1
|
Li Q, Wang J, Lv J, Liu D, Xiao S, Mo J, Lu Z, Qiu R, Li C, Tang L, He S, Tang Z, Cheng Q, Zhan T. Total flavonoids of litchi Seed alleviates schistosomiasis liver fibrosis in mice by suppressing hepatic stellate cells activation and modulating the gut microbiomes. Biomed Pharmacother 2024; 178:117240. [PMID: 39094546 DOI: 10.1016/j.biopha.2024.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-β1 (TGF-β1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.
Collapse
Affiliation(s)
- Qing Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jilong Wang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Lv
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dengyu Liu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Suyu Xiao
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingquan Mo
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zuochao Lu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Qiu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiqi Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Qiuchen Cheng
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
| | - Tingzheng Zhan
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China; Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Lei Y, Xu J, Xiao M, Wu D, Xu H, Yang J, Mao X, Pan H, Yu X, Shi S. Pirfenidone alleviates fibrosis by acting on tumour-stroma interplay in pancreatic cancer. Br J Cancer 2024; 130:1505-1516. [PMID: 38454166 PMCID: PMC11058874 DOI: 10.1038/s41416-024-02631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a 5-year survival rate of 12%. The abundant mesenchyme is partly responsible for the malignancy. The antifibrotic therapies have gained attention in recent research. However, the role of pirfenidone, an FDA-approved drug for idiopathic pulmonary fibrosis, remains unclear in PDAC. METHODS Data from RNA-seq of patient-derived xenograft (PDX) models treated with pirfenidone were integrated using bioinformatics tools to identify the target of cell types and genes. Using confocal microscopy, qRT-PCR and western blotting, we validated the signalling pathway in tumour cells to regulate the cytokine secretion. Further cocultured system demonstrated the interplay to regulate stroma fibrosis. Finally, mouse models demonstrated the potential of pirfenidone in PDAC. RESULTS Pirfenidone can remodulate multiple biological pathways, and exerts an antifibrotic effect through inhibiting the secretion of PDGF-bb from tumour cells by downregulating the TGM2/NF-kB/PDGFB pathway. Thus, leading to a subsequent reduction in collagen X and fibronectin secreted by CAFs. Moreover, the mice orthotopic pancreatic tumour models demonstrated the antifibrotic effect and potential to sensitise gemcitabine. CONCLUSIONS Pirfenidone may alter the pancreatic milieu and alleviate fibrosis through the regulation of tumour-stroma interactions via the TGM2/NF-kB/PDGFB signalling pathway, suggesting potential therapeutic benefits in PDAC management.
Collapse
Affiliation(s)
- Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Di Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Haoqi Pan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Qin XY, Furutani Y, Yonezawa K, Shimizu N, Kato-Murayama M, Shirouzu M, Xu Y, Yamano Y, Wada A, Gailhouste L, Shrestha R, Takahashi M, Keillor JW, Su T, Yu W, Fujii S, Kagechika H, Dohmae N, Shirakami Y, Shimizu M, Masaki T, Matsuura T, Suzuki H, Kojima S. Targeting transglutaminase 2 mediated exostosin glycosyltransferase 1 signaling in liver cancer stem cells with acyclic retinoid. Cell Death Dis 2023; 14:358. [PMID: 37308486 DOI: 10.1038/s41419-023-05847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that promotes or suppresses tumorigenesis, depending on intracellular location and conformational structure. Acyclic retinoid (ACR) is an orally administered vitamin A derivative that prevents hepatocellular carcinoma (HCC) recurrence by targeting liver cancer stem cells (CSCs). In this study, we examined the subcellular location-dependent effects of ACR on TG2 activity at a structural level and characterized the functional role of TG2 and its downstream molecular mechanism in the selective depletion of liver CSCs. A binding assay with high-performance magnetic nanobeads and structural dynamic analysis with native gel electrophoresis and size-exclusion chromatography-coupled multi-angle light scattering or small-angle X-ray scattering showed that ACR binds directly to TG2, induces oligomer formation of TG2, and inhibits the transamidase activity of cytoplasmic TG2 in HCC cells. The loss-of-function of TG2 suppressed the expression of stemness-related genes, spheroid proliferation and selectively induced cell death in an EpCAM+ liver CSC subpopulation in HCC cells. Proteome analysis revealed that TG2 inhibition suppressed the gene and protein expression of exostosin glycosyltransferase 1 (EXT1) and heparan sulfate biosynthesis in HCC cells. In contrast, high levels of ACR increased intracellular Ca2+ concentrations along with an increase in apoptotic cells, which probably contributed to the enhanced transamidase activity of nuclear TG2. This study demonstrates that ACR could act as a novel TG2 inhibitor; TG2-mediated EXT1 signaling is a promising therapeutic target in the prevention of HCC by disrupting liver CSCs.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yali Xu
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Luc Gailhouste
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Rajan Shrestha
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Pharmacy, Kathmandu University, Dhulikhel, Kavre, Nepal
| | - Masataka Takahashi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ting Su
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wenkui Yu
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Matsuura
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
4
|
Zhang J, Zao X, Zhang J, Guo Z, Jin Q, Chen G, Gan D, Du H, Ye Y. Is it possible to intervene early cirrhosis by targeting toll-like receptors to rebalance the intestinal microbiome? Int Immunopharmacol 2023; 115:109627. [PMID: 36577151 DOI: 10.1016/j.intimp.2022.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Cirrhosis is a progressive chronic liver disease caused by one or more causes and characterized by diffuse fibrosis, pseudolobules, and regenerated nodules. Once progression to hepatic decompensation, the function of the liver and other organs is impaired and almost impossible to reverse and recover, which often results in hospitalization, impaired quality of life, and high mortality. However, in the early stage of cirrhosis, there seems to be a possibility of cirrhosis reversal. The development of cirrhosis is related to the intestinal microbiota and activation of toll-like receptors (TLRs) pathways, which could regulate cell proliferation, apoptosis, expression of the hepatomitogen epiregulin, and liver inflammation. Targeting regulation of intestinal microbiota and TLRs pathways could affect the occurrence and development of cirrhosis and its complications. In this paper, we first reviewed the dynamic change of intestinal microbiota and TLRs during cirrhosis progression. And further discussed the interaction between them and potential therapeutic targets to reverse early staged cirrhosis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Da'nan Gan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Chen Z, Ding C, Gu Y, He Y, Chen B, Zheng S, Li Q. Association between gut microbiota and hepatocellular carcinoma from 2011 to 2022: Bibliometric analysis and global trends. Front Oncol 2023; 13:1120515. [PMID: 37064156 PMCID: PMC10098157 DOI: 10.3389/fonc.2023.1120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignant tumor responsible for approximately 90% of all liver cancers in humans, making it one of the leading public health problems worldwide. The gut microbiota is a complex microbial ecosystem that can influence tumor formation, metastasis, and resistance to treatment. Therefore, understanding the potential mechanisms of gut microbiota pathogenesis is critical for the prevention and treatment of HCC. Materials and methods A search was conducted in the Web of Science Core Collection (WoSCC) database for English literature studies on the relationship between gut microbiota and HCC from 2011 to 2022. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were used to analyze global trends and research hotspots in this field. Results A total of 739 eligible publications, comprising of 383 articles and 356 reviews, were analyzed. Over the past 11 years, there has been a rapid increase in the annual number of publications and average citation levels, especially in the last five years. The majority of published articles on this topic originated from China (n=257, 34.78%), followed by the United States of America (n=203, 27.47%), and Italy (n=85, 11.50%). American scholars demonstrated high productivity, prominence, and academic environment influence in the research of this subject. Furthermore, the University of California, San Diego published the most papers (n=24) and had the highest average citation value (value=152.17) in the study of the relationship between gut microbiota and HCC. Schnabl B from the USA and Ohtani N from Japan were the authors with the highest number of publications and average citation value, respectively. Conclusion In recent years, research on the gut microbiota's role in HCC has made rapid progress. Through a review of published literature, it has been found that the gut microbiota is crucial in the pathogenesis of HCC and in oncotherapy.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Chenchen Ding
- Affiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangjun Gu
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yahui He
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Bing Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| | - Qiyong Li
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| |
Collapse
|
6
|
Dibo N, Liu X, Chang Y, Huang S, Wu X. Pattern recognition receptor signaling and innate immune responses to schistosome infection. Front Cell Infect Microbiol 2022; 12:1040270. [PMID: 36339337 PMCID: PMC9633954 DOI: 10.3389/fcimb.2022.1040270] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Schistosomiasis remains to be a significant public health problem in tropical and subtropical regions. Despite remarkable progress that has been made in the control of the disease over the past decades, its elimination remains a daunting challenge in many countries. This disease is an inflammatory response-driven, and the positive outcome after infection depends on the regulation of immune responses that efficiently clear worms and allow protective immunity to develop. The innate immune responses play a critical role in host defense against schistosome infection and pathogenesis. Initial pro-inflammatory responses are essential for clearing invading parasites by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged inflammatory responses against the eggs trapped in the host tissues contribute to disease progression. A better understanding of the molecular mechanisms of innate immune responses is important for developing effective therapies and vaccines. Here, we update the recent advances in the definitive host innate immune response to schistosome infection, especially highlighting the critical roles of pattern recognition receptors and cytokines. The considerations for further research are also provided.
Collapse
Affiliation(s)
- Nouhoum Dibo
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Xianshu Liu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Yueyang, China
| | - Shuaiqin Huang
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| | - Xiang Wu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| |
Collapse
|
7
|
Jiang J, Li J, Zhang Y, Zhou C, Guo C, Zhou Z, Ming Y. The Protective Effect of the Soluble Egg Antigen of Schistosoma japonicum in A Mouse Skin Transplantation Model. Front Immunol 2022; 13:884006. [PMID: 35911717 PMCID: PMC9332893 DOI: 10.3389/fimmu.2022.884006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Organ transplantation is currently an effective method for treating organ failure. Long-term use of immunosuppressive drugs has huge side effects, which severely restricts the long-term survival of patients. Schistosoma can affect the host’s immune system by synthesizing, secreting, or excreting a variety of immunomodulatory molecules, but its role in transplantation was not well defined. In order to explore whether Schistosoma-related products can suppress rejection and induce long-term survival of the transplant, we used soluble egg antigen (SEA) of Schistosoma japonicum in mouse skin transplantation models. Materials and methods Each mouse was intraperitoneally injected with 100 μg of SEA three times a week for four consecutive weeks before allogenic skin transplant. Skin transplants were performed on day 0 to observe graft survival. Pathological examination of skin grafts was conducted 7 days post transplantation. The skin grafts were subjected to mRNA sequencing. Bioinformatics analysis was conducted and the expression of hub genes was verified by qPCR. Flow cytometry analysis was performed to evaluate the immune status and validate the results from bioinformatic analysis. Results The mean survival time (MST) of mouse skin grafts in the SEA-treated group was 11.67 ± 0.69 days, while that of the control group was 8.00 ± 0.36 days. Pathological analysis showed that Sj SEA treatment led to reduced inflammatory infiltration within skin grafts 7 days after allogenic skin transplantation. Bioinformatics analysis identified 86 DEGs between the Sj SEA treatment group and the control group, including 39 upregulated genes and 47 downregulated genes. Further analysis revealed that Sj SEA mediated regulation on cellular response to interferon-γ, activation of IL-17 signaling and chemokine signaling pathways, as well as cytokine–cytokine receptor interaction. Flow cytometry analysis showed that SEA treatment led to higher percentages of CD4+IL-4+ T cells and CD4+Foxp3+ T cells and decreased CD4+IFN-γ+ T cells in skin transplantation. Conclusion Sj SEA treatment suppressed rejection and prolonged skin graft survival by regulating immune responses. Sj SEA treatment might be a potential new therapeutic strategy to facilitate anti-rejection therapy and even to induce tolerance.
Collapse
Affiliation(s)
- Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Guo
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqin Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Ming
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yingzi Ming,
| |
Collapse
|
8
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Promising prognostic value of Transglutaminase type 2 and its correlation with tumor-infiltrating immune cells in skin cutaneous melanoma. Cell Death Dis 2022; 8:294. [PMID: 35725560 PMCID: PMC9209462 DOI: 10.1038/s41420-022-01087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Tissue Transglutaminases (TGs) are crosslinking enzymes with pleiotropic functions that have been linked to the development and progression of numerous cancers, with a recent focus on their ability to remodel the tumor microenvironment. Although several pieces of evidence demonstrated their importance in the regulation of the major signaling pathways that control oncogenesis, the correlation between TGs with clinical and pathological features remains controversial and to be further explored. Moreover, an assessment of the TGs alterations together with a functional analysis associated with clinical features and prognostic values are still lacking and would help to understand these intricacies, particularly in human cancers. In the present study, we processed data from numerous public datasets to investigate TGs distribution and prognostic signature in cancer patients. Here, we found that skin cutaneous melanoma (SKCM) shows the highest abundance of TGs mutations among the other human cancers. Interestingly, among all the TGs, TG2 is the only member whose expression is associated with a better overall survival in SKCM, although its expression increases with the worsening of the tumor phenotype. Our analysis revealed a strong positive association between TG2 expression and anti-tumoral immune response, which would explain the relationship between high mRNA levels and better overall survival. Our data suggest that TG2 may be presented as a new promising immune biomarker of prognosis in SKCM, which may contribute to identifying patients who would benefit the most from adjuvant immunotherapy.
Collapse
|
10
|
Rayavara K, Kurosky A, Hosakote YM. Respiratory syncytial virus infection induces the release of transglutaminase 2 from human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L1-L12. [PMID: 34704843 PMCID: PMC8721898 DOI: 10.1152/ajplung.00013.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen that causes severe lower respiratory tract infections in young children, the elderly, and the immunocompromised, yet no effective treatments or vaccines are available. The precise mechanism underlying RSV-induced acute airway disease and associated sequelae are not fully understood; however, early lung inflammatory and immune events are thought to play a major role in the outcome of the disease. Moreover, oxidative stress responses in the airways play a key role in the pathogenesis of RSV. Oxidative stress has been shown to elevate cytosolic calcium (Ca2+) levels, which in turn activate Ca2+-dependent enzymes, including transglutaminase 2 (TG2). Transglutaminase 2 is a multifunctional cross-linking enzyme implicated in various physiological and pathological conditions; however, its involvement in respiratory virus-induced airway inflammation is largely unknown. In this study, we demonstrated that RSV-induced oxidative stress promotes enhanced activation and release of TG2 from human lung epithelial cells as a result of its translocation from the cytoplasm and subsequent release into the extracellular space, which was mediated by Toll-like receptor (TLR)-4 and NF-κB pathways. Antioxidant treatment significantly inhibited RSV-induced TG2 extracellular release and activation via blocking viral replication. Also, treatment of RSV-infected lung epithelial cells with TG2 inhibitor significantly reduced RSV-induced matrix metalloprotease activities. These results suggested that RSV-induced oxidative stress activates innate immune receptors in the airways, such as TLRs, that can activate TG2 via the NF-κB pathway to promote cross-linking of extracellular matrix proteins, resulting in enhanced inflammation.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Alexander Kurosky
- 2Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Yashoda M. Hosakote
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
11
|
Bi C, Xiao G, Liu C, Yan J, Chen J, Si W, Zhang J, Liu Z. Molecular Immune Mechanism of Intestinal Microbiota and Their Metabolites in the Occurrence and Development of Liver Cancer. Front Cell Dev Biol 2021; 9:702414. [PMID: 34957088 PMCID: PMC8693382 DOI: 10.3389/fcell.2021.702414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are closely associated with immunity, metabolism, and inflammation, and play an important role in health and diseases such as inflammatory bowel disease, diabetes, cardiovascular disease, Parkinson’s disease, and cancer. Liver cancer is one of the most fatal cancers in humans. Most of liver cancers are slowly transformed from viral hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease. However, the relationship between intestinal microbiota and their metabolites, including short-chain fatty acids, bile acids, indoles, and ethanol, and liver cancer remains unclear. Here, we summarize the molecular immune mechanism of intestinal microbiota and their metabolites in the occurrence and development of liver cancer and reveal the important role of the microbiota-gut-liver axis in liver cancer. In addition, we describe how the intestinal flora can be balanced by antibiotics, probiotics, postbiotics, and fecal bacteria transplantation to improve the treatment of liver cancer. This review describes the immunomolecular mechanism of intestinal microbiota and their metabolites in the occurrence and development of hepatic cancer and provides theoretical evidence support for future clinical practice.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Geqiong Xiao
- Department of Oncology, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chunyan Liu
- Department of Clinical Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Junwei Yan
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Wenzhang Si
- Department of General Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jian Zhang
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| |
Collapse
|
12
|
Koui Y, Himeno M, Mori Y, Nakano Y, Saijou E, Tanimizu N, Kamiya Y, Anzai H, Maeda N, Wang L, Yamada T, Sakai Y, Nakato R, Miyajima A, Kido T. Development of human iPSC-derived quiescent hepatic stellate cell-like cells for drug discovery and in vitro disease modeling. Stem Cell Reports 2021; 16:3050-3063. [PMID: 34861166 PMCID: PMC8693663 DOI: 10.1016/j.stemcr.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic stellate cells (HSCs) play a central role in the progression of liver fibrosis by producing extracellular matrices. The development of drugs to suppress liver fibrosis has been hampered by the lack of human quiescent HSCs (qHSCs) and an appropriate in vitro model that faithfully recapitulates HSC activation. In the present study, we developed a culture system to generate qHSC-like cells from human-induced pluripotent stem cells (hiPSCs) that can be converted into activated HSCs in culture. To monitor the activation process, a red fluorescent protein (RFP) gene was inserted in hiPSCs downstream of the activation marker gene actin alpha 2 smooth muscle (ACTA2). Using qHSC-like cells derived from RFP reporter iPSCs, we screened a repurposing chemical library and identified therapeutic candidates that prevent liver fibrosis. Hence, hiPSC-derived qHSC-like cells will be a useful tool to study the mechanism of HSC activation and to identify therapeutic agents.
Collapse
Affiliation(s)
- Yuta Koui
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Misao Himeno
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yusuke Mori
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yasuhiro Nakano
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Eiko Saijou
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yoshiko Kamiya
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroko Anzai
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Natsuki Maeda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Luyao Wang
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadanori Yamada
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Taketomo Kido
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
13
|
Zhong Z, Li HY, Zhong H, Lin W, Lin S, Zhou T. All-trans retinoic acid regulating angiopoietins-1 and alleviating extracellular matrix accumulation in interstitial fibrosis rats. Ren Fail 2021; 43:658-663. [PMID: 33820492 PMCID: PMC8032328 DOI: 10.1080/0886022x.2021.1910046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
All-trans retinoic acid (ATRA) is one of essentially active metabolite of vitamin A, and plays an important role in diverse physiological processes, such as cellular growth and function. Renal interstitial fibrosis (RIF) is a common pathological characteristic of chronic renal disease causing end-stage renal disease currently lacking effective treatment. Low level of Angiopoietins-1 (Angpt-1) is associated with extracellular matrix accumulation and fibrosis diseases. This study was performed to assess the association of ATRA with Angpt-1 in RIF disease. Rats were divided into three groups: group of sham (SHO group), group of unilateral ureteral obstruction group (UUO group), UUO mice administrated daily at the dose of ATRA (ATRA group). Masson-staining was used to detect the histologic lesion. Immunohistochemistry and Western-blot were applied to determine the targeted proteins. RIF score was significantly increased in UUO rats when compared with that of SHO group, and the fibrosis score was notably reduced in ATRA group. Transforming growth factor-β1 (TGF-β1), collagen IV (Col-IV) and fibronectin (FN) expressions in UUO group were significantly up-regulated, whereas Angpt-1 expression was significantly down-regulated compared with the SHO group. ATRA treatment reduced TGF-β1, Col-IV and FN expressions and improved Angpt-1 expression compared with the UUO group. The protein expression of Angpt-1 in kidney tissue of UUO group was negatively correlated with RIF index and protein expressions of Col-IV, FN and TGF-β1. In conclusion, low expression of Angpt-1 was associated with the RIF disease and ATRA treatment can increase the Angpt-1 and alleviate the RIF lesion in UUO rats.
Collapse
Affiliation(s)
- Zhiqing Zhong
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Hong-Yan Li
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Hongzhen Zhong
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenshan Lin
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Shujun Lin
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- CONTACT Tianbiao Zhou Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, No. 69 Dongxia Road, Shantou, 515041, China
| |
Collapse
|
14
|
Yu Y, Wang J, Wang X, Gu P, Lei Z, Tang R, Wei C, Xu L, Wang C, Chen Y, Pu Y, Qi X, Yu B, Chen X, Zhu J, Li Y, Zhang Z, Zhou S, Su C. Schistosome eggs stimulate reactive oxygen species production to enhance M2 macrophage differentiation and promote hepatic pathology in schistosomiasis. PLoS Negl Trop Dis 2021; 15:e0009696. [PMID: 34398890 PMCID: PMC8389433 DOI: 10.1371/journal.pntd.0009696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease of public health concern. The most devastating pathology in schistosomiasis japonica and mansoni is mainly attributed to the egg-induced granulomatous response and secondary fibrosis in host liver, which may lead to portal hypertension or even death of the host. Schistosome eggs induce M2 macrophages-rich granulomas and these M2 macrophages play critical roles in the maintenance of granuloma and subsequent fibrosis. Reactive oxygen species (ROS), which are highly produced by stimulated macrophages during infection and necessary for the differentiation of M2 macrophages, are massively distributed around deposited eggs in the liver. However, whether ROS are induced by schistosome eggs to subsequently promote M2 macrophage differentiation, and the possible underlying mechanisms as well, remain to be clarified during S. japonicum infection. Herein, we observed that extensive expression of ROS in the liver of S. japonicum-infected mice. Injection of ROS inhibitor in infected mice resulted in reduced hepatic granulomatous responses and fibrosis. Further investigations revealed that inhibition of ROS production in S. japonicum-infected mice reduces the differentiation of M2, accompanied by increased M1 macrophage differentiation. Finally, we proved that S. japonicum egg antigens (SEA) induce a high level of ROS production via both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and mitochondria in macrophages. Our study may help to better understand the mechanism of schistosomiasis japonica-induced hepatic pathology and contribute to the development of potential therapeutic strategies by interfering with ROS production. Schistosomiasis is a neglected parasitic disease of poverty that affects ~200 million people mainly in (sub)tropical regions, resulting in a massive health burden and serious morbidity. During Schistosoma japonicum (S. japonicum) or S. mansoni infection, parasite eggs are trapped in host liver and induce hepatic granulomas and fibrosis, which leads to severe liver damage, and even death of the host. In hepatic schistosomiasis, considerable amounts of ROS accumulate in granulomas surrounding liver-trapped eggs. However, whether schistosome eggs trigger the production of ROS, and if so, whether and how ROS promote hepatic pathology in host remain unknown. In this study, the authors illustrated that S. japonicum eggs evoke high production of ROS in macrophages, which is necessary for egg-mediated M2 macrophage differentiation and promotes hepatic granulomas and fibrosis in S. japonicum-infected mice. These discoveries provide a potential target regarding schistosome eggs-induced ROS production, which can be manipulated to regulate immunopathology in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Yanxiong Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junling Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohong Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Gu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhigang Lei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Pu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Beibei Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (SZ); (CS)
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (SZ); (CS)
| |
Collapse
|
15
|
Chen L, Liu S, Xiao L, Chen K, Tang J, Huang C, Luo W, Ferrandon D, Lai K, Li Z. An initial assessment of the involvement of transglutaminase2 in eosinophilic bronchitis using a disease model developed in C57BL/6 mice. Sci Rep 2021; 11:11946. [PMID: 34099759 PMCID: PMC8184915 DOI: 10.1038/s41598-021-90950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
The detailed pathogenesis of eosinophilic bronchitis (EB) remains unclear. Transglutaminase 2 (TG2) has been implicated in many respiratory diseases including asthma. Herein, we aim to assess preliminarily the relationship of TG2 with EB in the context of the development of an appropriate EB model through ovalbumin (OVA) sensitization and challenge in the C57BL/6 mouse strain. Our data lead us to propose a 50 μg dose of OVA challenge as appropriate to establish an EB model in C57BL/6 mice, whereas a challenge with a 400 μg dose of OVA significantly induced asthma. Compared to controls, TG2 is up-regulated in the airway epithelium of EB mice and EB patients. When TG2 activity was inhibited by cystamine treatment, there were no effects on airway responsiveness; in contrast, the lung pathology score and eosinophil counts in bronchoalveolar lavage fluid were significantly increased whereas the cough frequency was significantly decreased. The expression levels of interleukin (IL)-4, IL-13, IL-6, mast cell protease7 and the transient receptor potential (TRP) ankyrin 1 (TRPA1), TRP vanilloid 1 (TRPV1) were significantly decreased. These data open the possibility of an involvement of TG2 in mediating the increased cough frequency in EB through the regulation of TRPA1 and TRPV1 expression. The establishment of an EB model in C57BL/6 mice opens the way for a genetic investigation of the involvement of TG2 and other molecules in this disease using KO mice, which are often generated in the C57BL/6 genetic background.
Collapse
Affiliation(s)
- Lan Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Shuyan Liu
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Linzhuo Xiao
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Kanyao Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | | | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, M3I UPR9022 du CNRS, 67000, Strasbourg, France
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Chen L, Ji X, Wang M, Liao X, Liang C, Tang J, Wen Z, Dominique F, Li Z. Involvement of TLR4 signaling regulated-COX2/PGE2 axis in liver fibrosis induced by Schistosoma japonicum infection. Parasit Vectors 2021; 14:279. [PMID: 34034779 PMCID: PMC8146234 DOI: 10.1186/s13071-021-04790-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hepatic stellate cell (HSC) activation plays a pivotal role in hepatic inflammation and liver fibrosis. TLR4 pathway activation has been reported to be involved in mice liver fibrosis induced by hepatitis virus infection, alcohol abuse, biliary ligation, carbon tetrachloride 4 treatment, and Schistosoma japonicum (Sj) infection. The effect and mechanisms of the cyclooxygenase 2 (COX2)/prostanoid E2 (PGE2) axis on liver fibrosis induced by Sj are still unclear. Methods Mice liver fibrosis were induced by cutaneous infection of Sj cercariae. COX-2 inhibitor, NS398 were injected from week 5 to week 7, while TLR4 inhibitor TAK242 were injected from week 4 to week 8 post Sj infection. Human HSCs line, LX-2 cells were cultured and exposed to LPS or synthetic PGE2, or pretreated by TAK242, TLR4-siRNA or NS398. Liver tissue and serum or in vitro cultured cell lysaste were collected at indicated time courses for exploring the relationship between TLR4 and COX2-PGE2 axis through qPCR, western blot, immunohistochemical assay, ect. One-way analysis of variance among multiple groups followed by Uncorrected Fisher’s LSD-t test or paired comparisons through t test were performed to tell the statistical differences. Results This study investigated the link between the COX2/PGE2 axis and TLR4 signaling in the induction of liver fibrogenesis in mice during Sj infection and in vitro culture of HSC strain-LX-2. The COX2/PGE2 axis was positively associated with Sj-induced liver fibrosis. TLR4 pathway activation stimulated the COX2/PGE2 axis in Sj-infected mice and in lipopolysaccharide (LPS)-exposed cultured HSCs. Synthetic PGE2 activated cultured HSCs through upregulation of alpha smooth muscle actin (α-SMA) expression. In LPS-triggered HSCs, NS398, a COX2 inhibitor, led to suppression of PGE2 synthesis and reduced expression of α-SMA and type I collagen (COL I). Conclusions These results indicate firstly the positive association of the COX2/PGE2 axis with liver fibrosis induced by Sj infection. TLR4 signaling may at least partially control the COX2/PGE2 axis in Sj-infected mice liver and in vitro cultured HSCs. The COX2/PGE2-EP2/EP4 axis might be a good drug target against liver fibrosis induced by Sj infection. Graphic abstract ![]()
Collapse
Affiliation(s)
- Lan Chen
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaofang Ji
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Manni Wang
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaoyan Liao
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Cuiying Liang
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Juanjuan Tang
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Zhencheng Wen
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Ferrandon Dominique
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.,Université de Strasbourg, M3I UPR9022 du CNRS, 67000, Strasbourg, France
| | - Zi Li
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Fan Y, Li Y, Chu Y, Liu J, Cui L, Zhang D. Toll-Like Receptors Recognize Intestinal Microbes in Liver Cirrhosis. Front Immunol 2021; 12:608498. [PMID: 33708204 PMCID: PMC7940369 DOI: 10.3389/fimmu.2021.608498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liver cirrhosis is one major cause of mortality in the clinic, and treatment of this disease is an arduous task. The scenario will be even getting worse with increasing alcohol consumption and obesity in the current lifestyle. To date, we have no medicines to cure cirrhosis. Although many etiologies are associated with cirrhosis, abnormal intestinal microbe flora (termed dysbiosis) is a common feature in cirrhosis regardless of the causes. Toll-like receptors (TLRs), one evolutional conserved family of pattern recognition receptors in the innate immune systems, play a central role in maintaining the homeostasis of intestinal microbiota and inducing immune responses by recognizing both commensal and pathogenic microbes. Remarkably, recent studies found that correction of intestinal flora imbalance could change the progress of liver cirrhosis. Therefore, correction of intestinal dysbiosis and targeting TLRs can provide novel and promising strategies in the treatment of liver cirrhosis. Here we summarize the recent advances in the related topics. Investigating the relationship among innate immunity TLRs, intestinal flora disorders, and liver cirrhosis and exploring the underlying regulatory mechanisms will assuredly have a bright future for both basic and clinical research.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunpeng Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
18
|
Transglutaminase 2 as a Marker for Inflammation and Therapeutic Target in Sepsis. Int J Mol Sci 2021; 22:ijms22041897. [PMID: 33672962 PMCID: PMC7918628 DOI: 10.3390/ijms22041897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis results in lethal organ malfunction due to dysregulated host response to infection, which is a condition with increasing prevalence worldwide. Transglutaminase 2 (TG2) is a crosslinking enzyme that forms a covalent bond between lysine and glutamine. TG2 plays important roles in diverse cellular processes, including extracellular matrix stabilization, cytoskeletal function, cell motility, adhesion, signal transduction, apoptosis, and cell survival. We have shown that the co-culture of Candida albicans and hepatocytes activates and induces the translocation of TG2 into the nucleus. In addition, the expression and activation of TG2 in liver macrophages was dramatically induced in the lipopolysaccharide-injected and cecal ligation puncture-operated mouse models of sepsis. Based on these findings and recently published research, we have reviewed the current understanding of the relationship between TG2 and sepsis. Following the genetic and pharmacological inhibition of TG2, we also assessed the evidence regarding the use of TG2 as a potential marker and therapeutic target in inflammation and sepsis.
Collapse
|
19
|
Zhang Y, Li Y, Mu T, Tong N, Cheng P. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. J Cell Mol Med 2021; 25:1299-1313. [PMID: 33336563 PMCID: PMC7812270 DOI: 10.1111/jcmm.16209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023] Open
Abstract
The hepatic stellate cells (HSCs) play a significant role in the onset of liver fibrosis, which can be treated by the inhibition and reversal of HSC activation. The RNA interference-mediated TLR4 gene silencing might be a potential therapeutic approach for liver fibrosis. The crucial challenge in this method is the absence of an efficient delivery system for the RNAi introduction in the target cells. HSCs have an enhanced capacity of vitamin A intake as they contain retinoic acid receptors (RARs). In the current study, we developed cationic liposomes modified with vitamin A to improve the specificity of delivery vehicles for HSCs. The outcome of this study revealed that the VitA-coupled cationic liposomes delivered the TLR4 shRNA to aHSCs more efficiently, as compared to the uncoupled cationic liposomes, both in the in vitro and in vivo conditions. Besides, as evident from the outcome of this study, the TLR4 gene silencing inhibited the HSCs activation and attenuated the liver fibrosis via the NF-κB transcriptional inactivation, pro-inflammatory cytokines secretion and reactive oxygen species (ROS) synthesis. Thus, the VitA-coupled liposomes encapsulated with the TLR4-shRNA might prove as an efficient therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Yuwei Zhang
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yang Li
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Tong Mu
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Nanwei Tong
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
20
|
Engelmann C, Sheikh M, Sharma S, Kondo T, Loeffler-Wirth H, Zheng YB, Novelli S, Hall A, Kerbert AJC, Macnaughtan J, Mookerjee R, Habtesion A, Davies N, Ali T, Gupta S, Andreola F, Jalan R. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. J Hepatol 2020; 73:102-112. [PMID: 31987990 DOI: 10.1016/j.jhep.2020.01.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Toll-like receptor 4 (TLR4) plays an essential role in mediating organ injury in acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Herein, we assess whether inhibiting TLR4 signaling can ameliorate liver failure and serve as a potential treatment. METHODS Circulating TLR4 ligands and hepatic TLR4 expression were measured in plasma samples and liver biopsies from patients with cirrhosis. TAK-242 (TLR4 inhibitor) was tested in vivo (10 mg/kg intraperitoneally) in rodent models of ACLF (bile duct ligation + lipopolysaccharide [LPS]; carbon tetrachloride + LPS) and ALF (galactosamine + LPS) and in vitro on immortalized human monocytes (THP-1) and hepatocytes (HHL5). The in vivo therapeutic effect was assessed by coma-free survival, organ injury and cytokine release and in vitro by measuring IL-6, IL-1β or cell injury (TUNEL), respectively. RESULTS In patients with cirrhosis, hepatic TLR4 expression was upregulated and circulating TLR4 ligands were increased (p <0.001). ACLF in rodents was associated with a switch from apoptotic cell death in ALF to non-apoptotic forms of cell death. TAK-242 reduced LPS-induced cytokine secretion and cell death (p = 0.002) in hepatocytes and monocytes in vitro. In rodent models of ACLF, TAK-242 administration improved coma-free survival, reduced the degree of hepatocyte cell death in the liver (p <0.001) and kidneys (p = 0.048) and reduced circulating cytokine levels (IL-1β, p <0.001). In a rodent model of ALF, TAK-242 prevented organ injury (p <0.001) and systemic inflammation (IL-1β, p <0.001). CONCLUSION This study shows that TLR4 signaling is a key factor in the development of both ACLF and ALF; its inhibition reduces the severity of organ injury and improves outcome. TAK-242 may be of therapeutic relevance in patients with liver failure. LAY SUMMARY Toll-like receptor 4 (or TLR4) mediates endotoxin-induced tissue injury in liver failure and cirrhosis. This receptor sensitizes cells to endotoxins, which are produced by gram-negative bacteria. Thus, inhibiting TLR4 signaling with an inhibitor (TAK-242) ameliorates organ injury and systemic inflammation in rodent models of acute and acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Germany
| | - Mohammed Sheikh
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Shreya Sharma
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Takayuki Kondo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Yu Bao Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Simone Novelli
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Jane Macnaughtan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajeshwar Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Tauhid Ali
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Saurabh Gupta
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
21
|
Su T, Qin XY, Furutani Y, Yu W, Kojima S. Imaging of the ex vivo transglutaminase activity in liver macrophages of sepsis mice. Anal Biochem 2020; 597:113654. [PMID: 32142762 DOI: 10.1016/j.ab.2020.113654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Sepsis is the leading cause of death in hospitalized patients and is characterized by a dysregulated inflammatory response to infection and multiple organ failure, including the liver. Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, and integrin-binding activities and has opposing roles in the regulation of cell growth, differentiation, and apoptosis. TG2 plays both pathogenic and protective roles in liver diseases, revealing the need to examine the activities of TG2. Here, we introduced an ex vivo imaging approach to examine the in vivo transamidase activity of TG2 based on the combination of intraperitoneal injection of 5-biotinamidopentylamine (5BAPA), a biotinylated substrate for TG2, and fluorescent streptavidin staining in frozen liver sections. Increased 5BAPA signals was observed in the livers of lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced sepsis mice. Pharmacological inhibition of TG2 activity ameliorated LPS-induced liver injury. 5BAPA signals were observed in TG2-expressing and F4/80-positive midzonal macrophages, providing direct evidence that activated macrophages are the major cellular source of active TG2 in the livers of sepsis mice. Further studies focusing on the activation of 5BAPA-stained midzonal macrophages may improve understanding of the molecular pathophysiology and the development of therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Ting Su
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Wenkui Yu
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
22
|
Chen D, Zhao Y, Feng Y, Jin C, Yang Q, Qiu H, Xie H, Xie S, Zhou Y, Huang J. Expression of TLR2, TLR3, TLR4, and TLR7 on pulmonary lymphocytes of Schistosoma japonicum-infected C57BL/6 mice. Innate Immun 2020; 25:224-234. [PMID: 31018808 PMCID: PMC6830883 DOI: 10.1177/1753425919840424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the paramount role of TLRs in the induction of innate immune and
inflammatory responses, there is a paucity of studies on the role of TLRs in
Schistosoma japonicum infection. Here, we observed obvious
infiltration of inflammatory cells in S. japonicum-infected
C57BL/6 mouse lungs. Expression and release of IFN-γ, IL-4, and IL-17 were
significantly higher in pulmonary lymphocytes from infected mice compared with
control mice in response to anti-CD3 plus anti-CD28 mAbs. Higher percentages of
TLR2, TLR3, TLR4, and TLR7 were expressed on such lymphocytes, and the TLR
agonists PGN, Poly I:C, LPS, and R848 induced a higher level of IFN-γ. However,
a higher level of IL-4 was found in the supernatant of pulmonary lymphocytes
from infected mice stimulated by these TLR agonists plus CD3 Ab. Only R848 plus
anti-CD3 mAb could induce a higher level of IFN-γ in such lymphocytes. TLR
expressions were then compared on different pulmonary lymphocytes after
infection, including T cells, B cells, NK cells, NKT cells, and γδT cells. The
expression levels of TLR3 on T cells, B cells, NK cells, and γδT cells were
increased in the lungs after infection. NK cells also expressed higher levels of
TLR4 after infection of control mice. Collectively, these findings highlight the
potential role of TLR expression in the context of S. japonicum
infection.
Collapse
Affiliation(s)
- Dianhui Chen
- 1 The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou Medical University, China
| | - Yi Zhao
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yuanfa Feng
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Chenxi Jin
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Quan Yang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Huaina Qiu
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Hongyan Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Sihao Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yi Zhou
- 3 College of Pharmacy, Guangzhou Medical University, China
| | - Jun Huang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| |
Collapse
|
23
|
Kong DL, Kong FY, Liu XY, Yan C, Cui J, Tang RX, Zheng KY. Soluble egg antigen of Schistosoma japonicum induces pyroptosis in hepatic stellate cells by modulating ROS production. Parasit Vectors 2019; 12:475. [PMID: 31610797 PMCID: PMC6791022 DOI: 10.1186/s13071-019-3729-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inflammation-induced dysfunction of hepatic stellate cells (HSCs) is involved in schistosomiasis-associated liver fibrosis, and soluble egg antigen (SEA) is a crucial pathogen-associated molecular pattern associated with liver injury in schistosomiasis. In addition, numerous studies have shown that caspase-1-mediated pyroptosis participates in the development of multiple inflammation-related diseases. However, whether pyroptotic cell death of HSCs is involved in SEA-mediated liver damage is not well understood. METHODS Primary cultured HSCs and Schistosoma japonicum-infected mouse liver tissue were analysed for histological changes and caspase-1 activation, and the role of pyroptosis in the mechanisms underlying SEA-induced HSC death was investigated. Accumulation of reactive oxygen species (ROS) in infected livers and SEA-stimulated HSCs was measured by flow cytometry and immunofluorescence. RESULTS Caspase-1 activity was elevated in both liver tissues and HSCs of S. japonicum-infected mice. Furthermore, SEA stimulation increased the proportion of pyroptotic HSCs, as shown by lactate dehydrogenase (LDH) release assays and by flow cytometric analysis of propidium iodide (PI) and caspase-1 double staining in cells. In addition, ROS generation was elevated in infected liver tissues and SEA-stimulated HSCs, and ROS inhibition downregulated SEA-induced caspase-1 activation and pyroptosis in HSCs. CONCLUSIONS Our present study demonstrates that pyroptotic cell death in HSCs induced by SEA via ROS-mediated caspase-1 activation may serve as a significant mechanism to initiate the inflammatory response and thereby exacerbate liver injury during S. japonicum infection.
Collapse
Affiliation(s)
- De-Long Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Fan-Yun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Xiang-Ye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Li ZY, Xiao L, Lin G, Tang J, Chen Y, Chen L, Li B, Wu M, Liu S, Huang C, Ferrandon D, Li Z. Contribution of tissue transglutaminase to the severity of hepatic fibrosis resulting from Schistosoma japonicum infection through the regulation of IL-33/ST2 expression. Parasit Vectors 2019; 12:302. [PMID: 31200771 PMCID: PMC6570881 DOI: 10.1186/s13071-019-3542-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/29/2019] [Indexed: 01/02/2023] Open
Abstract
Background Tissue transglutaminase (tTG)-regulating IL-13 plays an important role in the pathogenesis of liver fibrosis resulting from Schistosoma japonicum (Sj) infection. IL-33 and its receptor ST2 are involved in Th2-biased immune responses through the release of IL-5 and IL-13 and subsequent hepatic granuloma pathology induced by Sj infection. However, the relationship between tTG, IL-33/ST2, and liver fibrosis during Schistosoma infection has not been established. Results This study investigated the link between tTG and IL-33/ST2 in the induction of liver fibrogenesis during Sj infection in mice. The extent of liver fibrosis coincided with an increase in tTG and IL-33/ST2 expression in the liver of infected mice between five to eight weeks, with a peak of correlation at six weeks after Sj infection. The inhibition of tTG activity through cystamine administration or gene knockout alleviated the level of TLR4, NF-κB pathway molecules, IL-33/ST2, and the severity of liver fibrosis resulting from Sj infection. Conclusions These results indicate that during Sj infection tTG may control liver fibrosis at least partially through TLR4, NF-κB pathway activation and then IL-33/ST2. tTG, IL-33 or ST2 might be promising drug targets against liver fibrosis induced by Sj infection.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - LinZhuo Xiao
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - GuiYing Lin
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - JuanJuan Tang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - YuQiang Chen
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - Lan Chen
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - BaoQi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - MeiLing Wu
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - ShuYan Liu
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - ChuQin Huang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China. .,RIDI UPR9022 du CNRS, Université de Strasbourg, 67000, Strasbourg, France.
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, People's Republic of China.
| |
Collapse
|
25
|
Yang P, Yu D, Zhou J, Zhuang S, Jiang T. TGM2 interference regulates the angiogenesis and apoptosis of colorectal cancer via Wnt/β-catenin pathway. Cell Cycle 2019; 18:1122-1134. [PMID: 31010374 PMCID: PMC6592233 DOI: 10.1080/15384101.2019.1609831] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis and apoptosis are critical for the growth of colorectal cancer (CRC). The study aimed to investigate the effects of TGM2 in CRC. Forty-two patients were recruited and their TGM2 levels were detected by performing Realtime-qPCR (RT-qPCR), Western blot and immunohistochemistry , respectively. Levels of TGM2, MMP-2 and MMP-9 in four CRC cell lines and in normal cells were determined using RT-qPCR and Western blot. TGM2-siRNA was transfected into LoVo and HCT116 cells, respectively. TGM2 levels, cell viability, cell apoptosis, angiogenesis and related factors were determined. the tumorigenesis rates of mice were detected after TGM2-siRNA transfection. TGM2 were upregulated in patients with CRC. High TGM2 level of CRC patients had a lower survival rate. The levels of TGM2, MMP-2 and MMP-9 were upregulated in all detected CRC cell lines. Silencing TGM2 could inhibit cell viabilities, angiogenesis and suppress the expressions of MMP-2, MMP-9, Wnt3a, β-catenin and Cyclin D1 , whereas cell apoptosis and the expressions of Caspase-3 and TIMP-1 were promoted. Tumor weights and volumes were reduced by TGM2-siRNA interference. The effects of TGM2-siRNA interference might be related to Wnt/β-catenin Pathway. This might prove that TGM2 could be used as a molecular target in the treatment of CRC.
Collapse
Affiliation(s)
- Ping Yang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dong Yu
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jie Zhou
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Sufei Zhuang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Jiang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
26
|
Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis. Matrix Biol Plus 2019; 1:100005. [PMID: 33543004 PMCID: PMC7852317 DOI: 10.1016/j.mbplus.2019.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Lung fibrosis is characterized by excessive deposition of extracellular matrix (ECM), in particular collagens, by fibroblasts in the interstitium. Transforming growth factor-β1 (TGF-β1) alters the expression of many extracellular matrix (ECM) components produced by fibroblasts, but such changes in ECM composition as well as modulation of collagen post-translational modification (PTM) levels have not been comprehensively investigated. Here, we performed mass spectrometry (MS)-based proteomics analyses to assess changes in the ECM deposited by cultured lung fibroblasts from idiopathic pulmonary fibrosis (IPF) patients upon stimulation with transforming growth factor β1 (TGF-β1). In addition to the ECM changes commonly associated with lung fibrosis, MS-based label-free quantification revealed profound effects on enzymes involved in ECM crosslinking and turnover as well as multiple positive and negative feedback mechanisms of TGF-β1 signaling. Notably, the ECM changes observed in this in vitro model correlated significantly with ECM changes observed in patient samples. Because collagens are subject to multiple PTMs with major implications in disease, we implemented a new bioinformatic platform to analyze MS data that allows for the comprehensive mapping and site-specific quantitation of collagen PTMs in crude ECM preparations. These analyses yielded a comprehensive map of prolyl and lysyl hydroxylations as well as lysyl glycosylations for 15 collagen chains. In addition, site-specific PTM analysis revealed novel sites of prolyl-3-hydroxylation and lysyl glycosylation in type I collagen. Interestingly, the results show, for the first time, that TGF-β1 can modulate prolyl-3-hydroxylation and glycosylation in a site-specific manner. Taken together, this proof of concept study not only reveals unanticipated TGF-β1 mediated regulation of collagen PTMs and other ECM components but also lays the foundation for dissecting their key roles in health and disease. The proteomic data has been deposited to the ProteomeXchange Consortium via the MassIVE partner repository with the data set identifier MSV000082958. Quantitative proteomics of TGF-β-induced changes in ECM composition and collagen PTM in pulmonary fibroblasts TGF-β promotes crosslinking and turnover as well as complex feedback mechanisms that alter fibroblast ECM homeostasis. A novel bioinformatic workflow for MS data analysis enabled global mapping and quantitation of known and novel collagen PTMs Quantitative assessment of prolyl-3-hydroxylation site occupancy and lysine-O-glycosylation microheterogeneity TGF-β1 modulates collagen PTMs in a site-specific manner that may favor collagen accumulation in lung fibrosis
Collapse
Key Words
- 3-HyP, 3-hydroxyproline
- 4-HyP, 4-hydroxyproline
- AGC, automatic gain control
- ANXA11, annexin A11
- BGN, biglycan
- COL1A1, collagen-I alpha 1 chain
- Collagen
- Collagen post-translational modifications
- DCN, decorin
- ECM, extracellular matrix
- Extracellular matrix
- FN1, fibronectin 1
- G-HyK, galactosylhydroxylysine
- GG-HyK, glucosylgalactosylhydroxylysine
- HyK, hydroxylysine
- HyP, hydroxyproline
- ILD, interstitial lung disease
- IPF, idiopathic pulmonary fibrosis
- LH, lysyl hydroxylase
- LOX(L), lysyl oxidase(-like)
- LTBP2, latent-transforming growth factor β -binding protein 2
- Lysyl glycosylation
- Lysyl hydroxylation
- P3H, prolyl-3-hydroxylase
- P4H, prolyl-4-hydroxylase
- PAI1, plasminogen activator inhibitor 1
- PCA, principal component analysis
- PLOD (LH), procollagen-lysine,2-oxoglutarate 5-dioxygenases (lysyl hydroxylases)
- PTM, post-translational modification
- Prolyl hydroxylation
- Pulmonary fibrosis
- SEMA7A, semaphorin 7a
- TGF-β, transforming growth factor β
- TGM2, transglutaminase 1
- Transforming growth factor-β
- VCAN, versican
- Xaa, Xaa position in the Gly-Xaa-Yaa repeat in triple-helical collagen
- Yaa, Yaa position in the Gly-Xaa-Yaa repeat in triple-helical collagen
- α-SMA, α-smooth muscle actin
Collapse
|
27
|
Zhang B, Wu X, Liu J, Song L, Song Q, Wang L, Yuan D, Wu Z. β-Actin: Not a Suitable Internal Control of Hepatic Fibrosis Caused by Schistosoma japonicum. Front Microbiol 2019; 10:66. [PMID: 30766520 PMCID: PMC6365423 DOI: 10.3389/fmicb.2019.00066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Schistosomiasis japonica is a significant health problem that leads to morbidity and mortality of humans. It is characterized by hepatic granulomatous response and fibrosis caused by eggs deposition in the liver. β-actin, a traditional housekeeping gene, is widely used as an internal control to normalize gene and protein expression. However, β-actin expression can fluctuate upon the treatment with pharmacological agents or under some physiological and pathological conditions. In this study, we found that the expressions of both β-actin mRNA and protein increased significantly with hepatic fibrosis formation after 6 weeks infection with Schistosoma japonicum and kept high level during the progression of hepatic fibrosis, while the levels of β-Tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) remained stable. The dynamic change of β-actin was similar with the profibrogenic factors, including α-SMA, Collagen I, and Collagen III. We employed immunofluorescence staining and further showed that the expression level of β-actin was positively correlated with α-SMA. What is more, there was a positive correlation between the level of β-actin mRNA and the content of hydroxyproline in liver. This study provides evidences that β-actin is variable and unsatisfied for application as an internal control in hepatic fibrosis induced by S. japonicum infection.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Wu
- School of Public Health, Fudan University, Shanghai, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Langui Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Qiuyue Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Dongjuan Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Bhattacharyya S, Wang W, Tamaki Z, Shi B, Yeldandi A, Tsukimi Y, Yamasaki M, Varga J. Pharmacological Inhibition of Toll-Like Receptor-4 Signaling by TAK242 Prevents and Induces Regression of Experimental Organ Fibrosis. Front Immunol 2018; 9:2434. [PMID: 30405628 PMCID: PMC6207051 DOI: 10.3389/fimmu.2018.02434] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a poorly understood heterogeneous condition with progressive multi-organ fibrosis. Recent genetic and genomic evidence suggest a pathogenic role for dysregulated innate immunity and toll-like receptor (TLR) activity in SSc. Levels of both TLR4, as well as certain endogenous TLR ligands, are elevated in skin and lung tissues from patients with SSc and correlate with clinical disease parameters. Conversely, genetic targeting of TLR4 or its endogenous “damage-associated” ligands ameliorates progressive tissue fibrosis. Targeting TLR4 signaling therefore represents a pharmacological strategy to prevent intractable fibrosis. We examined the effect of TAK242, a small molecule TLR4 inhibitor, in preclinical fibrosis models and in SSc fibroblasts. TAK242 treatment prevented, promoted regression of, bleomycin-induced dermal and pulmonary fibrosis, and reduced the expression of several pro-fibrotic mediators. Furthermore, TAK242 ameliorated peritoneal fibrosis and reduced spontaneous hypodermal thickness in TSK/+ mice. Importantly, TAK242 abrogated collagen synthesis and myofibroblasts differentiation in explanted constitutively active SSc fibroblast. Altogether, these findings identify TAK242 as an anti-fibrotic agent in preclinical models of organ fibrosis. TAK242 might potentially represent a novel strategy for the treatment of SSc and other fibrotic diseases.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Zenshiro Tamaki
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Bo Shi
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Anjana Yeldandi
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | | | | | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
29
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
30
|
Tang X, Hu W, Lv Y, Zhang W, Sun T, Jiang Y, Zhan X, Zhou S. A Polysaccharide from Amusium Pleuronectes Combined with Praziquantel Treatment Ameliorates Hepatic Fibrosis in Schistosoma Japonicum-Infected Mice. Med Sci Monit 2018; 24:1597-1603. [PMID: 29550831 PMCID: PMC5870401 DOI: 10.12659/msm.909320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Polysaccharides from bivalves have multiple bioactivities in various aspects of biology. However, the role of a polysaccharide derived from Amusium pleuronectes on potential hepatoprotective effects remains unclear. Material/Methods A water-soluble polysaccharide was isolated from Amusium pleuronectes (APS-1) using ultrasound-assisted hot-water extraction. The molecular weight of APS-1 was approximately 11.7 kDa and was determined by calibration with dextran. APS-1 was analyzed by high-performance liquid chromatography (HPLC), and mainly consisted of a uniform glucose polymer. The protective effect of APS-1 on Schistosoma japonicum-induced liver fibrosis was investigated in a mouse model. Results Treatment with APS-1 increased serum levels of interleukin (IL)-12 and interferon (IFN)-γ, increased superoxide dismutase (SOD) activity, and decreased levels of IL-13 and IL-5, and hyaluronidase activity. Moreover, immunohistochemical analysis revealed that the collagen content of hepatic tissue of APS-1-treated mice, including that of collagen I, II, and IV, was dramatically decreased. Furthermore, our data showed that combined treatment of APS-1 with praziquantel had more pronounced effects than treatment with either APS-1 or praziquantel alone. Conclusions Our findings suggest that the treatment using APS-1 in combination with praziquantel attenuated S. japonicum egg-induced hepatic fibrosis, and possessed potent hepatoprotective activity.
Collapse
Affiliation(s)
- Xiaoniu Tang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Wei Hu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yechao Lv
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Wenqi Zhang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Tian Sun
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yuxin Jiang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Xiaodong Zhan
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Shulin Zhou
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|