3+ CD8+ T-cell population were significantly lower in the CAD group (p < 0.05), while the expression of PD-1+ CXCR5+ CD8+ T cells was significantly higher (p < 0.05). Through logistic regression analysis, we concluded that the percentage of PD-1+ CXCR5+ CD8+ T cells was an independent risk factor for renal dysfunction. Grouping by pathological type, PD-1+ CXCR5+ CD8+ T cells showed relatively good diagnostic efficacy for ABMR by ROC analysis. CONCLUSIONS Our results suggested that PD-1+ CXCR5+ CD8+ T cells were a promising biomarker for distinguishing renal allograft dysfunction and different allograft pathological types. Also, our findings may provide new ways of identifying and treating allograft rejection.
Collapse
Affiliation(s)
- Ji-Wen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Xue-Qiao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao-Qi Ou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Zheng-Li Wan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
13
|
Elzein SM, Zimmerer JM, Han JL, Ringwald BA, Bumgardner GL. CXCR5 +CD8 + T cells: A Review of their Antibody Regulatory Functions and Clinical Correlations. THE JOURNAL OF IMMUNOLOGY 2021; 206:2775-2783. [PMID: 34602651 DOI: 10.4049/jimmunol.2100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD8+ T cells have conventionally been studied in relationship to pathogen or tumor clearance. Recent reports have identified novel functions of CXCR5+CD8+ T cells that can home to lymphoid follicles, a key site of antibody production. In this review we provide an in-depth analysis of conflicting reports regarding the impact of CXCR5+CD8+ T cells on antibody production and examine the data supporting a role for antibody-enhancement (B cell "helper") and antibody-downregulation (antibody-suppressor) by CXCR5+CD8+ T cell subsets. CXCR5+CD8+ T cell molecular phenotypes are associated with CD8-mediated effector functions including distinct subsets that regulate antibody responses. Co-inhibitory molecule PD-1, among others, distinguish CXCR5+CD8+ T cell subsets. We also provide the first in-depth review of human CXCR5+CD8+ T cells in the context of clinical outcomes and discuss the potential utility of monitoring the quantity of peripheral blood or tissue infiltrating CXCR5+CD8+ T cells as a prognostic tool in multiple disease states.
Collapse
Affiliation(s)
- Steven M Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Bryce A Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Ginny L Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
14
|
Hou X, Yang C, Lin M, Tian B, Zhao S, Liu X, Yang P. Altered peripheral helper T cells in peripheral blood and muscle tissue of the patients with dermatomyositis. Clin Exp Med 2021; 21:655-661. [PMID: 33900488 DOI: 10.1007/s10238-021-00713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/16/2021] [Indexed: 01/20/2023]
Abstract
Peripheral helper T (Tph) cells, phenotypically PD-1hiCXCR5-CD4+, are a recently identified Th cell subset that relates to several autoimmune diseases. Contrary to PD-1hiCXCR5+CD4+ follicular helper T (Tfh) cells, Tph cells are not located in lymphoid organs but accumulate in inflamed tissues. This study investigated Tph cells to determine their involvement in dermatomyositis (DM). The frequency of circulating Tph and Tfh cells was evaluated by flow cytometry at baseline and after glucocorticoid treatment. The expression of Tph and B cells was determined in muscle tissue by immunohistochemistry (IHC). Further, the correlations between circulating Tph cells and clinical characteristics were investigated. Flow cytometry revealed that circulating Tph and Tfh cells were decreased in peripheral blood of DM patients compared with healthy controls (HCs). However, the muscular expression of Tph and B cells was upregulated in patients with DM compared to that in the controls by IHC. Interestingly, the increased B cells accumulated around Tph cells in infiltrated lesions. The frequency of circulating Tph cells was positively correlated with Tfh cells, CD3+ T cells, CD4+ T cells, and CD8+ T cells, whereas negatively correlated with erythrocyte sedimentation rate (ESR), interleukin (IL)-6, and IL-10 levels. Furthermore, the abnormal circulating Tph cells in peripheral blood were recovered after glucocorticoid treatment. These results indicate that Tph cells might be involved in the immunopathogenesis of DM and therefore might provide novel insight for the development of DM therapies.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1St Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Meiyi Lin
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Bailing Tian
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Shan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Xudong Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
15
|
Zhang C, Song JW, Huang HH, Fan X, Huang L, Deng JN, Tu B, Wang K, Li J, Zhou MJ, Yang CX, Zhao QW, Yang T, Wang LF, Zhang JY, Xu RN, Jiao YM, Shi M, Shao F, Sékaly RP, Wang FS. NLRP3 inflammasome induces CD4+ T cell loss in chronically HIV-1-infected patients. J Clin Invest 2021; 131:138861. [PMID: 33720048 DOI: 10.1172/jci138861] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic HIV-1 infection is generally characterized by progressive CD4+ T cell depletion due to direct and bystander death that is closely associated with persistent HIV-1 replication and an inflammatory environment in vivo. The mechanisms underlying the loss of CD4+ T cells in patients with chronic HIV-1 infection are incompletely understood. In this study, we simultaneously monitored caspase-1 and caspase-3 activation in circulating CD4+ T cells, which revealed that pyroptotic and apoptotic CD4+ T cells are distinct cell populations with different phenotypic characteristics. Levels of pyroptosis and apoptosis in CD4+ T cells were significantly elevated during chronic HIV-1 infection, and decreased following effective antiretroviral therapy. Notably, the occurrence of pyroptosis was further confirmed by elevated gasdermin D activation in lymph nodes of HIV-1-infected individuals. Mechanistically, caspase-1 activation closely correlated with the inflammatory marker expression and was shown to occur through NLRP3 inflammasome activation driven by virus-dependent and/or -independent ROS production, while caspase-3 activation in CD4+ T cells was more closely related to T cell activation status. Hence, our findings show that NLRP3-dependent pyroptosis plays an essential role in CD4+ T cell loss in HIV-1-infected patients and implicate pyroptosis signaling as a target for anti-HIV-1 treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jian-Ning Deng
- Guangxi AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Bo Tu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kun Wang
- National Institute of Biological Sciences, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | - Qi-Wen Zhao
- Department of Pathology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Li-Feng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | | | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
16
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Yang HG, Jiao YM, Huang HH, Zhang C, Zhang JY, Xu RN, Song JW, Fan X, Jin L, Shi M, Wang FS. Transforming growth factor-β promotes the function of HIV-specific CXCR5 + CD8 T cells. Microbiol Immunol 2020; 64:458-468. [PMID: 32221997 DOI: 10.1111/1348-0421.12789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/19/2020] [Accepted: 03/22/2020] [Indexed: 11/28/2022]
Abstract
HIV replication can be inhibited by CXCR5+ CD8 T cells (follicular cytotoxic T cell [TFC]) which transfer into B-cell follicles where latent HIV infection persists. However, how cytokines affect TFC remain unclear. Understanding which cytokines show the ability to affect TFC could be a key strategy toward curing HIV. Similar mechanisms could be used for the growth and transfer of TFCs and follicular helper T (TFH) cells; as a result, we hypothesized that cytokines IL-6, IL-21, and transforming growth factor-β (TGF-β), which are necessary for the differentiation of TFH cells, could also dictate the development of TFCs. In this work, lymph node mononuclear cells and peripheral blood mononuclear cells from HIV-infected individuals were cocultured with IL-6, IL-21, and TGF-β. We then carried out T-cell receptor (TCR) repertoire analysis to compare the differences between CXCR5- and CXCR5+ CD8 T cells. Our results showed that the percentage and function of TFC can be enhanced by stimulation with TGF-β. Besides, TGF-β stimulation enhanced the diversity of TCR and complementarity-determining region 3 sequences. HIV DNA showed a negative correlation with TFC. The use of TGF-β to promote the expression of CXCR5+ CD8 T cells could become a new treatment approach for curing HIV.
Collapse
Affiliation(s)
- Hong-Ge Yang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Immunology, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Lei Jin
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| |
Collapse
|
18
|
CD4+CD19+ conjugates favor HIV-1 infection and latency during chronic HIV-1 infection. AIDS 2020; 34:189-195. [PMID: 31634199 DOI: 10.1097/qad.0000000000002402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE CD4CD19 conjugates play an important role in regulating antibody responses and follicular helper T cells development in animal models. However, little is known regarding the characteristic of CD4CD19 conjugates in humans with chronic HIV-1 infection. METHODS The numbers of CD4CD19 conjugates were counted in 86 HIV-1-infected patients, including 66 typical progressors and 20 complete responders. CD4CD19 conjugates were sorted by flow cytometry and dissociated into CD4 T singlets and CD19 B singlets. The phenotypes of these cells were analyzed in both typical progressors and complete responders, and the levels of HIV-1 DNA in CD4CD19 conjugates were measured in 10 complete responders. RESULTS We identified CD4CD19 cells as one type of T-B conjugate in peripheral blood, and the numbers and percentages of CD4CD19 conjugates decreased with HIV-1 disease progression. Phenotypic analysis showed CD4CD19 conjugates expressed higher levels of surface CD32. mRNA analysis found that the mRNA levels for CD32b were significantly higher compared with CD32a in CD4CD19 conjugates. Further analysis found that CD4CD19 conjugates expressed higher levels of CCR7 and CXCR5 than CD4 T and CD19 B singlets. A virus infectivity assay showed that CD4CD19 conjugates expressed higher levels of HIV-1-p24 than CD4CD19 cells. CD4CD19 conjugates in lymph node from typical progressors expressed higher levels of HIV-1-p24 than CD4CD19 conjugates in respective peripheral blood. Importantly, CD4CD19 conjugates from complete responders contained higher levels of HIV-1 DNA than total CD4 T cells. CONCLUSION Our study indicates that CD4CD19 conjugates actively participate in HIV-1 infection and latency, and may serve as a new cellular target to eliminate latency.
Collapse
|
19
|
Chu F, Li HS, Liu X, Cao J, Ma W, Ma Y, Weng J, Zhu Z, Cheng X, Wang Z, Liu J, Jiang ZY, Luong AU, Peng W, Wang J, Balakrishnan K, Yee C, Dong C, Davis RE, Watowich SS, Neelapu SS. CXCR5 +CD8 + T cells are a distinct functional subset with an antitumor activity. Leukemia 2019; 33:2640-2653. [PMID: 31028278 PMCID: PMC6814517 DOI: 10.1038/s41375-019-0464-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 01/09/2023]
Abstract
CXCR5 mediates homing of both B and follicular helper T (TFH) cells into follicles of secondary lymphoid organs. We found that CXCR5+CD8+ T cells are present in human tonsils and follicular lymphoma, inhibit TFH-mediated B cell differentiation, and exhibit strong cytotoxic activity. Consistent with these findings, adoptive transfer of CXCR5+CD8+ T cells into an animal model of lymphoma resulted in significantly greater antitumor activity than CXCR5-CD8+ T cells. Furthermore, RNA-Seq-based transcriptional profiling revealed 77 differentially expressed genes unique to CXCR5+CD8+ T cells. Among these, a signature comprised of 33 upregulated genes correlated with improved survival in follicular lymphoma patients. We also showed that CXCR5+CD8+ T cells could be induced and expanded ex vivo using IL-23 plus TGF-β, suggesting a possible strategy to generate these cells for clinical application. In summary, our study identified CXCR5+CD8+ T cells as a distinct T cell subset with ability to suppress TFH-mediated B cell differentiation, exert strong antitumor activity, and confer favorable prognosis in follicular lymphoma patients.
Collapse
Affiliation(s)
- Fuliang Chu
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Xindong Liu
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Jingjing Cao
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Wencai Ma
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Zheng Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Xiaoyun Cheng
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jingwei Liu
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Zi Yang Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Texas Health Science Center of Houston, Houston, TX, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Texas Health Science Center of Houston, Houston, TX, USA
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Jing Wang
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kumudha Balakrishnan
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Chen Dong
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Tsinghua University Institute for Immunology and School of Medicine, 100084, Beijing, China
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Abstract
CD8 T cells are infrequently considered part of germinal center reactions. Yet, a distinct CXCR5+ CD8 T cell subset identified within the B cell follicle and germinal center in situations of chronic antigen has recently been defined. CXCR5+ CD8 T cells maintain transcriptional and phenotypic features consistent with the CD8 T cell nomenclature of a non-exhausted, effector memory population. CD8 T cell localization to the B cell follicle suggests a functional profile similar to CD4 T follicular helper cells that are licensed to promote B cell responses. The functional mechanisms defined under different immune settings, while largely similar, differentially control disease pathogenesis. CXCR5+ CD8 T cells control viral load during infection, and also promote antibody-mediated autoimmune disease progression. The existence of this novel CXCR5+ CD8 T cell subset in human and murine models of disease may provide a paradigm shift in our understanding of germinal center reactions.
Collapse
Affiliation(s)
- Kristen M. Valentine
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Katrina K. Hoyer
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
21
|
Gao M, Huang A, Sun Z, Sun Y, Chang B, Zhang JY, Zou ZS. Granulocytic myeloid-derived suppressor cell population increases with the severity of alcoholic liver disease. J Cell Mol Med 2018; 23:2032-2041. [PMID: 30585398 PMCID: PMC6378203 DOI: 10.1111/jcmm.14109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease (ALD) is a progressive liver disease that can cause a series of complications, including cirrhosis, liver failure and hepatocellular carcinoma. Granulocytic myeloid‐derived suppressor cell (gMDSC) populations have been observed to expand in various liver diseases and to inhibit innate and adaptive immunity in patients with liver disease. However, the characteristics of gMDSCs in patients with ALD have not been studied. We studied 24 healthy controls (HCs) and 107 patients with ALD and found an accumulation of gMDSCs in the peripheral blood of patients with alcoholic liver cirrhosis (ALC). Furthermore, ALC patients with a poor prognosis displayed a significant increase in peripheral gMDSCs and showed an increased capacity for arginase I production compared to HCs. In contrast, plasma arginase I levels in ALC patients were negatively correlated with total bilirubin and international normalized ratio, two key parameters of liver damage. Importantly, gMDSCs accumulated in the livers of ALC patients, and the frequency of liver gMDSCs significantly correlated with that of peripheral gMDSCs. In addition, gMDSC enrichment in vitro significantly inhibited the function of natural killer (NK) cells, perhaps preventing the NK‐induced apoptosis of hepatic stellate cells. In summary, increased peripheral and intrahepatic gMDSC populations are present in patients with ALC and may contribute to enhancing the severity of liver cirrhosis.
Collapse
Affiliation(s)
- Miaomiao Gao
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Ang Huang
- Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Zijian Sun
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Ying Sun
- Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Binxia Chang
- Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zheng-Sheng Zou
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China.,Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
22
|
McCarty B, Mwamzuka M, Marshed F, Generoso M, Alvarez P, Ilmet T, Kravietz A, Ahmed A, Borkowsky W, Unutmaz D, Khaitan A. Low Peripheral T Follicular Helper Cells in Perinatally HIV-Infected Children Correlate With Advancing HIV Disease. Front Immunol 2018; 9:1901. [PMID: 30197641 PMCID: PMC6117426 DOI: 10.3389/fimmu.2018.01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background T follicular helper (Tfh) cells are crucial for B cell differentiation and antigen-specific antibody production. Dysregulation of Tfh-mediated B cell help weakens B cell responses in HIV infection. Moreover, Tfh cells in the lymph node and peripheral blood comprise a significant portion of the latent HIV reservoir. There is limited data on the effects of perinatal HIV infection on Tfh cells in children. We examined peripheral Tfh (pTfh) cell frequencies and phenotype in HIV-infected children and their associations with disease progression, immune activation, and B cell differentiation. Methods In a Kenyan cohort of 76 perinatally HIV-infected children, comprised of 43 treatment-naïve (ART−) and 33 on antiretroviral therapy (ART+), and 42 healthy controls (HIV−), we identified memory pTfh cells, T cell activation markers, and B cell differentiation states using multi-parameter flow cytometry. Soluble CD163 and intestinal fatty acid-binding protein plasma levels were quantified by ELISA. Results ART− children had reduced levels of pTfh cells compared with HIV− children that increased with antiretroviral therapy. HIV+ children had higher programmed cell death protein 1 (PD-1) expression on pTfh cells, regardless of treatment status. Low memory pTfh cells with elevated PD-1 levels correlated with advancing HIV disease status, indicated by increasing HIV viral loads and T cell and monocyte activation, and decreasing %CD4 and CD4:CD8 ratios. Antiretroviral treatment, particularly when started at younger ages, restored pTfh cell frequency and eliminated correlations with disease progression, but failed to lower PD-1 levels on pTfh cells and their associations with CD4 T cell percentages and activation. Altered B cell subsets, with decreased naïve and resting memory B cells and increased activated and tissue-like memory B cells in HIV+ children, correlated with low memory pTfh cell frequencies. Last, HIV+ children had decreased proportions of CXCR5+ CD8 T cells that associated with low %CD4 and CD4:CD8 ratios. Conclusion Low memory pTfh cell frequencies with high PD-1 expression in HIV+ children correlate with worsening disease status and an activated and differentiated B cell profile. This perturbed memory pTfh cell population may contribute to weak vaccine and HIV-specific antibody responses in HIV+ children. Restoring Tfh cell capacity may be important for novel pediatric HIV cure and vaccine strategies.
Collapse
Affiliation(s)
- Bret McCarty
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | | | | | - Matthew Generoso
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Patricia Alvarez
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Tiina Ilmet
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Adam Kravietz
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | | | - William Borkowsky
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Alka Khaitan
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States.,Department of Microbiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
23
|
Velu V, Mylvaganam G, Ibegbu C, Amara RR. Tfh1 Cells in Germinal Centers During Chronic HIV/SIV Infection. Front Immunol 2018; 9:1272. [PMID: 29928280 PMCID: PMC5997779 DOI: 10.3389/fimmu.2018.01272] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper CD4 cells (Tfh) are essential for the development and maintenance of germinal center (GC) reactions, a critical process that promotes the generation of long-lived high affinity humoral immunity. It is becoming increasingly evident that GC-Tfh cells are heterogeneous in nature with some cellular characteristics associated with a Th1, Th2, and Th17 phenotype. Emerging studies suggest that GC-Tfh cells are directed to differentiate into distinct phenotypes during chronic HIV/SIV infection and these changes in GC-Tfh cells can greatly impact the B cell response and subclass of antibodies generated. Studies in HIV-infected humans have shown that certain Tfh phenotypes are associated with the generation of broadly neutralizing antibody responses. Moreover, the susceptibility of particular GC-Tfh subsets to HIV infection within the secondary lymphoid sites can also impact GC-Tfh/B cell interactions. In this review, we discuss the recent advances that show Tfh heterogeneity during chronic HIV/SIV infection. In particular, we will discuss the dynamics of GC-Tfh cells, their altered differentiation state and function, and their impact on B cell responses during HIV/SIV infection. In addition, we will also discuss the potential role of a recently described novel subset of follicular homing CXCR5+ CD8 T cells (Tfc) and their importance in contributing to control of chronic HIV/SIV infection. A better understanding of the mechanistic role of follicular homing CD4 and CD8 T cells during HIV/SIV infection will aid in the design of vaccines and therapeutic strategies to prevent and treat HIV/AIDS.
Collapse
Affiliation(s)
- Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Geetha Mylvaganam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard, Cambridge, MA, United States
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Rama Rao Amara
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
24
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|