1
|
Yamane H, Ide K, Tanaka Y, Ohira M, Tahara H, Shimizu S, Sakai H, Nakano R, Ohdan H. Association of PIRCHE-II score with anti-donor T-cell response and risk of de novo donor-specific antibody production in kidney transplant recipients. Transpl Immunol 2024; 87:102145. [PMID: 39500398 DOI: 10.1016/j.trim.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/12/2024]
Abstract
BACKGROUND De novo donor-specific antibodies (dnDSAs) affect long-term outcomes of kidney transplantation (KT). A higher Predicted Indirectly ReCognizable Human Leukocyte Antigen (HLA) Epitopes (PIRCHE-II) score correlates with various clinical outcomes, including dnDSA formation. However, a detailed analysis of the relationship between the PIRCHE-II score and anti-donor T-cell response is lacking. Therefore, this study investigated the relationship between PIRCHE-II scores associated with dnDSA formation and mixed lymphocyte reaction results of anti-donor T-cell response. METHODS Data of 105 adult living-donor KT recipients were retrospectively assessed. RESULTS Of the 105 patients, 13.3 % developed dnDSAs during the observation period. The PIRCHE-II score at the HLA-DQ locus (PIRCHE-DQ) was significantly higher in patients with dnDSA formation than in those without. The incidence of dnDSA formation was significantly higher in the PIRCHE-DQ ≥ 77 group than in the PIRCHE-DQ < 77 group. The proportion of patients with increased anti-donor T-cell response was significantly higher in the PIRCHE-DQ ≥ 77 group than in the PIRCHE-DQ < 77 group before KT and at 4 and 5 years after KT. CONCLUSIONS PIRCHE-DQ may predict dnDSA formation and anti-donor T-cell response. Reducing the immunosuppressive drug dose in cases of high PIRCHE-DQ might not be prudent.
Collapse
Affiliation(s)
- Hiroaki Yamane
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kentaro Ide
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Yuka Tanaka
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroyuki Tahara
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Seiichi Shimizu
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroshi Sakai
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ryosuke Nakano
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hideki Ohdan
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
2
|
Mattoo A, Jaffe IS, Keating B, Montgomery RA, Mangiola M. Improving long-term kidney allograft survival by rethinking HLA compatibility: from molecular matching to non-HLA genes. Front Genet 2024; 15:1442018. [PMID: 39415982 PMCID: PMC11480002 DOI: 10.3389/fgene.2024.1442018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Optimizing immunologic compatibility in organ transplantation extends beyond the conventional approach of Human Leukocyte Antigen (HLA) antigen matching, which exhibits significant limitations. A broader comprehension of the roles of classical and non-classical HLA genes in transplantation is imperative for enhancing long-term graft survival. High-resolution molecular HLA genotyping, despite its inherent challenges, has emerged as the cornerstone for precise patient-donor compatibility assessment. Leveraging understanding of eplet biology and indirect immune activation, eplet mismatch calculators and the PIRCHE-II algorithm surpass traditional methods in predicting allograft rejection. Understanding minor histocompatibility antigens may also present an opportunity to personalize the compatibility process. While the application of molecular matching in deceased donor organ allocation presents multiple technical, logistical, and conceptual barriers, rendering it premature for mainstream use, several other areas of donor-recipient matching and post-transplant management are ready to incorporate molecular matching. Provision of molecular mismatch scores to physicians during potential organ offer evaluations could potentially amplify long-term outcomes. The implementation of molecular matching in living organ donation and kidney paired exchange programs is similarly viable. This article will explore the current understanding of immunologic matching in transplantation and the potential applications of epitope and non-epitope molecular biology and genetics in clinical transplantation.
Collapse
Affiliation(s)
- Aprajita Mattoo
- *Correspondence: Aprajita Mattoo, ; Ian S. Jaffe, ; Massimo Mangiola,
| | - Ian S. Jaffe
- *Correspondence: Aprajita Mattoo, ; Ian S. Jaffe, ; Massimo Mangiola,
| | | | | | - Massimo Mangiola
- NYU Langone Transplant Institute, New York University Langone Health, New York, NY, United States
| |
Collapse
|
3
|
Staff AC, Fjeldstad HE, Olsen MB, Øgaard J, Viken MK, Kramer CSM, Eikmans M, Kroneis T, Sallinger K, Kanaan SB, Sugulle M, Jacobsen DP. Foetal Microchimerism Correlates With Foetal-Maternal Histocompatibility Both During Pregnancy and Postpartum. HLA 2024; 104:e15717. [PMID: 39435899 DOI: 10.1111/tan.15717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Foetal cells are detectable in women decades postpartum, a state termed foetal microchimerism. The interplay between these semi-allogeneic foetal cells and the mother could be affected by genetic mismatches in the HLA loci. Here, we relate HLA allele and molecular mismatch values to the presence and quantity of foetal microchimerism in the maternal circulation during pregnancy and postpartum. A total of 76 pregnant women were included, of which 59 were followed up 1-8 years postpartum. Maternal and foetal DNA was genotyped for HLA class I and II loci. Foetal cells in maternal buffy coat were detected by qPCR, targeting inherited paternal alleles. Antibody-verified eplet mismatch and Predicted Indirectly Recognisable HLA Epitopes (PIRCHE) scores were calculated to quantify foetal-maternal histocompatibility from the mother's perspective. Circulating foetal cells were detected in 50.0% (38/76) of women during pregnancy, and 25.4% (15/59) postpartum. During pregnancy, HLA class II antibody-verified eplet mismatch load and PIRCHE scores correlated negatively with the presence and quantity of foetal cells in the maternal circulation. Postpartum, HLA class I allele mismatches correlated negatively with foetal microchimerism presence, while HLA class II allele mismatches, HLA class I and II antibody-verified eplet mismatch load, and PIRCHE-I and PIRCHE-II scores correlated negatively with both microchimerism presence and quantity. The correlation between mismatch parameters aimed at evaluating the risk of humoral and T cell-mediated allorecognition and foetal microchimerism was more evident postpartum than during pregnancy. The observed predictive effect of foetal-maternal histocompatibility on foetal microchimerism suggests that circulating foetal cells are subject to clearance by the maternal immune system. We propose that allorecognition of foetal cells in the maternal circulation and tissues influences any long-term effect that foetal microchimerism may have on maternal health.
Collapse
Affiliation(s)
- Anne Cathrine Staff
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi E Fjeldstad
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maria B Olsen
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian PSC Research Center, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marte K Viken
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Meryam Sugulle
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel P Jacobsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Peereboom ETM, de Marco R, Geneugelijk K, Jairam J, Verduyn Lunel FM, Blok AJ, Medina-Pestana J, Gerbase-DeLima M, van Zuilen AD, Spierings E. Peptide Sharing Between CMV and Mismatched HLA Class I Peptides Promotes Early T-Cell-Mediated Rejection After Kidney Transplantation. HLA 2024; 104:e15719. [PMID: 39435970 DOI: 10.1111/tan.15719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Cytomegalovirus (CMV) infection is related to acute rejection and graft loss after kidney transplantation, though the underlying mechanism remains largely unknown. Some CMV strains produce a peptide that is identical to a peptide sequence found in the leader peptide of specific HLA-A and -C alleles. In this retrospective study of 351 kidney transplantations, we explored whether CMV-seropositive recipients without the VMAPRTLIL, VMAPRTLLL or VMAPRTLVL HLA class I leader peptide receiving a transplant from a donor with this peptide, faced an increased risk of T-cell-mediated rejection (TCMR) in the first 90 days after transplantation. An independent case-control cohort was used for validation (n = 122). The combination of recipient CMV seropositivity with the VMAPRTLIL peptide mismatch was associated with TCMR with a hazard ratio (HR) of 3.06 (p = 0.001) in a multivariable analysis. Similarly, the VMAPRTLLL peptide mismatch was associated with TCMR revealing a HR of 2.61 (p = 0.008). Transplantations featuring either a VMAPRTLIL or a VMAPRTLLL peptide mismatch had a significantly higher cumulative TCMR incidence (p < 0.0001), with the primary impact observed in the first 2 weeks post-transplantation. The findings could be validated in an independent cohort. Together, our data strongly suggest that CMV-positive recipients without an HLA peptide identical to a CMV peptide yet transplanted with a donor who does possess this peptide, have a significantly increased risk of early TCMR. Considering the prevention of such an leader peptide mismatch in these patients or adjusting immunosuppression protocols accordingly may hold promise in reducing the incidence of early TCMR.
Collapse
Affiliation(s)
- Emma T M Peereboom
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renato de Marco
- Immunogenetics Institute - IGEN, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Kirsten Geneugelijk
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasvir Jairam
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frans M Verduyn Lunel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna J Blok
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - José Medina-Pestana
- Nephrology Division, Hospital Do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Gerbase-DeLima
- Immunogenetics Institute - IGEN, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Arjan D van Zuilen
- Department of Nephrology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Basu S, Dudreuilh C, Shah S, Sanchez-Fueyo A, Lombardi G, Dorling A. Activation and Regulation of Indirect Alloresponses in Transplanted Patients With Donor Specific Antibodies and Chronic Rejection. Transpl Int 2024; 37:13196. [PMID: 39228658 PMCID: PMC11368725 DOI: 10.3389/ti.2024.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Following transplantation, human CD4+T cells can respond to alloantigen using three distinct pathways. Direct and semi-direct responses are considered potent, but brief, so contribute mostly to acute rejection. Indirect responses are persistent and prolonged, involve B cells as critical antigen presenting cells, and are an absolute requirement for development of donor specific antibody, so more often mediate chronic rejection. Novel in vitro techniques have furthered our understanding by mimicking in vivo germinal centre processes, including B cell antigen presentation to CD4+ T cells and effector cytokine responses following challenge with donor specific peptides. In this review we outline recent data detailing the contribution of CD4+ T follicular helper cells and antigen presenting B cells to donor specific antibody formation and antibody mediated rejection. Furthermore, multi-parametric flow cytometry analyses have revealed specific endogenous regulatory T and B subsets each capable of suppressing distinct aspects of the indirect response, including CD4+ T cell cytokine production, B cell maturation into plasmablasts and antibody production, and germinal centre maturation. These data underpin novel opportunities to control these aberrant processes either by targeting molecules critical to indirect alloresponses or potentiating suppression via exogenous regulatory cell therapy.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Caroline Dudreuilh
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Transplantation, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Sapna Shah
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Renal Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, King’s College London, London, United Kingdom
- Liver Sciences, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Gramkow AM, Baatrup JH, Gramkow ET, Thiesson HC, Koefoed-Nielsen P. Association of HLA B- and T-cell molecular mismatches with HLA antibodies, rejection, and graft survival in pediatric kidney transplantation. Pediatr Transplant 2024; 28:e14773. [PMID: 38808702 DOI: 10.1111/petr.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Optimizing graft survival and diminishing human leukocyte antigen (HLA) sensitization are essential for pediatric kidney transplant recipients. More precise HLA matching predicting epitope mismatches could reduce alloreactivity. We investigated the association of predicted HLA B- and T-cell molecular mismatches with the formation of de novo donor-specific antibodies, HLA antibodies, rejection, and graft survival. METHODS Forty-nine pediatric kidney transplant recipients transplanted from 2009 to 2020 were retrospectively studied. Donors and recipients were high-resolution HLA typed, and recipients were screened for HLA antibodies posttransplant. HLA-EMMA (HLA Epitope MisMatch Algorithm) and PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes) predicted the molecular mismatches. The association of molecular mismatches and the end-points was explored with logistic regression. RESULTS Five recipients (11%) developed de novo donor-specific antibodies. All five had de novo donor-specific antibodies against HLA class II, with four having HLA-DQ antibodies. We found no associations between PIRCHE-II or HLA-EMMA with de novo donor-specific antibodies, HLA sensitization, graft loss, or rejection. However, we did see a tendency towards an increased odds ratio in PIRCHE-II predicting de novo donor-specific antibodies formation, with an odds ratio of 1.12 (95% CI: 0.99; 1.28) on HLA class II. CONCLUSION While the study revealed no significant associations between the number of molecular mismatches and outcomes, a notable trend was observed - indicating a reduced risk of dnDSA formation with improved molecular match. It is important to acknowledge, however, that the modest population size and limited observed outcomes preclude us from making definitive conclusions.
Collapse
Affiliation(s)
- Ann-Maria Gramkow
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Johanne H Baatrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie T Gramkow
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Molecular Medicine - Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| | - Helle C Thiesson
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
7
|
Zhang X, Reinsmoen NL, Kobashigawa JA. HLA Mismatches Identified by a Novel Algorithm Predict Risk of Antibody-mediated Rejection From De Novo Donor-specific Antibodies. Transplantation 2024:00007890-990000000-00829. [PMID: 39049137 DOI: 10.1097/tp.0000000000005140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND The development of de novo donor-specific antibodies (dnDSA) and antibody-mediated rejection (AMR) remains a barrier to long-term graft and patient survival. Most dnDSA are directed against mismatched donor HLA-DQ antigens. Here, we describe a novel algorithm, which we have termed categorical amino acid mismatched epitope, to evaluate HLA-DQ mismatches. METHODS In this algorithm, amino acid residues of HLA-DQ protein were categorized into 4 groups based on their chemical characteristics. The likelihood of categorically mismatched peptides presented by the recipient's HLA-DRB1 was expressed as a normalized value, %Rank score. Categorical HLA-DQ mismatches were analyzed in 386 heart transplant recipients who were mismatched with their donors at the HLA-DQB1 locus. RESULTS We found that the presence of DQB1 mismatches with %Rank score ≤1 was associated with the development of dnDSA (P = 0.002). Furthermore, dnDSA increased the risk of AMR only in recipients who had DQ mismatches with %Rank score ≤1 (hazard ratio = 5.8), but the freedom from AMR was comparable between recipients with dnDSA and those without dnDSA if %Rank scores of DQ mismatching were >1. CONCLUSIONS These results suggest that HLA-DQ mismatches evaluated by the categorical amino acid mismatched epitope algorithm can stratify the risk of development of dnDSA and AMR in heart transplant recipients.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Nancy L Reinsmoen
- Independent HLA Consultant, Cedars-Sinai Medical Center, Scottsdale, AZ
| | | |
Collapse
|
8
|
Jucaud V. Allogeneic HLA Humoral Immunogenicity and the Prediction of Donor-Specific HLA Antibody Development. Antibodies (Basel) 2024; 13:61. [PMID: 39189232 PMCID: PMC11348167 DOI: 10.3390/antib13030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
The development of de novo donor-specific HLA antibodies (dnDSAs) following solid organ transplantation is considered a major risk factor for poor long-term allograft outcomes. The prediction of dnDSA development is a boon to transplant recipients, yet the assessment of allo-HLA immunogenicity remains imprecise. Despite the recent technological advances, a comprehensive evaluation of allo-HLA immunogenicity, which includes both B and T cell allorecognition, is still warranted. Recent studies have proposed using mismatched HLA epitopes (antibody and T cell) as a prognostic biomarker for humoral alloimmunity. However, the identification of immunogenic HLA mismatches has not progressed despite significant improvements in the identification of permissible mismatches. Certainly, the prediction of dnDSA development may benefit permissible HLA mismatched organ transplantations, personalized immunosuppression, and clinical trial design. However, characteristics that go beyond the listing of mismatched HLA antibody epitopes and T cell epitopes, such as the generation of HLA T cell epitope repertoires, recipient's HLA class II phenotype, and immunosuppressive regiments, are required for the precise assessment of allo-HLA immunogenicity.
Collapse
Affiliation(s)
- Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| |
Collapse
|
9
|
Zhanzak Z, Cina D, Johnson AC, Larsen CP. Implications of MHC-restricted immunopeptidome in transplantation. Front Immunol 2024; 15:1436233. [PMID: 39035001 PMCID: PMC11257886 DOI: 10.3389/fimmu.2024.1436233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
The peptide presentation by donor and recipient major histocompatibility complex (MHC) molecules is the major driver of T-cell responses in transplantation. In this review, we address an emerging area of interest, the application of immunopeptidome in transplantation, and describe the potential opportunities that exist to use peptides for targeting alloreactive T cells. The immunopeptidome, the set of peptides presented on an individual's MHC, plays a key role in immune surveillance. In transplantation, the immunopeptidome is heavily influenced by MHC-derived peptides, delineating a key subset of the diverse peptide repertoire implicated in alloreactivity. A better understanding of the immunopeptidome in transplantation has the potential to open up new approaches to identify, characterize, longitudinally quantify, and therapeutically target donor-specific T cells and ultimately support more personalized immunotherapies to prevent rejection and promote allograft tolerance.
Collapse
Affiliation(s)
- Zhuldyz Zhanzak
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Davide Cina
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Aileen C. Johnson
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
10
|
Matern BM, Niemann M. PIRCHE application major versions 3 and 4 lead to equivalent T cell epitope mismatch scores in solid organ and stem cell transplantation modules. Hum Immunol 2024; 85:110789. [PMID: 38521663 DOI: 10.1016/j.humimm.2024.110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
PIRCHE scores in organ and stem cell transplantation have been shown to correlate with increased risk of donor-specific HLA antibodies and graft-versus-host disease, respectively. With advancements of the PIRCHE application server, it is critical to compare the predicted scores with previous versions. This manuscript compares the newly introduced PIRCHE version 4.2 with its predecessor version 3.3, which was widely used in retrospective studies, using a virtual cohort of 10,000 transplant pairs. In the stem cell transplantation module, both versions yield identical results in 100% of the test population. In the solid organ module, 97% of the test population has identical PIRCHE scores. The deviating cases (3%) were attributed to refinements in the PIRCHE algorithm's specification. Furthermore, the magnitude of the difference is likely to be below the detection limit for clinical effects, confirming the equivalence in PIRCHE scores between versions 3.3 and 4.2.
Collapse
|
11
|
Crane C, Niemann M, Dale B, Gragert L, Shah M, Ingulli E, Morris GP. High-resolution HLA genotyping improves PIRCHE-II assessment of molecular mismatching in kidney transplantation. Hum Immunol 2024; 85:110813. [PMID: 38749805 DOI: 10.1016/j.humimm.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
HLA matching in solid organ transplant is performed with the aim of assessing immunologic compatibility in order to avoid hyperacute rejection and assess the risk of future rejection events. Molecular mismatch algorithms are intended to improve granularity in histocompatibility assessment and risk stratification. PIRCHE-II uses HLA genotyping to predict indirectly presented mismatched donor HLA peptides, though most clinical validation studies rely on imputing high resolution (HR) genotypes from low resolution (LR) typing data. We hypothesized that use of bona fide HR typing could overcome limitations in imputation, improving accuracy and predictive ability for donor-specific antibody development and acute rejection. We performed a retrospective analysis of adult and pediatric kidney transplant donor/recipient pairs (N = 419) with HR typing and compared the use of imputed LR genotyping verses HR genotyping for PIRCHE-II analysis and outcomes. Imputation success was highly dependent on the reference population used, as using historic Caucasian reference populations resulted in 10 % of pairs with unsuccessful imputation while multiethnic reference populations improved successful imputation with only 1 % unable to be imputed. Comparing PIRCHE-II analysis with HR and LR genotyping produced notably different results, with 20 % of patients discrepantly classified to immunologic risk groups. These data emphasize the importance of using multiethnic reference panels when performing imputation and indicate HR HLA genotyping has clinically meaningful benefit for PIRCHE-II analysis compared to imputed LR typing.
Collapse
Affiliation(s)
- Clarkson Crane
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Loren Gragert
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mita Shah
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Ingulli
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Grutter G, Bianculli AG, Azeka E, Giustiniani P, Iodice FG, Amodeo A, Andreani M. Role of HLA in cardiothoracic transplantation. HLA 2024; 103:e15428. [PMID: 38450875 DOI: 10.1111/tan.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
In current clinical practice, transplant clinicians create collaborative working relationships with histocompatibility laboratory scientists to identify the risk of long-term graft failure, which may assist in establishing strategies for treatment and surveillance. Transplant immunology research also focuses on optimizing human leukocyte antibody tissue typing and defines the most effective test for detecting the presence of donor-specific antibodies. Although several studies have been conducted, data on pediatric heart transplant recipients are limited. Epitope load information may be utilized to identify donors with permissible human leukocyte antibody mismatches to increase transplant success. Although current guidelines do not consider human leukocyte antibody epitope-based matching tools, these guidelines could be useful for identifying recipients at a high risk of donor-specific antibody production, which would be appropriate for routine donor-specific antibody screening to initiate early interventions to prevent antibody-mediated rejection. Human leukocyte antibody matching at the epitope level offers an effective approach for identifying acceptable mismatches in sensitized patients and provides information about epitope loads. In the future, eplet matching may be used to define the best immunosuppressive therapy protocol for cardiothoracic organ transplantation. This report provides an overview of the role of human leukocyte antibodies in heart and lung transplantation.
Collapse
Affiliation(s)
- Giorgia Grutter
- Heart Failure, Transplantation, Cardiorespiratory Mechanical Assistance Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Estela Azeka
- Unidade de Cardiologia Pediatrica e Cardiopatia Congenitas do Adulto, Departamento de Cardiologia, Instituto do Coração (InCor) Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paola Giustiniani
- Laboratory of Transplantation Immunogenetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Giovanna Iodice
- Department of Paediatric Cardiac Anesthesia and Intensive Care, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Amodeo
- Heart Failure, Transplantation, Cardiorespiratory Mechanical Assistance Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Andreani
- Laboratory of Transplantation Immunogenetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Niemann M, Matern BM, Spierings E. PIRCHE-II Risk and Acceptable Mismatch Profile Analysis in Solid Organ Transplantation. Methods Mol Biol 2024; 2809:171-192. [PMID: 38907898 DOI: 10.1007/978-1-0716-3874-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
To optimize outcomes in solid organ transplantation, the HLA genes are regularly compared and matched between the donor and recipient. However, in many cases a transplant cannot be fully matched, due to widespread variation across populations and the hyperpolymorphism of HLA alleles. Mismatches of the HLA molecules in transplanted tissue can be recognized by immune cells of the recipient, leading to immune response and possibly organ rejection. These adverse outcomes are reduced by analysis using epitope-focused models that consider the immune relevance of the mismatched HLA.PIRCHE, an acronym for Predicted Indirectly ReCognizable HLA Epitopes, aims to categorize and quantify HLA mismatches in a patient-donor pair by predicting HLA-derived T cell epitopes. Specifically, the algorithm predicts and counts the HLA-derived peptides that can be presented by the host HLA, known as indirectly-presented T cell epitopes. Looking at the immune-relevant epitopes within HLA allows a more biologically relevant understanding of immune response, and provides an expanded donor pool for a more refined matching strategy compared with allele-level matching. This PIRCHE algorithm is available for analysis of single transplantations, as well as bulk analysis for population studies and statistical analysis for comparison of probability of organ availability and risk profiles.
Collapse
Affiliation(s)
| | - Benedict M Matern
- PIRCHE AG, Berlin, Germany
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
- Central Diagnostic Laboratory, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
14
|
Milhès J, Marion O, Puissant B, Carlé C, Bouthemy C, Del Bello A, Kamar N, Renaudineau Y, Congy-Jolivet N. Impact of imlifidase treatment on immunoglobulins in an HLA-hypersensitized lupus nephritis patient with anti-SSA/SSB antibodies after kidney transplantation: A case report. J Transl Autoimmun 2023; 7:100223. [PMID: 38162455 PMCID: PMC10755536 DOI: 10.1016/j.jtauto.2023.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Bacterial recombinant cysteine protease Ides (imlifidase, Idefirix®, Hansa Biopharma) is used to prevent humoral transplant rejection in highly HLA-sensitized recipients, and to control IgG-mediated autoimmune diseases. We report the case of a 51 years old woman suffering from lupus nephritis with end stage kidney disease, grafted for the second time and pre-treated with imlifidase. The patient was HLA-hypersensitized (calculated Panel Reactive Antibodies [Abs], cPRA>99 %) and has three preformed Donor Specific Antibodies (DSA). Circulating immunoglobulins were monitored at initiation (0, 6, 36, 72 and 96 h), and at Ab recovery one and two months following imlifidase injection. From baseline, the higher depletion was reported after 36h for total IgG (-75 %) and IgG subclasses (-87 % for IgG1, IgG2 and IgG3, -78 % for IgG4), while no significant impact on IgA and IgM was observed. Anti-SSA 60 kDa and anti-SSB auto-Abs quickly decreased after imlifidase injection (-96 % for both after 36 h) as well as post-vaccinal specific IgG (-95 % for tetanus toxoid, -97 % for pneumococcus and -91 % for Haemophilus influenzae Abs after 36 h). At the Ab recovery phase, total IgG and anti-SSA60/SSB Abs reached their initial level at two months. Regarding alloreactive Abs, anti-HLA Abs including the three DSA showed a dramatic decrease after injection with 100 % depletion from baseline after 36 h as assessed by multiplex single bead antigen assay, leading to negative crossmatches using both lymphocytotoxicity (LCT) and flow cell techniques. DSA rebound at recovery was absent and remained under the positivity threshold (MFI = 1000) after 6 months. The findings from this case report are that imlifidase exerts an early depleting effect on all circulating IgG, while IgG recovery may depend in part from imlifidase's capacity to target memory B cells.
Collapse
Affiliation(s)
- Jean Milhès
- Immunology Laboratory Department, Institut Fédératif de Biologie, Purpan, Toulouse University Hospital Center, Toulouse, France
| | - Olivier Marion
- Nephrology and Organ Transplantation Department, Rangueil Toulouse University Hospital, Toulouse, France
| | - Benedicte Puissant
- Immunology Laboratory Department, Institut Fédératif de Biologie, Purpan, Toulouse University Hospital Center, Toulouse, France
- INSERM UMR 1291 - CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University Toulouse III, Toulouse, France
| | - Caroline Carlé
- Immunology Laboratory Department, Institut Fédératif de Biologie, Purpan, Toulouse University Hospital Center, Toulouse, France
- INSERM UMR 1291 - CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University Toulouse III, Toulouse, France
| | - Charlène Bouthemy
- Immunology Laboratory Department, Institut Fédératif de Biologie, Purpan, Toulouse University Hospital Center, Toulouse, France
| | - Arnaud Del Bello
- Nephrology and Organ Transplantation Department, Rangueil Toulouse University Hospital, Toulouse, France
| | - Nassim Kamar
- Nephrology and Organ Transplantation Department, Rangueil Toulouse University Hospital, Toulouse, France
| | - Yves Renaudineau
- Immunology Laboratory Department, Institut Fédératif de Biologie, Purpan, Toulouse University Hospital Center, Toulouse, France
- INSERM UMR 1291 - CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University Toulouse III, Toulouse, France
| | - Nicolas Congy-Jolivet
- Immunology Laboratory Department, Institut Fédératif de Biologie, Purpan, Toulouse University Hospital Center, Toulouse, France
- UMR 1037 INSERM Team 20 / Université Toulouse III Paul Sabatier, Toulouse Cancerology Research Center (CRCT), Toulouse, France
| |
Collapse
|
15
|
Aldea PL, Santionean MD, Elec A, Munteanu A, Antal O, Loga L, Moisoiu T, Elec FI, Delean D, Bulata B, Rachisan (Bot) AL. An Integrated Approach Using HLAMatchmaker and Pirche II for Epitopic Matching in Pediatric Kidney Transplant-A Romanian Single-Center Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1756. [PMID: 38002848 PMCID: PMC10670802 DOI: 10.3390/children10111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
(1) Background: Renal transplantation (KT) is the most efficient treatment for chronic kidney disease among pediatric patients. Antigenic matching and epitopic load should be the main criteria for choosing a renal graft in pediatric transplantation. Our study aims to compare the integration of new histocompatibility predictive algorithms with classical human leukocyte antigen (HLA) matching regarding different types of pediatric renal transplants. (2) Methods: We categorized our cohort of pediatric patients depending on their risk level, type of donor and type of transplantation, delving into discussions surrounding their mismatching values in relation to both the human leukocyte antigen Matchmaker software (versions 4.0. and 3.1.) and the most recent version of the predicted indirectly identifiable HLA epitopes (PIRCHE) II score. (3) Results: We determined that the higher the antigen mismatch, the higher the epitopic load for both algorithms. The HLAMatchmaker algorithm reveals a noticeable difference in eplet load between living and deceased donors, whereas PIRCHE II does not show the same distinction. Dialysis recipients have a higher count of eplet mismatches, which demonstrates a significant difference according to the transplantation type. Our results are similar to those of four similar studies available in the current literature. (4) Conclusions: We suggest that an integrated data approach employing PIRCHE II and HLAMatchmaker algorithms better predicts histocompatibility in KT than classical HLA matching.
Collapse
Affiliation(s)
- Paul Luchian Aldea
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Maria Diana Santionean
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Alina Elec
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Adriana Munteanu
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Oana Antal
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Luminita Loga
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Florin Ioan Elec
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Dan Delean
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Bulata
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andreea Liana Rachisan (Bot)
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Dasariraju S, Gragert L, Wager GL, McCullough K, Brown NK, Kamoun M, Urbanowicz RJ. HLA amino acid Mismatch-Based risk stratification of kidney allograft failure using a novel Machine learning algorithm. J Biomed Inform 2023; 142:104374. [PMID: 37120046 PMCID: PMC10286565 DOI: 10.1016/j.jbi.2023.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/02/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
OBJECTIVE While associations between HLA antigen-level mismatches (Ag-MM) and kidney allograft failure are well established, HLA amino acid-level mismatches (AA-MM) have been less explored. Ag-MM fails to consider the substantial variability in the number of MMs at polymorphic amino acid (AA) sites within any given Ag-MM category, which may conceal variable impact on allorecognition. In this study we aim to develop a novel Feature Inclusion Bin Evolver for Risk Stratification (FIBERS) and apply it to automatically discover bins of HLA amino acid mismatches that stratify donor-recipient pairs into low versus high graft survival risk groups. METHODS Using data from the Scientific Registry of Transplant Recipients, we applied FIBERS on a multiethnic population of 166,574 kidney transplants between 2000 and 2017. FIBERS was applied (1) across all HLA-A, B, C, DRB1, and DQB1 locus AA-MMs with comparison to 0-ABDR Ag-MM risk stratification, (2) on AA-MMs within each HLA locus individually, and (3) using cross validation to evaluate FIBERS generalizability. The predictive power of graft failure risk stratification was evaluated while adjusting for donor/recipient characteristics and HLA-A, B, C, DRB1, and DQB1 Ag-MMs as covariates. RESULTS FIBERS's best-performing bin (on AA-MMs across all loci) added significant predictive power (hazard ratio = 1.10, Bonferroni adj. p < 0.001) in stratifying graft failure risk (where low-risk is defined as zero AA-MMs and high-risk is one or more AA-MMs) even after adjusting for Ag-MMs and donor/recipient covariates. The best bin also categorized more than twice as many patients to the low-risk category, compared to traditional 0-ABDR Ag mismatching (∼24.4% vs ∼ 9.1%). When HLA loci were binned individually, the bin for DRB1 exhibited the strongest risk stratification; relative to zero AA-MM, one or more MMs in the bin yielded HR = 1.11, p < 0.005 in a fully adjusted Cox model. AA-MMs at HLA-DRB1 peptide contact sites contributed most to incremental risk of graft failure. Additionally, FIBERS points to possible risk associated with HLA-DQB1 AA-MMs at positions that determine specificity of peptide anchor residues and HLA-DQ heterodimer stability. CONCLUSION FIBERS's performance suggests potential for discovery of HLA immunogenetics-based risk stratification of kidney graft failure that outperforms traditional assessment.
Collapse
Affiliation(s)
- Satvik Dasariraju
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Lawrenceville School, Lawrenceville, NJ, United States
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Grace L Wager
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Keith McCullough
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States
| | - Nicholas K Brown
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Malek Kamoun
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan J Urbanowicz
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
17
|
Castrezana-Lopez K, Malchow R, Nilsson J, Kokkonen SM, Rho E, von Moos S, Mueller TF, Schachtner T. Association between PIRCHE-II scores and de novo allosensitization after reduction of immunosuppression during SARS-CoV-2 infection in kidney transplant recipients. Transpl Infect Dis 2023; 25:e14052. [PMID: 36884207 DOI: 10.1111/tid.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Before the availability of mRNA vaccines, many transplant centers chose to significantly reduce maintenance immunosuppression in kidney transplant recipients (KTRs) with SARS-CoV-2 infection. The extent to which this increases the risk of allosensitization is unclear. METHODS In this observational cohort study, we analyzed 47 KTRs from March 2020 to February 2021 who underwent substantial reduction of maintenance immunosuppression during SARS-CoV-2 infection. KTRs were followed at 6 and 18 months concerning the development of de novo donor-specific anti-HLA (human leukocyte antigen) antibodies (DSA). The HLA-derived epitope mismatches were calculated using the predicted indirectly recognizable HLA-epitopes (PIRCHE-II) algorithm. RESULTS In total, 14 of 47 KTRs (30%) developed de novo HLA antibodies after the reduction of maintenance immunosuppression. KTRs with higher total PIRCHE-II scores and higher PIRCHE-II scores for the HLA-DR locus were more likely to develop de novo HLA antibodies (p = .023, p = .009). Furthermore, 4 of the 47 KTRs (9%) developed de novo DSA after reduction of maintenance immunosuppression, which were exclusively directed against HLA-class II antigens and also showed higher PIRCHE-II scores for HLA-class II. The cumulative mean fluorescence intensity of 40 KTRs with preexisting anti-HLA antibodies and 13 KTRs with preexisting DSA at the time of SARS-CoV-2 infection remained stable after the reduction of maintenance immunosuppression (p = .141; p = .529). CONCLUSIONS Our data show that the HLA-derived epitope mismatch load between donor and recipient influences the risk of de novo DSA development when immunosuppression is temporarily reduced. Our data further suggest that reduction in immunosuppression should be made more cautiously in KTRs with high PIRCHE-II scores for HLA-class II antigens.
Collapse
Affiliation(s)
| | - Ronja Malchow
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Sanna M Kokkonen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Elena Rho
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Seraina von Moos
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Hiho S, Levvey B, Holdsworth R, Sullivan L, Westall G, Snell G. Major technological advances will enhance Australian donor-recipient matching and improve transplant outcomes. Intern Med J 2023; 53:140-144. [PMID: 36693637 DOI: 10.1111/imj.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023]
Abstract
In recent times, numerous and significant technological and supportive changes have taken place in Australian transplantation. These changes are often deployed without the wider clinical community having a full understanding of what has brought about these changes and the impacts they have. Here, we aim to clarify the reasoning behind these changes and shed light on potential future endeavours to improve patient outcomes.
Collapse
Affiliation(s)
- Steven Hiho
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Australian Red Cross LifeBlood, Victorian Transplantation and Immunogenetics Service, Melbourne, Victoria, Australia
| | - Bronwyn Levvey
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Rhonda Holdsworth
- Australian Red Cross LifeBlood, Victorian Transplantation and Immunogenetics Service, Melbourne, Victoria, Australia
| | - Lucy Sullivan
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Australian Red Cross LifeBlood, South Australian Transplantation and Immunogenetics Service, Adelaide, South Australia, Australia
| | - Glen Westall
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Greg Snell
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Seeking Standardized Definitions for HLA-incompatible Kidney Transplants: A Systematic Review. Transplantation 2023; 107:231-253. [PMID: 35915547 DOI: 10.1097/tp.0000000000004262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is no standard definition for "HLA incompatible" transplants. For the first time, we systematically assessed how HLA incompatibility was defined in contemporary peer-reviewed publications and its prognostic implication to transplant outcomes. METHODS We combined 2 independent searches of MEDLINE, EMBASE, and the Cochrane Library from 2015 to 2019. Content-expert reviewers screened for original research on outcomes of HLA-incompatible transplants (defined as allele or molecular mismatch and solid-phase or cell-based assays). We ascertained the completeness of reporting on a predefined set of variables assessing HLA incompatibility, therapies, and outcomes. Given significant heterogeneity, we conducted narrative synthesis and assessed risk of bias in studies examining the association between death-censored graft failure and HLA incompatibility. RESULTS Of 6656 screened articles, 163 evaluated transplant outcomes by HLA incompatibility. Most articles reported on cytotoxic/flow T-cell crossmatches (n = 98). Molecular genotypes were reported for selected loci at the allele-group level. Sixteen articles reported on epitope compatibility. Pretransplant donor-specific HLA antibodies were often considered (n = 143); yet there was heterogeneity in sample handling, assay procedure, and incomplete reporting on donor-specific HLA antibodies assignment. Induction (n = 129) and maintenance immunosuppression (n = 140) were frequently mentioned but less so rejection treatment (n = 72) and desensitization (n = 70). Studies assessing death-censored graft failure risk by HLA incompatibility were vulnerable to bias in the participant, predictor, and analysis domains. CONCLUSIONS Optimization of transplant outcomes and personalized care depends on accurate HLA compatibility assessment. Reporting on a standard set of variables will help assess generalizability of research, allow knowledge synthesis, and facilitate international collaboration in clinical trials.
Collapse
|
20
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
21
|
Lemieux W, Fleischer D, Yang AY, Niemann M, Oualkacha K, Klement W, Richard L, Polychronakos C, Liwski R, Claas F, Gebel HM, Keown PA, Lewin A, Sapir-Pichhadze R. Dissecting the impact of molecular T-cell HLA mismatches in kidney transplant failure: A retrospective cohort study. Front Immunol 2022; 13:1067075. [PMID: 36505483 PMCID: PMC9730505 DOI: 10.3389/fimmu.2022.1067075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Kidney transplantation is the optimal treatment in end-stage kidney disease, but de-novo donor specific antibody development continues to negatively impact patients undergoing kidney transplantation. One of the recent advances in solid organ transplantation has been the definition of molecular mismatching between donors and recipients' Human Leukocyte Antigens (HLA). While not fully integrated in standard clinical care, cumulative molecular mismatch at the level of eplets (EMM) as well as the PIRCHE-II score have shown promise in predicting transplant outcomes. In this manuscript, we sought to study whether certain T-cell molecular mismatches (TcEMM) were highly predictive of death-censored graft failure (DCGF). Methods We studied a retrospective cohort of kidney donor:recipient pairs from the Scientific Registry of Transplant Recipients (2000-2015). Allele level HLA-A, B, C, DRB1 and DQB1 types were imputed from serologic types using the NMDP algorithm. TcEMMs were then estimated using the PIRCHE-II algorithm. Multivariable Accelerated Failure Time (AFT) models assessed the association between each TcEMM and DCGF. To discriminate between TcEMMs most predictive of DCGF, we fit multivariable Lasso penalized regression models. We identified co-expressed TcEMMs using weighted correlation network analysis (WGCNA). Finally, we conducted sensitivity analyses to address PIRCHE and IMGT/HLA version updates. Results A total of 118,309 donor:recipient pairs meeting the eligibility criteria were studied. When applying the PIRCHE-II algorithm, we identified 1,935 distinct TcEMMs at the population level. A total of 218 of the observed TcEMM were independently associated with DCGF by AFT models. The Lasso penalized regression model with post selection inference identified a smaller subset of 86 TcEMMs (56 and 30 TcEMM derived from HLA Class I and II, respectively) to be highly predictive of DCGF. Of the observed TcEMM, 38.14% appeared as profiles of highly co-expressed TcEMMs. In addition, sensitivity analyses identified that the selected TcEMM were congruent across IMGT/HLA versions. Conclusion In this study, we identified subsets of TcEMMs highly predictive of DCGF and profiles of co-expressed mismatches. Experimental verification of these TcEMMs determining immune responses and how they may interact with EMM as predictors of transplant outcomes would justify their consideration in organ allocation schemes and for modifying immunosuppression regimens.
Collapse
Affiliation(s)
- William Lemieux
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada,Medical Affairs & Innovation, Héma-Québec, Montréal, QC, Canada
| | - David Fleischer
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | - Archer Yi Yang
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | | | - Karim Oualkacha
- Department of Mathematics, Université du Québec à Montreal, Montreal, QC, Canada
| | - William Klement
- Division of Organ Donation and Transplantation, Canadian Blood Services, Ottawa, ON, Canada
| | - Lucie Richard
- Transfusion medicine/Reference Laboratory, Héma-Québec, Montréal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children’s Hospital, Montréal, QC, Canada
| | - Robert Liwski
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Frans Claas
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Howard M. Gebel
- Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Paul A. Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Lewin
- Medical Affairs & Innovation, Héma-Québec, Montréal, QC, Canada,Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada,Division of Nephrology and the Multi-Organ Transplant Program, Royal Victoria Hospital, McGill University Health Centre, Montréal, QC, Canada,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada,*Correspondence: Ruth Sapir-Pichhadze,
| |
Collapse
|
22
|
Niemann M, Strehler Y, Lachmann N, Halleck F, Budde K, Hönger G, Schaub S, Matern BM, Spierings E. Snowflake epitope matching correlates with child-specific antibodies during pregnancy and donor-specific antibodies after kidney transplantation. Front Immunol 2022; 13:1005601. [PMID: 36389845 PMCID: PMC9649433 DOI: 10.3389/fimmu.2022.1005601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 10/01/2023] Open
Abstract
Development of donor-specific human leukocyte antigen (HLA) antibodies (DSA) remains a major risk factor for graft loss following organ transplantation, where DSA are directed towards patches on the three-dimensional structure of the respective organ donor's HLA proteins. Matching donors and recipients based on HLA epitopes appears beneficial for the avoidance of DSA. Defining surface epitopes however remains challenging and the concepts underlying their characterization are not fully understood. Based on our recently implemented computational deep learning pipeline to define HLA Class I protein-specific surface residues, we hypothesized a correlation between the number of HLA protein-specific solvent-accessible interlocus amino acid mismatches (arbitrarily called Snowflake) and the incidence of DSA. To validate our hypothesis, we considered two cohorts simultaneously. The kidney transplant cohort (KTC) considers 305 kidney-transplanted patients without DSA prior to transplantation. During the follow-up, HLA antibody screening was performed regularly to identify DSA. The pregnancy cohort (PC) considers 231 women without major sensitization events prior to pregnancy who gave live birth. Post-delivery serum was screened for HLA antibodies directed against the child's inherited paternal haplotype (CSA). Based on the involved individuals' HLA typings, the numbers of interlocus-mismatched antibody-verified eplets (AbvEPS), the T cell epitope PIRCHE-II model and Snowflake were calculated locus-specific (HLA-A, -B and -C), normalized and pooled. In both cohorts, Snowflake numbers were significantly elevated in recipients/mothers that developed DSA/CSA. Univariable regression revealed significant positive correlation between DSA/CSA and AbvEPS, PIRCHE-II and Snowflake. Snowflake numbers showed stronger correlation with numbers of AbvEPS compared to Snowflake numbers with PIRCHE-II. Our data shows correlation between Snowflake scores and the incidence of DSA after allo-immunization. Given both AbvEPS and Snowflake are B cell epitope models, their stronger correlation compared to PIRCHE-II and Snowflake appears plausible. Our data confirms that exploring solvent accessibility is a valuable approach for refining B cell epitope definitions.
Collapse
Affiliation(s)
| | - Yara Strehler
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Lachmann
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Benedict M. Matern
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
- Central Diagnostic Laboratory, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
23
|
Lim WH, Ho J, Kosmoliaptsis V, Sapir-Pichhadze R. Editorial: Future challenges and directions in determining allo-immunity in kidney transplantation. Front Immunol 2022; 13:1013711. [PMID: 36119031 PMCID: PMC9473680 DOI: 10.3389/fimmu.2022.1013711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Wai H. Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- *Correspondence: Wai H. Lim,
| | - Julie Ho
- Department of Internal Medicine University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Transplant Manitoba Adult Kidney Program, Transplant Manitoba, Shared Health Manitoba, Winnipeg, MB, Canada
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Blood and Transplant Research Unit in Organ Donation and Transplantation, National Institute for Health Research, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Nephrology and Multi-Organ Transplant Program, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Betjes MGH, Peereboom ETM, Otten HG, Spierings E. The number of donor HLA-derived T cell epitopes available for indirect antigen presentation determines the risk for vascular rejection after kidney transplantation. Front Immunol 2022; 13:973968. [PMID: 36110856 PMCID: PMC9468767 DOI: 10.3389/fimmu.2022.973968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The role of the indirect T-cell recognition pathway of allorecognition in acute T cell-mediated rejection (aTCMR) is not well defined. The amount of theoretical T-cell epitopes available for indirect allorecognition can be quantified for donor-recipient combinations by the Predicted Indirectly ReCognizable HLA Epitopes algorithm (PIRCHE-II). The PIRCHE-II score was calculated for 688 donor kidney-recipient combinations and associated with the incidence of first-time diagnosed cases of TCMR. A diagnosis of TCMR was made in 182 cases; 121 cases of tubulo-interstitial rejection cases (79 cases of borderline TCMR, 42 cases of TCMR IA-B) and 61 cases of vascular TCMR (TCMR II-III). The PIRCHE-II score for donor HLA-DR/DQ (PIRCHE-II DR/DQ) was highly associated with vascular rejection. At one year after transplantation, the cumulative percentage of recipients with a vascular rejection was 12.7%, 8.6% and 2.1% within respectively the high, medium and low tertile of the PIRCHE-II DR/DQ score (p<0.001). In a multivariate regression analysis this association remained significant (p<0.001 for PIRCHE-II DR/DQ tertiles). The impact of a high PIRCHE-II DR/DQ score was mitigated by older recipient age and a living donor kidney. In conclusion, indirect antigen presentation of donor HLA-peptides may significantly contribute to the risk for acute vascular rejection.
Collapse
Affiliation(s)
- Michiel G. H. Betjes
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- *Correspondence: Michiel G. H. Betjes,
| | - Emma T. M. Peereboom
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Henny G. Otten
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
25
|
Spitznagel T, Matter LS, Kaufmann YL, Nilsson J, von Moos S, Schachtner T. PIRCHE-II scores prove useful as a predictive biomarker among kidney transplant recipients with rejection: An analysis of indication and follow-up biopsies. Front Immunol 2022; 13:949933. [PMID: 36059499 PMCID: PMC9428698 DOI: 10.3389/fimmu.2022.949933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Indication biopsies for deterioration of kidney allograft function often require follow-up biopsies to assess treatment response or lack of improvement. Immune-mediated injury, namely borderline rejection (BLR), T-cell mediated rejection (TCMR), or antibody-mediated rejection (ABMR), results from preformed or de novo alloreactivity due to donor and recipient HLA-mismatches. The impact of HLA-mismatches on alloreactivity is determined by highly immunogenic HLA-epitopes. Methods We analyzed 123 kidney transplant recipients (KTRs) from 2009 to 2019 who underwent a first indication and a follow-up biopsy. KTRs were divided into three groups according to the first biopsy: No rejection (NR)/BLR (n=68); TCMR (n=21); ABMR (n=34). The HLA-derived epitope-mismatches were calculated using the Predicted Indirectly Recognizable HLA-Epitopes (PIRCHE-II) algorithm. Results Group NR/BLR: KTRs with higher total PIRCHE-II scores were more likely to develop TCMR in the follow-up biopsy (p=0.031). Interestingly, these differences were significant for both HLA-class I- (p=0.017) and HLA-class II-derived (p=0.017) PIRCHE-II scores. Group TCMR: KTRs with ongoing TCMR in the follow-up biopsy were more likely to show higher total PIRCHE-II scores (median 101.50 vs. 74.00). Group ABMR: KTRs with higher total PIRCHE-II scores were more likely to show an increase in the microvascular inflammation score in the follow-up biopsy. This difference was more pronounced for the HLA-class II-derived PIRCHE-II scores (median 70.00 vs. 31.76; p=0.086). Conclusions PIRCHE-II scores may prove useful as a biomarker to predict the histopathological changes of immune-related injury from a first indication to a follow-up biopsy. This immunological risk stratification may contribute to individualized treatment strategies.
Collapse
Affiliation(s)
- Tahm Spitznagel
- Division of Nephrology, University Hospital of Zurich (USZ), Zurich, Switzerland
| | - Laurenz S. Matter
- Division of Nephrology, University Hospital of Zurich (USZ), Zurich, Switzerland
| | - Yves L. Kaufmann
- Division of Nephrology, University Hospital of Zurich (USZ), Zurich, Switzerland
| | - Jakob Nilsson
- Division of Immunology, University Hospital of Zurich (USZ), Zurich, Switzerland
| | - Seraina von Moos
- Division of Nephrology, University Hospital of Zurich (USZ), Zurich, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital of Zurich (USZ), Zurich, Switzerland
- *Correspondence: Thomas Schachtner,
| |
Collapse
|
26
|
Kok G, Verstegen MMA, Houwen RHJ, Nieuwenhuis EES, Metselaar HJ, Polak WG, van der Laan LJW, Spierings E, den Hoed CM, Fuchs SA. Assessment of human leukocyte antigen matching algorithm PIRCHE-II on liver transplantation outcomes. Liver Transpl 2022; 28:1356-1366. [PMID: 35152544 PMCID: PMC9544750 DOI: 10.1002/lt.26431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/13/2023]
Abstract
For liver transplantations, human leukocyte antigen (HLA) matching is not routinely performed because observed effects have been inconsistent. Nevertheless, long-term liver transplantation outcomes remain suboptimal. The availability of a more precise HLA-matching algorithm, Predicted Indirectly Recognizable HLA Epitopes II (PIRCHE-II), now enables robust assessment of the association between HLA matching and liver transplantation outcomes. We performed a single-center retrospective cohort study of 736 liver transplantation patients. Associations between PIRCHE-II and HLAMatchmaker scores and mortality, graft loss, acute and chronic rejection, ischemic cholangiopathy, and disease recurrence were evaluated with Cox proportional hazards models. Associations between PIRCHE-II with 1-year, 2-year, and 5-year outcomes and severity of acute rejection were assessed with logistic and linear regression analyses, respectively. Subgroup analyses were performed for autoimmune and nonautoimmune indications, and patients aged 30 years and younger, and older than 30 years. PIRCHE-II and HLAMatchmaker scores were not associated with any of the outcomes. However, patients who received transplants for autoimmune disease showed more acute rejection and graft loss, and these risks negatively associated with age. Rhesus mismatch more than doubled the risk of disease recurrence. Moreover, PIRCHE-II was inversely associated with graft loss in the subgroup of patients aged 30 years and younger with autoimmune indications. The absence of associations between PIRCHE-II and HLAMatchmaker scores and the studied outcomes refutes the need for HLA matching for liver (stem cell) transplantations for nonautoimmune disease. For autoimmune disease, the activated immune system seems to increase risks of acute rejection and graft loss. Our results may suggest the benefits of transplantations with rhesus matched but PIRCHE-II mismatched donor livers.
Collapse
Affiliation(s)
- Gautam Kok
- Department of Metabolic DiseasesWilhelmina Children’s Hospital, University Medical Center UtrechtUtrechtThe Netherlands
| | - Monique M. A. Verstegen
- Department of SurgeryDivision of Hepatopancreatobiliary and Transplant SurgeryErasmus Medical Center Transplant Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | - Roderick H. J. Houwen
- Department of Pediatric GastroenterologyWilhelmina Children’s Hospital, University Medical Center UtrechtUtrechtThe Netherlands
| | - Edward E. S. Nieuwenhuis
- Department of Pediatric GastroenterologyWilhelmina Children’s Hospital, University Medical Center UtrechtUtrechtThe Netherlands
| | - Herold J. Metselaar
- Department of Gastroenterology & HepatologyErasmus Medical Center Transplant InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Wojciech G. Polak
- Department of SurgeryDivision of Hepatopancreatobiliary and Transplant SurgeryErasmus Medical Center Transplant Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | - Luc J. W. van der Laan
- Department of SurgeryDivision of Hepatopancreatobiliary and Transplant SurgeryErasmus Medical Center Transplant Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | - Eric Spierings
- Center of Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Caroline M. den Hoed
- Department of Gastroenterology & HepatologyErasmus Medical Center Transplant InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Sabine A. Fuchs
- Department of Metabolic DiseasesWilhelmina Children’s Hospital, University Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
27
|
Lobashevsky A, Niemann M, Kowinski B, Higgins N, Abdel-Wareth L, Atrabulsi B, Roe D, Hage C. Formation of donor-specific antibodies depends on the epitope load of mismatched hlas in lung transplant recipients: A retrospective single-center study. Clin Transplant 2022; 36:e14755. [PMID: 35771140 DOI: 10.1111/ctr.14755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
The development of donor-specific antibodies (DSA) has a significant impact on graft outcome in solid organ transplantation. Mismatched HLAs are recognized directly and indirectly by the recipient immune system. Both pathways occur in parallel and result in the generation of plasma cells, DSA, cytotoxic and T helper lymphocytes. Here, we present the results of an analysis of the epitope load of mismatched HLAs in a cohort of 220 lung transplant recipients using two in silico algorithms, HLAMatchmaker and PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes). De novo DSA (dnDSA) were detected by single antigen bead assays. The percentage of recipients who developed dnDSA was significantly higher in the group of patients who received lung transplants with a mismatching score above the detected threshold than in the group of patients who received lung transplants with a mismatching score below the threshold. In a multivariate Cox proportional hazard analysis, the PIRCHE-II score appeared to be a superior predictor of dnDSA formation. In addition, PIRCHE-II technology was shown to be useful in predicting separate dnDSA1 and dnDSA2 formation. We conclude that both algorithms can be used for the evaluation of the epitope load of mismatched HLAs and the prediction of DSA development in lung transplant recipients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew Lobashevsky
- Transplant Immunology Laboratory, Methodist Hospital, IUHealth Inc., Indianapolis, IN, USA.,Mubadala, National Reference Laboratory, HLA Laboratory, Abu Dhabi, UAE
| | | | - Brenda Kowinski
- Lung Transplant Program, IUHealth Inc., Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy Higgins
- Transplant Immunology Laboratory, Methodist Hospital, IUHealth Inc., Indianapolis, IN, USA
| | | | - Basel Atrabulsi
- Mubadala, National Reference Laboratory, HLA Laboratory, Abu Dhabi, UAE
| | - David Roe
- Lung Transplant Program, IUHealth Inc., Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chadi Hage
- McGowen Institute of Regenerative medicine, UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Betjes MGH, Roelen DL, van Agteren M, Kal-van Gestel J. Causes of Kidney Graft Failure in a Cohort of Recipients With a Very Long-Time Follow-Up After Transplantation. Front Med (Lausanne) 2022; 9:842419. [PMID: 35733857 PMCID: PMC9207199 DOI: 10.3389/fmed.2022.842419] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/05/2022] [Indexed: 01/03/2023] Open
Abstract
Background Biopsy-proven causes of graft loss many years after kidney transplantation are scarcely documented. Methods Patients transplanted between 1995 and 2005 (n = 737) in a single center were followed on a regular basis until 2021. The recipients were divided according to age at transplantation into 3 groups; 18–39 years (young), 40–55 years (middle age), and older than 55 years (elderly). For cause biopsies of renal transplants were clustered into the categories, rejection, IFTA, return original disease, and diagnosis of de novo kidney disease. Results Rejection was the main cause of graft failure censored for death at every time period after transplantation. The incidence of T cell-mediated rejection (TCMR) became rare 6 years after transplantation while the cumulative incidence of antibody-mediated rejection (ABMR) increased over time (1.1% per year). ABMR was not diagnosed anymore beyond 15 years of follow-up in recipients without pre-transplant donor-specific antibodies (DSA). An episode of TCMR was associated with an increased incidence of ABMR diagnosis in the short-term but did not increase the overall incidence of AMBR not in the long-term. Death as a cause of graft failure was an important competitive risk factor long after transplantation and resulted in a significantly lower frequency of rejection-related graft loss in the elderly group (11 vs. 23% in the young group at 15 year follow-up). Conclusion Rejection is a major cause of graft loss but recipient’s age, time after transplantation, and the presence of DSA before transplantation determine the relative contribution to overall graft loss and the type of rejection involved.
Collapse
Affiliation(s)
- Michiel G. H. Betjes
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
- *Correspondence: Michiel G. H. Betjes, ; orcid.org/0000-0001-9435-6208
| | - Dave L. Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madelon van Agteren
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
| | - Judith Kal-van Gestel
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
| |
Collapse
|
29
|
Charnaya O, Levy Erez D, Amaral S, Monos DS. Pediatric Kidney Transplantation-Can We Do Better? The Promise and Limitations of Epitope/Eplet Matching. Front Pediatr 2022; 10:893002. [PMID: 35722502 PMCID: PMC9204054 DOI: 10.3389/fped.2022.893002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Kidney transplant is the optimal treatment for end-stage kidney disease as it offers significant survival and quality of life advantages over dialysis. While recent advances have significantly improved early graft outcomes, long-term overall graft survival has remained largely unchanged for the last 20 years. Due to the young age at which children receive their first transplant, most children will require multiple transplants during their lifetime. Each subsequent transplant becomes more difficult because of the development of de novo donor specific HLA antibodies (dnDSA), thereby limiting the donor pool and increasing mortality and morbidity due to longer time on dialysis awaiting re-transplantation. Secondary prevention of dnDSA through increased post-transplant immunosuppression in children is constrained by a significant risk for viral and oncologic complications. There are currently no FDA-approved therapies that can meaningfully reduce dnDSA burden or improve long-term allograft outcomes. Therefore, primary prevention strategies aimed at reducing the risk of dnDSA formation would allow for the best possible long-term allograft outcomes without the adverse complications associated with over-immunosuppression. Epitope matching, which provides a more nuanced assessment of immunological compatibility between donor and recipient, offers the potential for improved donor selection. Although epitope matching is promising, it has not yet been readily applied in the clinical setting. Our review will describe current strengths and limitations of epitope matching software, the evidence for and against improved outcomes with epitope matching, discussion of eplet load vs. variable immunogenicity, and conclude with a discussion of the delicate balance of improving matching without disadvantaging certain populations.
Collapse
Affiliation(s)
- Olga Charnaya
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniella Levy Erez
- Schneider Children's Medical Center, Institute of Pediatric Nephrology, Petah Tikvah, Israel
- Departments of Pediatric Nephrology and Biostatistics, Epidemiology and Informatics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sandra Amaral
- Departments of Pediatric Nephrology and Biostatistics, Epidemiology and Informatics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dimitrios S. Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Lezoeva E, Nilsson J, Wüthrich R, Mueller TF, Schachtner T. High PIRCHE Scores May Allow Risk Stratification of Borderline Rejection in Kidney Transplant Recipients. Front Immunol 2022; 13:788818. [PMID: 35250973 PMCID: PMC8894244 DOI: 10.3389/fimmu.2022.788818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Background The diagnosis of borderline rejection (BLR) ranges from mild inflammation to clinically significant TCMR and is associated with an increased risk of allograft dysfunction. Currently, there is no consensus regarding its treatment due in part to a lack of biomarkers to identify cases with increased risk for immune-mediated injury. Methods We identified 60 of 924 kidney transplant recipients (KTRs) with isolated and untreated BLR. We analyzed the impact of predicted indirectly recognizable HLA epitopes (PIRCHE) score on future rejection, de novo DSA development, and recovery to baseline allograft function. Additionally, we compared the outcomes of different Banff rejection phenotypes. Results Total PIRCHE scores were significantly higher in KTRs with BLR compared to the entire study population (p=0.016). Among KTRs with BLR total PIRCHE scores were significantly higher in KTRs who developed TCMR/ABMR in follow-up biopsies (p=0.029). Notably, the most significant difference was found in PIRCHE scores for the HLA-A locus (p=0.010). PIRCHE scores were not associated with the development of de novo DSA or recovery to baseline allograft function among KTRs with BLR (p>0.05). However, KTRs under cyclosporine-based immunosuppression were more likely to develop de novo DSA (p=0.033) than those with tacrolimus, whereas KTRs undergoing retransplantation were less likely to recover to baseline allograft function (p=0.003). Conclusions High PIRCHE scores put KTRs with BLR at an increased risk for future TCMR/ABMR and contribute to improved immunological risk stratification. The benefit of anti-rejection treatment, however, needs to be evaluated in future studies.
Collapse
Affiliation(s)
- Ekaterina Lezoeva
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Rudolf Wüthrich
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F. Mueller
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Schachtner
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Thomas Schachtner, ; orcid.org/0000-0001-5549-4798
| |
Collapse
|
31
|
Zou J, Wang T, He M, Bolon YT, Gadalla SM, Marsh SG, Kuxhausen M, Gale RP, Sharma A, Assal A, Prestidge T, Aljurf M, Cerny J, Paczesny S, Spellman SR, Lee SJ, Ciurea SO. Number of HLA-Mismatched Eplets Is Not Associated with Major Outcomes in Haploidentical Transplantation with Post-Transplantation Cyclophosphamide: A Center for International Blood and Marrow Transplant Research Study. Transplant Cell Ther 2022; 28:107.e1-107.e8. [PMID: 34774819 PMCID: PMC8848305 DOI: 10.1016/j.jtct.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023]
Abstract
The number of haploidentical hematopoietic stem cell transplantations (haplo-HSCT) performed has increased substantially in recent years. Previous single-center studies using in silico algorithms to quantitively measure HLA disparity have shown an association of the number of HLA molecular mismatches with relapse protection and/or increased risk of acute graft-versus-host disease (GVHD) in haplo-HSCT. However, inconsistent results from small studies have made it difficult to understand the full clinical impact of molecular mismatch in haplo-HSCT. In this study, we investigated the potential of the HLA class I and II mismatched eplet (ME) score measured by HLAMatchmaker, as well as ME load at a specific locus to predict outcomes in a registry-based cohort of haplo-HSCT recipients. We analyzed data from 1287 patients who underwent their first haplo-HSCT for acute lymphoblastic leukemia, acute myelogenous leukemia, or myelodysplastic syndrome between 2013 and 2017, as entered in the Center for International Blood and Marrow Transplant Research database. ME load at each HLA locus and total class I and II were scored using the HLAMatchmaker module incorporated in HLA Fusion software v4.3, which identifies predicted eplets based on the crystalized HLA molecule models and identifies ME by comparing donor and recipient eplets. In the study cohort, ME scores derived from total HLA class I or class II loci or individual HLA loci were not associated with overall survival, disease-free survival, nonrelapse mortality, relapse, acute GVHD, or chronic GVHD (P < .01). An unexpected strong association was identified between total class II ME load in the GVH direction and slower neutrophil engraftment (hazard ratio [HR], 0.82; 95% confidence interval [CI], 0.75 to 0.91; P < .0001) and platelet engraftment (HR, 0.80; 95% CI, 0.72 to 0.88; P < .0001). This was likely attributable to ME load at the HLA-DRB1 locus, which was similarly associated with slower neutrophil engraftment (HR, 0.82; 95% CI, 0.73 to 0.92; P = .001) and slower platelet engraftment (HR, 0.76; 95% CI, 0.70 to 0.84; P < .0001). Additional analyses suggested that this effect is attributable to a match versus a mismatch in the graft-versus-host direction and not to ME load, as a dose effect was not identified. These findings contradict those of previous relatively small studies reporting an association between ME load, as quantified by HLAMatchmaker, and haplo-HSCT outcomes. This study failed to demonstrate the predictive value of ME from HLA molecules for major clinical outcomes, and other molecular mismatch algorithms in haplo-HSCT settings should be tested.
Collapse
Affiliation(s)
- Jun Zou
- Division of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Correspondence and reprint requests: Jun Zou, MD, Department of Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (J. Zou)
| | - Tao Wang
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA,Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota, USA
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota, USA
| | - Shahinaz M. Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland, USA
| | - Steven G.E. Marsh
- Anthony Nolan Research Institute, London, United Kingdom,University College London Cancer Institute, University College London, London, United Kingdom
| | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota, USA
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amer Assal
- Columbia University Irving Medical Center, Department of Medicine, Bone Marrow Transplant and Cell Therapy Program, New York, USA
| | - Tim Prestidge
- Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Mahmoud Aljurf
- Department of Oncology, King Faisal Specialist Hospital Center & Research, Riyadh, Saudi Arabia
| | - Jan Cerny
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, USA
| | - Sophie Paczesny
- Medical University of South Carolina, Department of Microbiology and Immunology, Charleston, South Carolina, USA
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota, USA
| | - Stephanie J. Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stefan O. Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, University of California, Irvine, Orange, California, USA
| |
Collapse
|
32
|
Yeung MY. Histocompatibility Assessment in Precision Medicine for Transplantation: Towards a Better Match. Semin Nephrol 2022; 42:44-62. [DOI: 10.1016/j.semnephrol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Implementation of molecular matching in transplantation requires further characterization of both immunogenicity and antigenicity of individual HLA epitopes. Hum Immunol 2021; 83:256-263. [PMID: 34963506 DOI: 10.1016/j.humimm.2021.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, high HLA epitope mismatch scores have been associated with inferior transplant outcomes using several tools, of which HLAMatchmaker is most well-known. This software uses theoretically defined polymorphic amino acid configurations, called eplets, for HLA compatibility analysis. Although consideration of eplet mismatch loads has potential for immunological risk stratification of transplant patients, the use of eplet matching in organ allocation algorithms is hindered by lacking knowledge of the immunogenicity of individual eplets, and the possibility that single mismatched amino acids, rather than complete eplets, are responsible for HLA antibody induction. There are several approaches to define eplet immunogenicity, such as antibody verification of individual eplets, and data-driven approaches using large datasets that correlate specific eplet mismatches to donor specific antibody formation or inferior transplant outcomes. Data-driven approaches can also be used to define whether single amino acid mismatches may be more informative than eplet mismatches for predicting HLA antibody induction. When using epitope knowledge for the assignment of unacceptable antigens, it important to realize that alleles sharing an eplet to which antibodies have formed are not automatically all unacceptable since multiple contact sites determine the binding strength and thus biological function and pathogenicity of an antibody, which may differ between reactive alleles. While the future looks bright for using HLA epitopes in clinical decision making, major steps need to be taken to make this a clinical reality.
Collapse
|
34
|
Niemann M, Matern BM, Spierings E, Schaub S, Hönger G. Peptides Derived From Mismatched Paternal Human Leukocyte Antigen Predicted to Be Presented by HLA-DRB1, -DRB3/4/5, -DQ, and -DP Induce Child-Specific Antibodies in Pregnant Women. Front Immunol 2021; 12:797360. [PMID: 34992608 PMCID: PMC8725048 DOI: 10.3389/fimmu.2021.797360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Predicted Indirectly ReCognizable Human Leukocyte Antigen (HLA) Epitopes (PIRCHE) are known to be a significant risk factor for the development of donor HLA-specific antibodies after organ transplantation. Most previous studies on PIRCHE limited their analyses on the presentation of the HLA-DRB1 locus, although HLA-DRB3/4/5, -DQ, and -DP are also known for presenting allopeptides to CD4+ T cells. In this study, we analyzed the impact of predicted allopeptides presented by these additional loci on the incidence of HLA-specific antibodies after an immunization event. We considered pregnancy as a model system of an HLA immunization and observed child-specific HLA antibody (CSA) development of 231 mothers during pregnancy by samples being taken at delivery. Our data confirm that PIRCHE presented by HLA-DRB1 along with HLA-DRB3/4/5, -DQ, and -DP are significant predictors for the development of CSA. Although there was limited peptidome overlap observed within the mothers’ presenting HLA proteins, combining multiple presenting loci in a single predictor improved the model only marginally. Prediction performance of PIRCHE further improved when normalizing scores by the respective presenters’ binding promiscuity. Immunogenicity analysis of specific allopeptides could not identify significant drivers of an immune response in this small cohort, suggesting confirmatory studies.
Collapse
Affiliation(s)
- Matthias Niemann
- Research and Development, PIRCHE AG, Berlin, Germany
- *Correspondence: Matthias Niemann,
| | - Benedict M. Matern
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
35
|
Bedford A, Jervis S, Worthington J, Lowe M, Poulton K. Human leukocyte antigen epitope mismatch loads and the development of de novo donor-specific antibodies in cardiothoracic organ transplantation. Int J Immunogenet 2021; 49:30-38. [PMID: 34904369 DOI: 10.1111/iji.12563] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022]
Abstract
De novo donor-specific human leucocyte antigen (HLA) antibodies (dnDSA) are associated with increased risk of rejection and mortality in solid organ transplantation. Such dnDSA is produced in some recipients upon allorecognition of mismatched HLA post-transplant. HLA matching is not currently considered in the allocation of deceased donor hearts and lungs and pre-transplant immunological risk stratification is based entirely on the mean fluorescence intensity (MFI) of circulating donor-directed HLA antibodies. HLA epitope-based matching tools predict B-cell or T-cell HLA epitopes that are present in the donor's HLA but absent in the recipient's HLA. We hypothesized that patients with higher epitope mismatch loads would be at increased risk of dnDSA development. We retrospectively analysed 73 heart and/or lung transplant recipients who were tested for DSA between 2015 and 2020. HLAMatchmaker, PIRCHE-II and HLA epitope mismatch algorithm (HLA-EMMA) were used to calculate eplet mismatch (EpMM) loads, T-cell epitope mismatch (TEpMM) loads and solvent accessible amino acid mismatch (SAMM) loads, respectively. Multivariate analyses showed that HLA-EMMA was the only tool with a significant association between the total score for all HLA loci and dnDSA production [odds ratio (OR) 1.021, 95% confidence interval (CI) 1.003-1.042, p = .0225] though this increased risk was marginal. The majority of dnDSA were directed against HLA-DQ and patients with higher HLA-DQ TEpMM loads (OR = 1.008, CI = 1.002-1.014, p = .007), and HLA-DR+DQ SAMM loads (OR = 1.035, CI = 1.010-1.064, p = .0077) were most at risk of producing dnDSA. We also showed that patients with a risk epitope within the HLA molecule encoded for by HLA-DQA1*05 + HLA-DQB1*02/03:01 were significantly more likely to produce dnDSA. The use of HLA epitope-based matching tools could be used for cardiothoracic transplant risk stratification to enable early intervention and monitoring of patients at increased risk of producing dnDSA.
Collapse
Affiliation(s)
- Amy Bedford
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK.,Faculty of Biology, Medicine and Health, Division of Medical Education, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Steven Jervis
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Judith Worthington
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Marcus Lowe
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kay Poulton
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
36
|
Peereboom ETM, Matern BM, Tomosugi T, Niemann M, Drylewicz J, Joosten I, Allebes WA, van der Meer A, Hilbrands LB, Baas MC, van Reekum FE, Verhaar MC, Kamburova EG, Seelen MAJ, Sanders JS, Hepkema BG, Lambeck AJ, Bungener LB, Roozendaal C, Tilanus MGJ, Voorter CE, Wieten L, van Duijnhoven EM, Gelens MACJ, Christiaans MHL, van Ittersum FJ, Nurmohamed A, Lardy NM, Swelsen W, van der Pant KA, van der Weerd NC, Ten Berge IJM, Bemelman FJ, de Vries APJ, de Fijter JW, Betjes MGH, Roelen DL, Claas FH, Otten HG, Heidt S, van Zuilen AD, Kobayashi T, Geneugelijk K, Spierings E. T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation. Front Immunol 2021; 12:784040. [PMID: 34868064 PMCID: PMC8637278 DOI: 10.3389/fimmu.2021.784040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
CD4+ T-helper cells play an important role in alloimmune reactions following transplantation by stimulating humoral as well as cellular responses, which might lead to failure of the allograft. CD4+ memory T-helper cells from a previous immunizing event can potentially be reactivated by exposure to HLA mismatches that share T-cell epitopes with the initial immunizing HLA. Consequently, reactivity of CD4+ memory T-helper cells toward T-cell epitopes that are shared between immunizing HLA and donor HLA could increase the risk of alloimmunity following transplantation, thus affecting transplant outcome. In this study, the amount of T-cell epitopes shared between immunizing and donor HLA was used as a surrogate marker to evaluate the effect of donor-reactive CD4+ memory T-helper cells on the 10-year risk of death-censored kidney graft failure in 190 donor/recipient combinations using the PIRCHE-II algorithm. The T-cell epitopes of the initial theoretical immunizing HLA and the donor HLA were estimated and the number of shared PIRCHE-II epitopes was calculated. We show that the natural logarithm-transformed PIRCHE-II overlap score, or Shared T-cell EPitopes (STEP) score, significantly associates with the 10-year risk of death-censored kidney graft failure, suggesting that the presence of pre-transplant donor-reactive CD4+ memory T-helper cells might be a strong indicator for the risk of graft failure following kidney transplantation.
Collapse
Affiliation(s)
- Emma T M Peereboom
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Benedict M Matern
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Toshihide Tomosugi
- Department of Transplant Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan.,Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Irma Joosten
- Laboratory Medicine, Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wil A Allebes
- Laboratory Medicine, Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arnold van der Meer
- Laboratory Medicine, Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marije C Baas
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Franka E van Reekum
- Department of Nephrology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Elena G Kamburova
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marc A J Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan Stephan Sanders
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bouke G Hepkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Annechien J Lambeck
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Laura B Bungener
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Caroline Roozendaal
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marcel G J Tilanus
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Christien E Voorter
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Elly M van Duijnhoven
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mariëlle A C J Gelens
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Maarten H L Christiaans
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Frans J van Ittersum
- Department of Nephrology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Azam Nurmohamed
- Department of Nephrology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Neubury M Lardy
- Department of Immunogenetics/HLA Diagnostic, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Wendy Swelsen
- Department of Immunogenetics/HLA Diagnostic, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Karlijn A van der Pant
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Neelke C van der Weerd
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Ineke J M Ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Fréderike J Bemelman
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Aiko P J de Vries
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Nephrology, Erasmus MC, Rotterdam, Netherlands
| | - Dave L Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Henny G Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kirsten Geneugelijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
37
|
Geffard E, Boussamet L, Walencik A, Delbos F, Limou S, Gourraud PA, Vince N. HLA-EPI: A new EPIsode in exploring donor/recipient epitopic compatibilities. HLA 2021; 99:79-92. [PMID: 34862850 PMCID: PMC9545700 DOI: 10.1111/tan.14505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
The HLA system plays a pivotal role both in transplantation and immunology. While classical HLA genotypes matching is made at the allelic level, recent progresses were developed to explore antibody–antigen recognition by studying epitopes. Donor to recipient matching at the epitopic level is becoming a trending topic in the transplantation research field because anti‐HLA antibodies are epitope‐specific rather than allele‐specific. Indeed, different HLA alleles often share common epitopes. We present the HLA‐Epi tool (hla.univ-nantes.fr) to study an HLA genotype at the epitope level. Using the international HLA epitope registry (Epregistry.com.br) as a reference, we developed HLA‐Epi to easily determine epitopic and allelic compatibility levels between several HLA genotypes. The epitope database covers the most common HLA alleles (N = 2976 HLA alleles), representing more than 99% of the total observed frequency of HLA alleles. The freely accessible web tool HLA‐Epi calculates an epitopic mismatch load between different sets of potential recipient‐donor pairs at different resolution levels. We have characterized the epitopic mismatches distribution in a cohort of more than 10,000 kidney transplanted pairs from European ancestry, which showed low number of epitopic mismatches: 56.9 incompatibilities on average. HLA‐Epi allows the exploration of epitope pairing matching to better understand epitopes contribution to immune responses regulation, particularly during transplantation. This free and ready‐to‐use bioinformatics tool not only addresses limitations of other related tools, but also offers a cost‐efficient and reproducible strategy to analyze HLA epitopes as an alternative to HLA allele compatibility. In the future, this could improve sensitization prevention for allograft allocation decisions and reduce the risk of alloreactivity.
Collapse
Affiliation(s)
- Estelle Geffard
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Léo Boussamet
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Alexandre Walencik
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France.,Laboratoire d'Histocompatibilité et d'Immunogénétique, EFS Centre - Pays de la Loire, Nantes, France
| | - Florent Delbos
- Laboratoire d'Histocompatibilité et d'Immunogénétique, EFS Centre - Pays de la Loire, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France.,Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| |
Collapse
|
38
|
Filippone EJ, Gulati R, Farber JL. Noninvasive Assessment of the Alloimmune Response in Kidney Transplantation. Adv Chronic Kidney Dis 2021; 28:548-560. [PMID: 35367023 DOI: 10.1053/j.ackd.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Transplantation remains the optimal mode of kidney replacement therapy, but unfortunately long-term graft survival after 1 year remains suboptimal. The main mechanism of chronic allograft injury is alloimmune, and current clinical monitoring of kidney transplants includes measuring serum creatinine, proteinuria, and immunosuppressive drug levels. The most important biomarker routinely monitored is human leukocyte antigen (HLA) donor-specific antibodies (DSAs) with the frequency based on underlying immunologic risk. HLA-DSA should be measured if there is graft dysfunction, immunosuppression minimization, or nonadherence. Antibody strength is semiquantitatively estimated as mean fluorescence intensity, with titration studies for equivocal cases and for following response to treatment. Determination of in vitro C1q or C3d positivity or HLA-DSA IgG subclass analysis remains of uncertain significance, but we do not recommend these for routine use. Current evidence does not support routine monitoring of non-HLA antibodies except anti-angiotensin II type 1 receptor antibodies when the phenotype is appropriate. The monitoring of both donor-derived cell-free DNA in blood or gene expression profiling of serum and/or urine may detect subclinical rejection, although mainly as a supplement and not as a replacement for biopsy. The optimal frequency and cost-effectiveness of using these noninvasive assays remain to be determined. We review the available literature and make recommendations.
Collapse
|
39
|
Vittoraki AG, Fylaktou A, Tarassi K, Tsinaris Z, Siorenta A, Petasis GC, Gerogiannis D, Lehmann C, Carmagnat M, Doxiadis I, Iniotaki AG, Theodorou I. Hidden Patterns of Anti-HLA Class I Alloreactivity Revealed Through Machine Learning. Front Immunol 2021; 12:670956. [PMID: 34386000 PMCID: PMC8353326 DOI: 10.3389/fimmu.2021.670956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of alloreactive anti-HLA antibodies is a frequent and mandatory test before and after organ transplantation to determine the antigenic targets of the antibodies. Nowadays, this test involves the measurement of fluorescent signals generated through antibody-antigen reactions on multi-beads flow cytometers. In this study, in a cohort of 1,066 patients from one country, anti-HLA class I responses were analyzed on a panel of 98 different antigens. Knowing that the immune system responds typically to "shared" antigenic targets, we studied the clustering patterns of antibody responses against HLA class I antigens without any a priori hypothesis, applying two unsupervised machine learning approaches. At first, the principal component analysis (PCA) projections of intra-locus specific responses showed that anti-HLA-A and anti-HLA-C were the most distantly projected responses in the population with the anti-HLA-B responses to be projected between them. When PCA was applied on the responses against antigens belonging to a single locus, some already known groupings were confirmed while several new cross-reactive patterns of alloreactivity were detected. Anti-HLA-A responses projected through PCA suggested that three cross-reactive groups accounted for about 70% of the variance observed in the population, while anti-HLA-B responses were mainly characterized by a distinction between previously described Bw4 and Bw6 cross-reactive groups followed by several yet undocumented or poorly described ones. Furthermore, anti-HLA-C responses could be explained by two major cross-reactive groups completely overlapping with previously described C1 and C2 allelic groups. A second feature-based analysis of all antigenic specificities, projected as a dendrogram, generated a robust measure of allelic antigenic distances depicting bead-array defined cross reactive groups. Finally, amino acid combinations explaining major population specific cross-reactive groups were described. The interpretation of the results was based on the current knowledge of the antigenic targets of the antibodies as they have been characterized either experimentally or computationally and appear at the HLA epitope registry.
Collapse
Affiliation(s)
- Angeliki G Vittoraki
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Katerina Tarassi
- Immunology-Histocompatibility Department, "Evangelismos" General Hospital, Athens, Greece
| | - Zafeiris Tsinaris
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Alexandra Siorenta
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - George Ch Petasis
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Demetris Gerogiannis
- Department of Computer Science & Engineering , University of Ioannina, Ioannina, Greece
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Ilias Doxiadis
- Laboratory for Transplantation Immunology, Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Aliki G Iniotaki
- Nephrology and Transplantation Unit, Medical School of Athens, Laikon Hospital, Athens, Greece
| | - Ioannis Theodorou
- Laboratoire d'Immunologie, Hôpital St. Louis, Paris, France.,Centre d'Immunologie et des Maladies Infectieuses UPMC UMRS CR7-Inserm U1135-CNRS ERL, Paris, France
| |
Collapse
|
40
|
Niemann M, Lachmann N, Geneugelijk K, Spierings E. Computational Eurotransplant kidney allocation simulations demonstrate the feasibility and benefit of T-cell epitope matching. PLoS Comput Biol 2021; 17:e1009248. [PMID: 34314431 PMCID: PMC8345832 DOI: 10.1371/journal.pcbi.1009248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/06/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
The EuroTransplant Kidney Allocation System (ETKAS) aims at allocating organs to patients on the waiting list fairly whilst optimizing HLA match grades. ETKAS currently considers the number of HLA-A, -B, -DR mismatches. Evidently, epitope matching is biologically and clinically more relevant. We here executed ETKAS-based computer simulations to evaluate the impact of epitope matching on allocation and compared the strategies. A virtual population of 400,000 individuals was generated using the National Marrow Donor Program (NMDP) haplotype frequency dataset of 2011. Using this population, a waiting list of 10,400 patients was constructed and maintained during simulation, matching the 2015 Eurotransplant Annual Report characteristics. Unacceptable antigens were assigned randomly relative to their frequency using HLAMatchmaker. Over 22,600 kidneys were allocated in 10 years in triplicate using Markov Chain Monte Carlo simulations on 32-CPU-core cloud-computing instances. T-cell epitopes were calculated using the www.pirche.com portal. Waiting list effects were evaluated against ETKAS for five epitope matching scenarios. Baseline simulations of ETKAS slightly overestimated reported average HLA match grades. The best balanced scenario maintained prioritisation of HLA A-B-DR fully matched donors while replacing the HLA match grade by PIRCHE-II score and exchanging the HLA mismatch probability (MMP) by epitope MMP. This setup showed no considerable impact on kidney exchange rates and waiting time. PIRCHE-II scores improved, whereas the average HLA match grade diminishes slightly, yet leading to an improved estimated graft survival. We conclude that epitope-based matching in deceased donor kidney allocation is feasible while maintaining equal balances on the waiting list. Kidney transplantation is the best treatment option for patients suffering permanent loss of kidney function. High degrees of histocompatibility between patients and organ donors improve long-term function of transplanted kidneys. In order to ensure fair access to transplantation whilst maximising utility of each donor kidney, organ allocation organizations established recipient waiting lists and well-balanced algorithms to allocate donors to patients. Changing the allocation algorithms requires careful consideration of side-effects to avoid disadvantages of certain groups of patients. In this study, we evaluated the feasibility of modifying the existing Eurotransplant Kidney Allocation System (ETKAS) to incorporate indirect T-cell epitope matching, a novel technique for assessing functional histocompatibility. Using Markov chain Monte Carlo simulations, we compared the modified allocation to the current algorithm and found an overall improvement of indirect T cell epitope compatibility. Simultaneously, we observed no negative impact on allocation fairness or waiting times. Our simulation framework may serve as a basis to evaluate further adjustments to ETKAS in the future. From our results, we conclude that epitope matching can be safely incorporated into ETKAS.
Collapse
Affiliation(s)
| | - Nils Lachmann
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | | | - Eric Spierings
- Center of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Park Y, Ko EJ, Chung BH, Yang CW. Kidney transplantation in highly sensitized recipients. Kidney Res Clin Pract 2021; 40:355-370. [PMID: 34233438 PMCID: PMC8476304 DOI: 10.23876/j.krcp.21.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/02/2021] [Indexed: 11/04/2022] Open
Abstract
In kidney transplantation (KT), overcoming donor shortage is particularly challenging in patients with preexisting donor-specific antibodies (DSAs) against human leukocyte antigen (HLA), called HLA-incompatible KT (HLAi KT), carrying the risk of rejection and allograft loss. Thus, it is necessary to accurately evaluate the degree of sensitization before HLAi KT, and undertake appropriate pretreatment strategies. To determine the degree of sensitization, complement-dependent cytotoxicity has been the only method employed; the development of a method using flow cytometry further improved the test sensitivity. However, these tests present disadvantages, including the need for living cells, with a solid-phase assay developed to resolve this problem. Currently, the method using Luminex (Luminex Corp.) is widely used in clinical practice. As this method measures DSAs using single antigen beads, it is possible to classify immunological risks by measuring the type and amount of DSAs. Furthermore, there have been major advances in methods that involve DSA removal before HLAi KT. In the early stages of desensitization, plasmapheresis and intravenous immunoglobulins were the main treatment methods employed; however, the introduction of CD20 monoclonal antibody and proteasome inhibitors further increased the success rate of desensitization. Currently, HLAi KT has been established as an important transplant method, but an understanding of DSAs and a novel desensitization treatment are warranted.
Collapse
Affiliation(s)
- Yohan Park
- Division of Nephrology, Department of Internal Medicine and Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Division of Nephrology, Department of Internal Medicine and Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine and Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine and Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
42
|
Naef B, Nilsson J, Wuethrich RP, Mueller TF, Schachtner T. Intravenous immunoglobulins do not prove beneficial to reduce alloimmunity among kidney transplant recipients with BKV-associated nephropathy. Transpl Int 2021; 34:1481-1493. [PMID: 33872427 DOI: 10.1111/tri.13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Reduced immunosuppression during BKV-DNAemia has been associated with T-cell mediated rejection (TCMR), de novo donor-specific antibodies (DSA) and antibody-mediated rejection (ABMR). Intravenous immunoglobulins (IVIG) may reduce alloimmunity. We studied 860 kidney transplant recipients (KTRs) for the development of BKV-DNAuria and BKV-DNAemia (low-level <10 000 IE/ml, high-level >10 000 IE/ml). 52/131 KTRs with high-level BKV-DNAemia received IVIG. The HLA-related immunological risk was stratified by the Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) algorithm. BKV-DNAuria only was observed in 86 KTRs (10.0%), low-level BKV-DNAemia in 180 KTRs (20.9%) and high-level BKV-DNAemia in 131 KTRs (15.2%). KTRs with low-level BKV-DNAemia showed significantly less TCMR compared to KTRs with high-level BKV-DNAemia (5.2% vs. 25.5%; P < 0.001) and no BKV-replication (13.2%; P = 0.014), lowest rates of de novo DSA (21.3%), ABMR (9.2%) and flattest glomerular filtration rate (GFR) slope (-0.8 ml/min). KTRs with low-level BKV-DNAemia showed significantly higher median (interquartile range) total PIRCHE if they developed TCMR [100.22 (72.6) vs. 69.52 (49.97); P = 0.020] or ABMR [128.86 (52.99) vs. 69.52 (49.96); P = 0.005]. Administration of IVIG did not shorten duration of BKV-DNAemia (P = 0.798) or reduce TCMR, de novo DSA and ABMR (P > 0.05). KTRs with low-level BKV-DNAemia showed best protection against alloimmunity, with a high number of PIRCHE co-determining the remaining risk. The administration of IVIG, however, was not beneficial in reducing alloimmunity.
Collapse
Affiliation(s)
- Bettina Naef
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Jakob Nilsson
- Division of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Thomas F Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Ajith A, Mulloy LL, Musa MA, Bravo-Egana V, Horuzsko DD, Gani I, Horuzsko A. Humanized Mouse Model as a Novel Approach in the Assessment of Human Allogeneic Responses in Organ Transplantation. Front Immunol 2021; 12:687715. [PMID: 34177940 PMCID: PMC8226140 DOI: 10.3389/fimmu.2021.687715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023] Open
Abstract
The outcome of organ transplantation is largely dictated by selection of a well-matched donor, which results in less chance of graft rejection. An allogeneic immune response is the main immunological barrier for successful organ transplantation. Donor and recipient human leukocyte antigen (HLA) mismatching diminishes outcomes after solid organ transplantation. The current evaluation of HLA incompatibility does not provide information on the immunogenicity of individual HLA mismatches and impact of non-HLA-related alloantigens, especially in vivo. Here we demonstrate a new method for analysis of alloimmune responsiveness between donor and recipient in vivo by introducing a humanized mouse model. Using molecular, cellular, and genomic analyses, we demonstrated that a recipient's personalized humanized mouse provided the most sensitive assessment of allogeneic responsiveness to potential donors. In our study, HLA typing provided a better recipient-donor match for one donor among two related donors. In contrast, assessment of an allogeneic response by mixed lymphocyte reaction (MLR) was indistinguishable between these donors. We determined that, in the recipient's humanized mouse model, the donor selected by HLA typing induced the strongest allogeneic response with markedly increased allograft rejection markers, including activated cytotoxic Granzyme B-expressing CD8+ T cells. Moreover, the same donor induced stronger upregulation of genes involved in the allograft rejection pathway as determined by transcriptome analysis of isolated human CD45+cells. Thus, the humanized mouse model determined the lowest degree of recipient-donor alloimmune response, allowing for better selection of donor and minimized immunological risk of allograft rejection in organ transplantation. In addition, this approach could be used to evaluate the level of alloresponse in allogeneic cell-based therapies that include cell products derived from pluripotent embryonic stem cells or adult stem cells, both undifferentiated and differentiated, all of which will produce allogeneic immune responses.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Laura L. Mulloy
- Nephrology Division, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Md. Abu Musa
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Valia Bravo-Egana
- Histocompatibility and Immunology Laboratory, Department of Surgery, Medical College of Georgia, Augusta University Medical Center, Augusta, GA, United States
| | - Daniel David Horuzsko
- Program of Osteopathic Medicine, Philadelphia College of Osteopathic Medicine South Georgia, Moultrie, GA, United States
| | - Imran Gani
- Nephrology Division, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Anatolij Horuzsko
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
44
|
Tomosugi T, Iwasaki K, Sakamoto S, Niemann M, Spierings E, Nahara I, Futamura K, Okada M, Hiramitsu T, Takeda A, Goto N, Narumi S, Watarai Y, Kobayashi T. Clinical Significance of Shared T Cell Epitope Analysis in Early De Novo Donor-Specific Anti-HLA Antibody Production After Kidney Transplantation and Comparison With Shared B cell Epitope Analysis. Front Immunol 2021; 12:621138. [PMID: 33897684 PMCID: PMC8061417 DOI: 10.3389/fimmu.2021.621138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/09/2021] [Indexed: 01/27/2023] Open
Abstract
In pre-sensitizing events, immunological memory is mainly created via indirect allorecognition where CD4+ T cells recognize foreign peptides in the context of self-HLA class II (pHLA) presented on antigen-presenting cells. This recognition makes it possible for naive CD4+ T-helper cells to differentiate into memory cells, resulting in the creation of further antibody memory. These responses contribute to effective secretion of donor-specific anti-HLA antibodies (DSA) after second encounters with the same peptide. Preformed donor-reactive CD4+ memory T cells may induce early immune responses after transplantation; however, the tools to evaluate them are limited. This study evaluated shared T cell epitopes (TEs) between the pre-sensitizing and donor HLA using an in silico assay, an alternative to estimate donor-reactive CD4+ memory T cells before transplantation. In 578 living donor kidney transplants without preformed DSA, 69 patients had anti-HLA antibodies before transplantation. Of them, 40 had shared TEs and were estimated to have donor-reactive CD4+ memory T cells. De novo DSA formation in the early phase was significantly higher in the shared TE-positive group than in the anti-HLA antibody- and shared TE-negative groups (p=0.001 and p=0.02, respectively). In conclusion, evaluation of shared TEs for estimating preformed donor-reactive CD4+ memory T cells may help predict the risk of early de novo DSA formation after kidney transplantation.
Collapse
Affiliation(s)
- Toshihide Tomosugi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan.,Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenta Iwasaki
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shintaro Sakamoto
- Department of Histocompatibility Laboratory, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | | | - Eric Spierings
- Center of Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | - Isao Nahara
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine, School of Public Health, Kyoto, Japan
| | - Kenta Futamura
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Manabu Okada
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Takahisa Hiramitsu
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Asami Takeda
- Department of Nephrology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Norihiko Goto
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Shunji Narumi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Yoshihiko Watarai
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
45
|
Meneghini M, Crespo E, Niemann M, Torija A, Lloberas N, Pernin V, Fontova P, Melilli E, Favà A, Montero N, Manonelles A, Cruzado JM, Palou E, Martorell J, Grinyó JM, Bestard O. Donor/Recipient HLA Molecular Mismatch Scores Predict Primary Humoral and Cellular Alloimmunity in Kidney Transplantation. Front Immunol 2021; 11:623276. [PMID: 33776988 PMCID: PMC7988214 DOI: 10.3389/fimmu.2020.623276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Donor/recipient molecular human leukocyte antigen (HLA) mismatch predicts primary B-cell alloimmune activation, yet the impact on de novo donor-specific T-cell alloimmunity (dnDST) remains undetermined. The hypothesis of our study is that donor/recipient HLA mismatches assessed at the molecular level may also influence a higher susceptibility to the development of posttransplant primary T-cell alloimmunity. In this prospective observational study, 169 consecutive kidney transplant recipients without preformed donor-specific antibodies (DSA) and with high resolution donor/recipient HLA typing were evaluated for HLA molecular mismatch scores using different informatic algorithms [amino acid mismatch, eplet MM, and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II)]. Primary donor-specific alloimmune activation over the first 2 years posttransplantation was assessed by means of both dnDSA and dnDST using single antigen bead (SAB) and IFN-γ ELISPOT assays, respectively. Also, the predominant alloantigen presenting pathway priming DST alloimmunity and the contribution of main alloreactive T-cell subsets were further characterized in vitro. Pretransplantation, 78/169 (46%) were DST+ whereas 91/169 (54%) DST−. At 2 years, 54/169 (32%) patients showed detectable DST responses: 23/54 (42%) dnDST and 31/54 (57%) persistently positive (persistDST+). 24/169 (14%) patients developed dnDSA. A strong correlation was observed between the three distinct molecular mismatch scores and they all accurately predicted dnDSA formation, in particular at the DQ locus. Likewise, HLA molecular incompatibility predicted the advent of dnDST, especially when assessed by PIRCHE-II score (OR 1.014 95% CI 1.001–1.03, p=0.04). While pretransplant DST predicted the development of posttransplant BPAR (OR 5.18, 95% CI=1.64–16.34, p=0.005) and particularly T cell mediated rejection (OR 5.33, 95% CI=1.45–19.66, p=0.012), patients developing dnDST were at significantly higher risk of subsequent dnDSA formation (HR 2.64, 95% CI=1.08–6.45, p=0.03). In vitro experiments showed that unlike preformed DST that is predominantly primed by CD8+ direct pathway T cells, posttransplant DST may also be activated by the indirect pathway of alloantigen presentation, and predominantly driven by CD4+ alloreactive T cells in an important proportion of patients. De novo donor-specific cellular alloreactivity seems to precede subsequent humoral alloimmune activation and is influenced by a poor donor/recipient HLA molecular matching.
Collapse
Affiliation(s)
- Maria Meneghini
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Elena Crespo
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | | | - Alba Torija
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Nuria Lloberas
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Vincent Pernin
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.,Institute for Regenerative Medicine & Biotherapy (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Pere Fontova
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Alexandre Favà
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Nuria Montero
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Anna Manonelles
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep Maria Cruzado
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Eduard Palou
- Laboratory of Immunology and Histocompatibility, Hospital Clinic, Barcelona, Spain
| | - Jaume Martorell
- Laboratory of Immunology and Histocompatibility, Hospital Clinic, Barcelona, Spain
| | - Josep Maria Grinyó
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
46
|
Unterrainer C, Döhler B, Niemann M, Lachmann N, Süsal C. Can PIRCHE-II Matching Outmatch Traditional HLA Matching? Front Immunol 2021; 12:631246. [PMID: 33717167 PMCID: PMC7952296 DOI: 10.3389/fimmu.2021.631246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
We analyzed in a cohort of 68,606 first deceased donor kidney transplantations reported to the Collaborative Transplant Study whether an epitope-based matching of donor-recipient pairs using the Predicted Indirectly ReCognizable HLA Epitopes algorithm (PIRCHE-II) is superior to currently applied HLA antigen matching. PIRCHE-II scores were calculated based on split antigen HLA-A, -B, -DRB1 typing and adjusted to the 0–6 range of HLA mismatches. PIRCHE-II scores correlated strongly with the number of HLA mismatches (Spearman ρ = 0.65, P < 0.001). In multivariable analyses both parameters were found to be significant predictors of 5-year death-censored graft loss with high prognostic power [hazard ratio (HR) per adjusted PIRCHE-II score = 1.102, per HLA mismatch = 1.095; z-value PIRCHE-II: 9.8, HLA: 11.2; P < 0.001 for both]. When PIRCHE-II scores and HLA mismatches were analyzed simultaneously, their predictive power decreased but remained significant (PIRCHE-II: P = 0.002; HLA: P < 0.001). Influence of PIRCHE-II was especially strong in presensitized and influence of HLA mismatches in non-sensitized recipients. If the level of HLA-incompatibility was low (0–3 mismatches), PIRCHE-II scores showed a low impact on graft survival (HR = 1.031) and PIRCHE-II matching did not have additional significant benefit (P = 0.10). However, if the level of HLA-incompatibility was high (4–6 mismatches), PIRCHE-II improved the positive impact of matching compared to applying the traditional HLA matching alone (HR = 1.097, P = 0.005). Our results suggest that the PIRCHE-II score is useful and can be included into kidney allocation algorithms in addition to HLA matching; however, at the resolution level of HLA typing that is currently used for allocation it cannot fully replace traditional HLA matching.
Collapse
Affiliation(s)
| | - Bernd Döhler
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Nils Lachmann
- Institute for Transfusion Medicine, HLA-Laboratory, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
47
|
Etta P. Tools for histocompatibility testing and significance of panel reactive antibodies - A narrative review. INDIAN JOURNAL OF TRANSPLANTATION 2021. [DOI: 10.4103/ijot.ijot_120_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
Tambur AR, Campbell P, Chong AS, Feng S, Ford ML, Gebel H, Gill RG, Kelsoe G, Kosmoliaptsis V, Mannon RB, Mengel M, Reed EF, Valenzuela NM, Wiebe C, Dijke IE, Sullivan HC, Nickerson P. Sensitization in transplantation: Assessment of risk (STAR) 2019 Working Group Meeting Report. Am J Transplant 2020; 20:2652-2668. [PMID: 32342639 PMCID: PMC7586936 DOI: 10.1111/ajt.15937] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 01/25/2023]
Abstract
The purpose of the STAR 2019 Working Group was to build on findings from the initial STAR report to further clarify the expectations, limitations, perceptions, and utility of alloimmune assays that are currently in use or in development for risk assessment in the setting of organ transplantation. The goal was to determine the precision and clinical feasibility/utility of such assays in evaluating both memory and primary alloimmune risks. The process included a critical review of biologically driven, state-of-the-art, clinical diagnostics literature by experts in the field and an open public forum in a face-to-face meeting to promote broader engagement of the American Society of Transplantation and American Society of Histocompatibility and Immunogenetics membership. This report summarizes the literature review and the workshop discussions. Specifically, it highlights (1) available assays to evaluate the attributes of HLA antibodies and their utility both as clinical diagnostics and as research tools to evaluate the effector mechanisms driving rejection; (2) potential assays to assess the presence of alloimmune T and B cell memory; and (3) progress in the development of HLA molecular mismatch computational scores as a potential prognostic biomarker for primary alloimmunity and its application in research trial design.
Collapse
Affiliation(s)
- Anat R. Tambur
- Department of SurgeryComprehensive Transplant CenterNorthwestern UniversityChicagoIllinoisUSA
| | - Patricia Campbell
- Department of Laboratory Medicine & PathologyUniversity of AlbertaEdmontonCanada
| | - Anita S. Chong
- Section of TransplantationDepartment of SurgeryThe University of ChicagoChicagoIllinoisUSA
| | - Sandy Feng
- Department of SurgeryUCSF Medical CenterSan FranciscoCaliforniaUSA
| | - Mandy L. Ford
- Department of Surgery and Emory Transplant CenterEmory UniversityAtlantaGeorgiaUSA
| | - Howard Gebel
- Department of PathologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Ronald G. Gill
- Department of ImmunologyUniversity of ColoradoDenverColoradoUSA
| | - Garnett Kelsoe
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | | | - Roslyn B. Mannon
- Department of MedicineDivision of NephrologyUniversity of Alabama School of MedicineBirminghamAlabamaUSA
| | - Michael Mengel
- Department of Laboratory Medicine & PathologyUniversity of AlbertaEdmontonCanada
| | - Elaine F. Reed
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Nicole M. Valenzuela
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chris Wiebe
- Department of MedicineUniversity of ManitobaWinnipegManitobaCanada
| | - I. Esme Dijke
- Department of Laboratory Medicine & PathologyUniversity of AlbertaEdmontonCanada
| | - Harold C. Sullivan
- Department of PathologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Peter Nickerson
- Department of MedicineUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
49
|
Sakamoto S, Iwasaki K, Tomosugi T, Niemann M, Spierings E, Miwa Y, Horimi K, Takeda A, Goto N, Narumi S, Watarai Y, Kobayashi T. Analysis of T and B Cell Epitopes to Predict the Risk of de novo Donor-Specific Antibody (DSA) Production After Kidney Transplantation: A Two-Center Retrospective Cohort Study. Front Immunol 2020; 11:2000. [PMID: 32973806 PMCID: PMC7481442 DOI: 10.3389/fimmu.2020.02000] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023] Open
Abstract
Risk prediction of de novo donor specific antibody (DSA) would be very important for long term graft outcome after organ transplantation. The purpose of this study was to elucidate the association of eplet mismatches and predicted indirectly recognizable HLA epitopes (PIRCHE) scores with de novo DSA production. Our retrospective cohort study enrolled 691 living donor kidney transplantations. HLA-A, B, DRB and DQB eplet mismatches and PIRCHE scores (4 digit of HLA-A, B, DR, and DQ) were determined by HLA matchmaker (ver 2.1) and PIRCHE-II Matching Service, respectively. Weak correlation between eplet mismatches and PIRCHE scores was identified, although both measurements were associated with classical HLA mismatches. Class II (DRB+DQB) eplet mismatches were significantly correlated with the incidence of de novo class II (DR/DQ) DSA production [8/235 (3.4%) in eplet mismatch ≤ 13 vs. 92/456 (20.2%) in eplet mismatch ≥ 14, p < 0.001]. PIRCHE scores were also significantly correlated with de novo class II DSA production [26/318 (8.2%) in PIRCHE ≤ 175 vs. 74/373 (19.8%) in PIRCHE ≥ 176, p < 0.001]. Patients with low levels of both class II eplet mismatches and PIRCHE scores developed de novo class II DSA only in 4/179 (2.2%). Analysis of T cell and B cell epitopes can provide a beneficial information on the design of individualized immunosuppression regimens for prevention of de novo DSA production after kidney transplantation.
Collapse
Affiliation(s)
- Shintaro Sakamoto
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Japan.,Department of Histocompatibility Laboratory, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Kenta Iwasaki
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshihide Tomosugi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | | | - Eric Spierings
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | - Yuko Miwa
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kosei Horimi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Asami Takeda
- Department of Nephrology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Norihiko Goto
- Department of Transplant Internal Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Shunji Narumi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Yoshihiko Watarai
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
50
|
Hamada S, Dumortier J, Thévenin C, Pageaux GP, Faure S, Guillaud O, Boillot O, Lachaux A, Luscalov DA, Dubois V, Meszaros M. Predictive value of HLAMatchmaker and PIRCHE-II scores for de novo donor-specific antibody formation after adult and pediatric liver transplantation. Transpl Immunol 2020; 61:101306. [DOI: 10.1016/j.trim.2020.101306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
|