1
|
Rodenberg RR, Spadafora D, Fitzpatrick S, Daly G, Lausch R, Barrington RA. γδ T17 Cells Regulate the Acute Antiviral Response of NK Cells in HSV-1-Infected Corneas. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 39504049 PMCID: PMC11549926 DOI: 10.1167/iovs.65.13.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/13/2024] [Indexed: 11/09/2024] Open
Abstract
Purpose To determine whether γδ T cells regulate natural killer (NK) cells in the herpes simplex virus 1 (HSV-1)-infected cornea. Methods CD57Bl/6 (wild-type [WT]), TCRδ-/-, and IFN-γ-/- mice were infected intracorneally with HSV-1. TCR-/- mice were treated with IL-17A at 24 hours post-infection (PI), and the WT mice received treatments of fingolimod (FTY720) and anti-IL-17A. At 48 hours PI, corneas were excised, and intracellular staining flow cytometry was performed, as well as multiplex analysis. Additionally, single-cell RNA sequencing (scRNAseq) was done to analyze the transcriptome of NK cells from WT and TCRδ-/- mice. Results In mice lacking γδ T cells, there were significantly fewer NK cells following ocular HSV-1 infection. This reduction of NK cells corresponded with lower levels of cytokines and chemokines associated with the antiviral response. Furthermore, NK cells from WT mice had enriched IL-17A signaling compared to those from TCRδ-/- mice. The NK cell response was partially rescued in TCRδ-/- mice by administration of IL-17A. Correspondingly, the NK cell response could be blunted in WT mice by administration of anti-IL-17A. Finally, IFN-γ-/- mice had significantly less IL-17A production compared to WT mice. Conclusions γδ T17 cells promote NK cell accumulation in HSV-1-infected corneas. In turn, NK cells secrete IFN-γ, which negatively regulates further IL-17A production by γδ T cells.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Cornea/virology
- Cornea/immunology
- Cornea/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Flow Cytometry
- Herpesvirus 1, Human/physiology
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Intraepithelial Lymphocytes/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Killer Cells, Natural/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
Collapse
Affiliation(s)
- Rachel R. Rodenberg
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| | - Steffani Fitzpatrick
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Grant Daly
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States
| | - Robert Lausch
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Robert A. Barrington
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Park S, Kim G, Choi A, Kim S, Yum JS, Chun E, Shin H. Comparative network-based analysis of toll-like receptor agonist, L-pampo signaling pathways in immune and cancer cells. Sci Rep 2024; 14:17173. [PMID: 39060412 PMCID: PMC11282102 DOI: 10.1038/s41598-024-67000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Toll-like receptors (TLRs) are critical components to stimulate immune responses against various infections. Recently, TLR agonists have emerged as a promising way to activate anti-tumor immunity. L-pampo, a TLR1/2 and TLR3 agonist, induces humoral and cellular immune responses and also causes cancer cell death. In this study, we investigated the L-pampo-induced signals and delineated their interactions with molecular signaling pathways using RNA-seq in immune cells and colon and prostate cancer cells. We first constructed a template network with differentially expressed genes and influential genes from network propagation using the weighted gene co-expression network analysis. Next, we obtained perturbed modules using the above method and extracted core submodules from them by conducting Walktrap. Finally, we reconstructed the subnetworks of major molecular signals utilizing a shortest path-finding algorithm, TOPAS. Our analysis suggests that TLR signaling activated by L-pampo is transmitted to oxidative phosphorylation (OXPHOS) with reactive oxygen species (ROS) through PI3K-AKT and JAK-STAT only in immune and prostate cancer cells that highly express TLRs. This signal flow may further sensitize prostate cancer to L-pampo due to its high basal expression level of OXPHOS and ROS. Our computational approaches can be applied for inferring underlying molecular mechanisms from complex gene expression profiles.
Collapse
Affiliation(s)
- Sera Park
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea
| | - Geuntae Kim
- CHA Vaccine Institute, Seongnamsi, Gyenggido, 13488, South Korea
| | - Ahyoung Choi
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea
| | - Sun Kim
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, 08826, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Jung Sun Yum
- CHA Vaccine Institute, Seongnamsi, Gyenggido, 13488, South Korea
| | - Eunyoung Chun
- CHA Vaccine Institute, Seongnamsi, Gyenggido, 13488, South Korea.
| | - Hyunjin Shin
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea.
| |
Collapse
|
3
|
Lei X, Gou YN, Hao JY, Huang XJ. Mechanisms of TREM2 mediated immunosuppression and regulation of cancer progression. Front Oncol 2024; 14:1375729. [PMID: 38725629 PMCID: PMC11079285 DOI: 10.3389/fonc.2024.1375729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer immunotherapy has recently emerged as a key strategy for cancer treatment. TREM2, a key target for regulating the tumor immune microenvironment, is important in cancer treatment and progression. TREM2 is an immune signaling hub that regulates multiple pathological pathways. It not only suppresses anti-tumor immune responses by inhibiting T cell-mediated immune responses, but it also influences tumorigenesis by affecting NK cell-mediated anti-tumor immunity. Noticeably, TREM2 expression levels also vary significantly among different tumor cells, and it can regulate tumor progression by modulating various signaling pathways. Above all, by summarizing the role of TREM2 in cancer immunotherapy and the mechanism by which TREM2 regulates tumor progression, this paper clarifies TREM2's role in both tumor progression and cancer therapy, identifying a new therapeutic target for oncology diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao Jun Huang
- Department of Gastroenterology, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Fiuza-Luces C, Valenzuela PL, Gálvez BG, Ramírez M, López-Soto A, Simpson RJ, Lucia A. The effect of physical exercise on anticancer immunity. Nat Rev Immunol 2024; 24:282-293. [PMID: 37794239 DOI: 10.1038/s41577-023-00943-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Systems Biology Department, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Beatriz G Gálvez
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Heah, Madrid, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA
- Department of Paediatrics, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
- Faculty of Sport Sciences, Universidad Europea, Madrid, Spain.
| |
Collapse
|
5
|
Silvestre RN, Eitler J, de Azevedo JTC, Tirapelle MC, Fantacini DMC, de Souza LEB, Swiech K, Covas DT, Calado RT, Montero PO, Malmegrim KCR, Figueiredo ML, Tonn T, Picanço-Castro V. Engineering NK-CAR.19 cells with the IL-15/IL-15Rα complex improved proliferation and anti-tumor effect in vivo. Front Immunol 2023; 14:1226518. [PMID: 37818365 PMCID: PMC10561086 DOI: 10.3389/fimmu.2023.1226518] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Natural killer 92 (NK-92) cells are an attractive therapeutic approach as alternative chimeric antigen receptor (CAR) carriers, different from T cells, once they can be used in the allogeneic setting. The modest in vivo outcomes observed with NK-92 cells continue to present hurdles in successfully translating NK-92 cell therapies into clinical applications. Adoptive transfer of CAR-NK-92 cells holds out the promise of therapeutic benefit at a lower rate of adverse events due to the absence of GvHD and cytokine release syndrome. However, it has not achieved breakthrough clinical results yet, and further improvement of CAR-NK-92 cells is necessary. Methods In this study, we conducted a comparative analysis between CD19-targeted CAR (CAR.19) co-expressing IL-15 (CAR.19-IL15) with IL-15/IL-15Rα (CAR.19-IL15/IL15Rα) to promote NK cell proliferation, activation, and cytotoxic activity against B-cell leukemia. CAR constructs were cloned into lentiviral vector and transduced into NK-92 cell line. Potency of CAR-NK cells were assessed against CD19-expressing cell lines NALM-6 or Raji in vitro and in vivo in a murine model. Tumor burden was measured by bioluminescence. Results We demonstrated that a fourth- generation CD19-targeted CAR (CAR.19) co-expressing IL-15 linked to its receptor IL-15/IL-15Rα (CAR.19-IL-15/IL-15Rα) significantly enhanced NK-92 cell proliferation, proinflammatory cytokine secretion, and cytotoxic activity against B-cell cancer cell lines in vitro and in a xenograft mouse model. Conclusion Together with the results of the systematic analysis of the transcriptome of activated NK-92 CAR variants, this supports the notion that IL-15/IL-15Rα comprising fourth-generation CARs may overcome the limitations of NK-92 cell-based targeted tumor therapies in vivo by providing the necessary growth and activation signals.
Collapse
Affiliation(s)
- Renata Nacasaki Silvestre
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jiri Eitler
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | | | - Mariane Cariati Tirapelle
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Lucas Eduardo Botelho de Souza
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo T. Calado
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paola Ortiz Montero
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Virginia Picanço-Castro
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Tu W, Cao YW, Sun M, Liu Q, Zhao HG. mTOR signaling in hair follicle and hair diseases: recent progress. Front Med (Lausanne) 2023; 10:1209439. [PMID: 37727765 PMCID: PMC10506410 DOI: 10.3389/fmed.2023.1209439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway is a major regulator of cell proliferation and metabolism, playing significant roles in proliferation, apoptosis, inflammation, and illness. More and more evidences showed that the mTOR signaling pathway affects hair follicle circulation and maintains the stability of hair follicle stem cells. mTOR signaling may be a critical cog in Vitamin D receptor (VDR) deficiency-mediated hair follicle damage and degeneration and related alopecia disorders. This review examines the function of mTOR signaling in hair follicles and hair diseases, and talks about the underlying molecular mechanisms that mTOR signaling regulates.
Collapse
Affiliation(s)
| | | | | | | | - Heng-Guang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
8
|
Liu R, Li T, Zhang G, Jia Y, Liu J, Pan L, Li Y, Jia C. Pancancer Analysis Revealed the Value of RAC2 in Immunotherapy and Cancer Stem Cell. Stem Cells Int 2023; 2023:8485726. [PMID: 37214785 PMCID: PMC10198763 DOI: 10.1155/2023/8485726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Objective To investigate the oncogenic effect and clinical significance of RAC2 in pancarcinoma from the perspective of tumor immunity and cancer stem cell. Methods After in-depth mining of TCGA, GEO, UCSC, and other databases, basic information of the RAC2 gene and its expression in tumor tissues as well as the relationship between RAC2 and tumor were analyzed based on survival, mutation, immune microenvironment, tumor stemness, and enrichment analysis on related pathways. Results RAC2 mRNA expression was increased in most tumor tissues and was associated with their prognosis. Compared to normal tissues, the RAC2 mutation rate was higher in patients with skin melanoma, uterine sarcoma, and endometrial cancer. RAC2 had a strong relation with immune cell infiltration, immunomodulators, immunotherapy markers, cancer stem cell of THYM, and immune-related pathways. Conclusions This study explored the potential importance of RAC2 in the prognosis, immunotherapy, and cancer stem cell of 33 cancers, laying the foundation for mechanistic experiments and its future application in clinical practice. However, the results using bioinformatics methods could be affected by the differences in patients across databases. Thus, the present results were preliminary and required further experimental validation.
Collapse
Affiliation(s)
- Ranran Liu
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tianyu Li
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Guohong Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yejuan Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingxuan Liu
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Lijia Pan
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunfeng Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chunsheng Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
9
|
Shemesh A, Su Y, Calabrese DR, Chen D, Arakawa-Hoyt J, Roybal KT, Heath JR, Greenland JR, Lanier LL. Diminished cell proliferation promotes natural killer cell adaptive-like phenotype by limiting FcεRIγ expression. J Exp Med 2022; 219:e20220551. [PMID: 36066491 PMCID: PMC9448639 DOI: 10.1084/jem.20220551] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFβ or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFβ and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFβ and IFNα levels in COVID-19 infection associated with disease severity.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA
- Department of Microbiology, University of Washington, Seattle, WA
- Department of Informatics, University of Washington, Seattle, WA
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Ruppel KE, Fricke S, Köhl U, Schmiedel D. Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy. Front Immunol 2022; 13:822298. [PMID: 35371071 PMCID: PMC8971283 DOI: 10.3389/fimmu.2022.822298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer immunotherapies utilize the capabilities of the immune system to efficiently target malignant cells. In recent years, chimeric antigen receptor (CAR) equipped T cells showed promising results against B cell lymphomas. Autologous CAR-T cells require patient-specific manufacturing and thus extensive production facilities, resulting in high priced therapies. Along with potentially severe side effects, these are the major drawbacks of CAR-T cells therapies. Natural Killer (NK) cells pose an alternative for CAR equipped immune cells. Since NK cells can be safely transferred from healthy donors to cancer patients, they present a suitable platform for an allogeneic “off-the-shelf” immunotherapy. However, administration of activated NK cells in cancer therapy has until now shown poor anti-cancer responses, especially in solid tumors. Genetic modifications such as CARs promise to enhance recognition of tumor cells, thereby increasing anti-tumor effects and improving clinical efficacy. Although the cell biology of T and NK cells deviates in many aspects, the development of CAR-NK cells frequently follows within the footsteps of CAR-T cells, meaning that T cell technologies are simply adopted to NK cells. In this review, we underline the unique properties of NK cells and their potential in CAR therapies. First, we summarize the characteristics of NK cell biology with a focus on signaling, a fine-tuned interaction of activating and inhibitory receptors. We then discuss why tailored NK cell-specific CAR designs promise superior efficacy compared to designs developed for T cells. We summarize current findings and developments in the CAR-NK landscape: different CAR formats and modifications to optimize signaling, to target a broader pool of antigens or to increase in vivo persistence. Finally, we address challenges beyond NK cell engineering, including expansion and manufacturing, that need to be addressed to pave the way for CAR-NK therapies from the bench to the clinics.
Collapse
Affiliation(s)
- Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
- *Correspondence: Dominik Schmiedel,
| |
Collapse
|
11
|
Valenzuela PL, Saco-Ledo G, Santos-Lozano A, Morales JS, Castillo-García A, Simpson RJ, Lucia A, Fiuza-Luces C. Exercise Training and Natural Killer Cells in Cancer Survivors: Current Evidence and Research Gaps Based on a Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:36. [PMID: 35244811 PMCID: PMC8897541 DOI: 10.1186/s40798-022-00419-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
Background Exercise training can positively impact the immune system and particularly natural killer (NK) cells, at least in healthy people. This effect would be of relevance in the context of cancer given the prominent role of these cells in antitumor immunity. In this systematic review and meta-analysis, we aimed to summarize current evidence on the effects of exercise training on the levels and function of NK cells in cancer survivors (i.e., from the time of diagnosis until the end of life). Methods Relevant articles were searched in PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (until January 11, 2022). Randomized controlled trials (RCT) of exercise training (i.e., non-acute) interventions vs usual care conducted in cancer survivors and assessing NK number and/or cytotoxic activity (NKCA) before and upon completion of the intervention were included. Methodological quality of the studies was assessed with the PEDro scale, and results were meta-analyzed using a random effects (Dersimoian and Laird) model. Results Thirteen RCT including 459 participants (mean age ranging 11–63 years) met the inclusion criteria. Methodological quality of the studies was overall fair (median PEDro score = 5 out of 10). There was heterogeneity across studies regarding cancer types (breast cancer, non-small cell lung cancer and other solid tumors), treatment (e.g., receiving vs having received chemotherapy), exercise modes (aerobic or resistance exercise, Tai Chi, Yoga) and duration (2–24 weeks). No consistent effects were observed for NK number in blood (mean difference [MD]: 1.47, 95% confidence interval [CI] − 0.35 to 3.29, p = 0.113) or NKCA as assessed in vitro (MD: − 0.02, 95%CI − 0.17 to 0.14, p = 0.834). However, mixed results existed across studies, and some could not be meta-analyzed due to lack of information or methodological heterogeneity. Conclusions Current evidence does not support a significant effect of exercise training intervention on NK cells in blood or on their ‘static response’ (as assessed in vitro) in cancer survivors. Several methodological issues and research gaps are highlighted in this review, which should be considered in future studies to draw definite conclusions on this topic. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00419-w.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Gonzalo Saco-Ledo
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.,I+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Javier S Morales
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | | | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA.,Department of Pediatrics, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
12
|
Soltani M, Rezaei M, Fekrvand S, Ganjalikhani-Hakemi M, Abolhassani H, Yazdani R. Role of rare immune cells in common variable immunodeficiency. Pediatr Allergy Immunol 2022; 33:e13725. [PMID: 34937129 DOI: 10.1111/pai.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency disorder (CVID) is a heterogeneous disorder and the most common symptomatic antibody deficiency disease characterized with hypogammaglobulinemia and a broad range of clinical manifestations. Multiple genetic, epigenetic, and immunological defects are involved in the pathogenesis of CVID. These immunological defects include abnormalities in the number and/or function of B lymphocytes, T lymphocytes, and other rare immune cells. Although some immune cells have a relatively lower proportion among total immune subsets in the human body, they could have important roles in the pathogenesis of immunological disorders like CVID. To the best of our knowledge, this is the first review that described the role of rare immune cells in the pathogenesis and clinical presentations of CVID.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Directly reprogrammed natural killer cells for cancer immunotherapy. Nat Biomed Eng 2021; 5:1360-1376. [PMID: 34341536 DOI: 10.1038/s41551-021-00768-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Efficacious and accessible sources of natural killer (NK) cells would widen their use as immunotherapeutics, particularly for solid cancers. Here, we show that human somatic cells can be directly reprogrammed into NK cells with a CD56brightCD16bright phenotype using pluripotency transcription factors and an optimized reprogramming medium. The directly reprogrammed NK cells have strong innate-adaptive immunomodulatory activity and are highly potent against a wide range of cancer cells, including difficult-to-treat solid cancers and cancer stem cells. Both directly reprogrammed NK cells bearing a cancer-specific chimeric antigen receptor and reprogrammed NK cells in combination with antibodies competent for antibody-dependent cell-mediated cytotoxicity led to selective anticancer effects with augmented potency. The direct reprogramming of human somatic cells into NK cells is amenable to the production of autologous and allogeneic NK cells, and will facilitate the design and testing of cancer immunotherapies and combination therapies.
Collapse
|
14
|
Charreau B. Cellular and Molecular Crosstalk of Graft Endothelial Cells During AMR: Effector Functions and Mechanisms. Transplantation 2021; 105:e156-e167. [PMID: 33724240 DOI: 10.1097/tp.0000000000003741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Graft endothelial cell (EC) injury is central to the pathogenesis of antibody-mediated rejection (AMR). The ability of donor-specific antibodies (DSA) to bind C1q and activate the classical complement pathway is an efficient predictor of graft rejection highlighting complement-dependent cytotoxicity as a key process operating during AMR. In the past 5 y, clinical studies further established the cellular and molecular signatures of AMR revealing the key contribution of other, IgG-dependent and -independent, effector mechanisms mediated by infiltrating NK cells and macrophages. Beyond binding to alloantigens, DSA IgG can activate NK cells and mediate antibody-dependent cell cytotoxicity through interacting with Fcγ receptors (FcγRs) such as FcγRIIIa (CD16a). FcRn, a nonconventional FcγR that allows IgG recycling, is highly expressed on ECs and may contribute to the long-term persistence of DSA in blood. Activation of NK cells and macrophages results in the production of proinflammatory cytokines such as TNF and IFNγ that induce transient and reversible changes in the EC phenotype and functions promoting coagulation, inflammation, vascular permeability, leukocyte trafficking. MHC class I mismatch between transplant donor and recipient can create a situation of "missing self" allowing NK cells to kill graft ECs. Depending on the microenvironment, cellular proximity with ECs may participate in macrophage polarization toward an M1 proinflammatory or an M2 phenotype favoring inflammation or vascular repair. Monocytes/macrophages participate in the loss of endothelial specificity in the process of endothelial-to-mesenchymal transition involved in renal and cardiac fibrosis and AMR and may differentiate into ECs enabling vessel and graft (re)-endothelialization.
Collapse
Affiliation(s)
- Béatrice Charreau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et en Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
15
|
Gutierrez-Guerrero A, Mancilla-Herrera I, Maravillas-Montero JL, Martinez-Duncker I, Veillette A, Cruz-Munoz ME. SLAMF7 selectively favors degranulation to promote cytotoxicity in human NK cells. Eur J Immunol 2021; 52:62-74. [PMID: 34693521 DOI: 10.1002/eji.202149406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
NK cells play an important role in immunity by recognizing and eliminating cells undergoing infection or malignant transformation. This role is dependent on the ability of NK cells to lyse targets cells in a perforin-dependent mechanism and by secreting inflammatory cytokines. Both effector functions are controlled by several cell surface receptors. The Signaling Lymphocyte Activation Molecule (SLAM) family of receptors plays an essential role in regulating NK cell activation. Several studies have demonstrated that SLAMF7 regulates NK cell activation. However, the molecular and cellular mechanisms by which SLAMF7 influences NK effector functions are unknown. Here, we present evidence that physiological ligation of SLAMF7 in human NK cells enhances the lysis of target cells expressing SLAMF7. This effect was dependent on the ability of SLAMF7 to promote NK cell degranulation rather than cytotoxic granule polarization or cell adhesion. Moreover, SLAMF7-dependent NK cell degranulation was predominantly dependent on PLC-γ when compared to PI3K. These data provide novel information on the cellular mechanism by which SLAMF7 regulates human NK cell activation. Finally, this study supports a model for NK cell activation where activated receptors contribute by regulating specific discrete cellular events rather than multiple cellular processes.
Collapse
Affiliation(s)
- Arturo Gutierrez-Guerrero
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.,Instituto de Investigación en Ciencias Básicas y Aplicadas, Mexico City, México
| | | | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Mexico City, México.,Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Andre Veillette
- Institute de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Mario E Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
16
|
Metabolic Disorders in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms222111430. [PMID: 34768861 PMCID: PMC8584036 DOI: 10.3390/ijms222111430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and is attributed to monoclonal proliferation of plasma cells in the bone marrow. Cancer cells including myeloma cells deregulate metabolic pathways to ensure proliferation, growth, survival and avoid immune surveillance, with glycolysis and glutaminolysis being the most identified procedures involved. These disorders are considered a hallmark of cancer and the alterations performed ensure that enough energy is available for rapid cell proliferation. An association between metabolic syndrome, inflammatory cytokinesand incidence of MM has been also described, while the use of metformin and statins has been identified as a positive prognostic factor for the disease course. In this review, we aim to present the metabolic disorders that occur in multiple myeloma, the potential defects on the immune system and the potential advantage of targeting the dysregulated pathways in order to enhance antitumor therapeutics.
Collapse
|
17
|
Lee HY, Lee EH, Yi J, Ji KY, Kim SM, Choi HR, Yee SM, Kang HS, Kim EM. TREM2 promotes natural killer cell development in CD3 -CD122 +NK1.1 + pNK cells. BMC Immunol 2021; 22:30. [PMID: 33980160 PMCID: PMC8114489 DOI: 10.1186/s12865-021-00420-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background Triggering receptor expressed on myeloid cells 2 (TREM2) signaling is considered to regulate anti-inflammatory responses in macrophages, dendritic cell maturation, osteoclast development, induction of obesity, and Alzheimer’s disease pathogenesis. However, little is known regarding the effect of TREM2 on natural killer (NK) cells. Results Here, we demonstrated for the first time that CD3−CD122+NK1.1+ precursor NK (pNK) cells expressed TREM2 and their population increased in TREM2-overexpressing transgenic (TREM2-TG) mice compared with that in female C57BL/6 J wild type (WT) mice. Both NK cell-activating receptors and NK cell-associated genes were expressed at higher levels in various tissues of TREM2-TG mice than in WT mice. In addition, bone marrow-derived hematopoietic stem cells (HSCs) of TREM2-TG mice (TG-HSCs) successfully differentiated into NK cells in vitro, with a higher yield from TG-HSCs than from WT-HSCs. In contrast, TREM2 signaling inhibition by TREM2-Ig or a phosphatidylinositol 3-kinase (PI3K) inhibitor affected the expression of the NK cell receptor repertoire and decreased the expression levels of NK cell-associated genes, resulting in significant impairment of NK cell differentiation. Moreover, in melanoma-bearing WT mice, injection of bone marrow cells from TREM2-TG mice exerted greater antitumor effects than that with cells from WT control mice. Conclusions Collectively, our data clearly showed that TREM2 promoted NK cell development and tumor regression, suggesting TREM2 as a new candidate for cancer immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00420-0.
Collapse
Affiliation(s)
- Hwa-Youn Lee
- Chemicals Registration & Evaluation Team, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, Korea
| | - Jawoon Yi
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 461-24 Jeonmin-dong, Yuseong-gu, Daejeon, 34054, Korea
| | - Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ha-Rim Choi
- Department of Nursing, Nambu University, 23 Chumdan Jungang-ro, Gwangsan-gu, Gwangju, 62271, Korea
| | - Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
18
|
Zheng H, Rao AM, Dermadi D, Toh J, Murphy Jones L, Donato M, Liu Y, Su Y, Dai CL, Kornilov SA, Karagiannis M, Marantos T, Hasin-Brumshtein Y, He YD, Giamarellos-Bourboulis EJ, Heath JR, Khatri P. Multi-cohort analysis of host immune response identifies conserved protective and detrimental modules associated with severity across viruses. Immunity 2021; 54:753-768.e5. [PMID: 33765435 PMCID: PMC7988739 DOI: 10.1016/j.immuni.2021.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.
Collapse
Affiliation(s)
- Hong Zheng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA
| | - Aditya M Rao
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Immunology program, Stanford University, CA 94305, USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA
| | - Jiaying Toh
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Immunology program, Stanford University, CA 94305, USA
| | - Lara Murphy Jones
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA; Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Stanford University, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA
| | - Yiran Liu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Cancer Biology program, Stanford University, CA 94305, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, USA
| | - Cheng L Dai
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Minas Karagiannis
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | - Theodoros Marantos
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | | | | | | | - James R Heath
- Institute for Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA.
| |
Collapse
|
19
|
Rohrbacher L, Brauchle B, Ogrinc Wagner A, von Bergwelt-Baildon M, Bücklein VL, Subklewe M. The PI3K∂-Selective Inhibitor Idelalisib Induces T- and NK-Cell Dysfunction Independently of B-Cell Malignancy-Associated Immunosuppression. Front Immunol 2021; 12:608625. [PMID: 33790890 PMCID: PMC8005712 DOI: 10.3389/fimmu.2021.608625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
B-cell receptors, multiple receptor tyrosine kinases, and downstream effectors are constitutively active in chronic lymphocytic leukemia (CLL) B cells. Activation of these pathways results in resistance to apoptosis and enhanced survival of the leukemic cells. Idelalisib is a highly selective inhibitor of the PI3K p110∂ isoform and is approved for the treatment of CLL in patients with relapsed/refractory disease or in those harboring 17p deletions or tp53 mutations. Despite the initial excitement centered around high response rates in clinical trials of idelalisib, its therapeutic success has been hindered by the incidence of severe opportunistic infections. To examine the potential contribution of idelalisib to the increased risk of infection, we investigated the effects of idelalisib on the immune cell compartments of healthy donors (HDs) and CLL patients. PI3K∂ blockade by idelalisib reduced the expression levels of inhibitory checkpoint molecules in T cells isolated from both HDs and CLL patients. In addition, the presence of idelalisib in cultures significantly decreased T-cell-mediated cytotoxicity and granzyme B secretion, as well as cytokine secretion levels in both cohorts. Furthermore, idelalisib reduced the proliferation and cytotoxicity of HD NK cells. Collectively, our data demonstrate that both human T and NK cells are highly sensitive to PI3K∂ inhibition. Idelalisib interfered with the functions of T and NK cell cells from both HDs and CLL patients. Therefore, idelalisib might contribute to an increased risk of infections regardless of the underlying B-cell malignancy.
Collapse
Affiliation(s)
- Lisa Rohrbacher
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bettina Brauchle
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ana Ogrinc Wagner
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Veit L Bücklein
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Subklewe
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
20
|
Wu S, Kuang H, Ke J, Pi M, Yang DH. Metabolic Reprogramming Induces Immune Cell Dysfunction in the Tumor Microenvironment of Multiple Myeloma. Front Oncol 2021; 10:591342. [PMID: 33520703 PMCID: PMC7845572 DOI: 10.3389/fonc.2020.591342] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor cells rewire metabolism to meet their increased nutritional demands, allowing the maintenance of tumor survival, proliferation, and expansion. Enhancement of glycolysis and glutaminolysis is identified in most, if not all cancers, including multiple myeloma (MM), which interacts with a hypoxic, acidic, and nutritionally deficient tumor microenvironment (TME). In this review, we discuss the metabolic changes including generation, depletion or accumulation of metabolites and signaling pathways, as well as their relationship with the TME in MM cells. Moreover, we describe the crosstalk among metabolism, TME, and changing function of immune cells during cancer progression. The overlapping metabolic phenotype between MM and immune cells is discussed. In this sense, targeting metabolism of MM cells is a promising therapeutic approach. We propose that it is important to define the metabolic signatures that may regulate the function of immune cells in TME in order to improve the response to immunotherapy.
Collapse
Affiliation(s)
- Shaojie Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huixian Kuang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Ke
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Medical Center of Assessment of Bone & Joint Diseases, Orthopaedic Hospital, General Hospital of Southern Theater Command, Guangzhou, China
| | - Manfei Pi
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
21
|
Thouenon R, Moreno-Corona N, Poggi L, Durandy A, Kracker S. Activated PI3Kinase Delta Syndrome-A Multifaceted Disease. Front Pediatr 2021; 9:652405. [PMID: 34249806 PMCID: PMC8267809 DOI: 10.3389/fped.2021.652405] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant gain-of-function mutations in the PIK3CD gene encoding the catalytic subunit p110δ of phosphoinositide 3-kinase-δ (PI3K-δ) or autosomal dominant loss-of-function mutations in the PIK3R1 gene encoding the p85α, p55α and p50α regulatory subunits cause Activated PI3-kinase-δ syndrome (APDS; referred as type 1 APDS and type 2 APDS, respectively). Consequences of these mutations are PI3K-δ hyperactivity. Clinical presentation described for both types of APDS patients is very variable, ranging from mild or asymptomatic features to profound combined immunodeficiency. Massive lymphoproliferation, bronchiectasis, increased susceptibility to bacterial and viral infections and, at a lesser extent, auto-immune manifestations and occurrence of cancer, especially B cell lymphoma, have been described for both types of APDS patients. Here, we review clinical presentation and treatment options as well as fundamental immunological and biological features associated to PI3K-δ increased signaling.
Collapse
Affiliation(s)
- Romane Thouenon
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Nidia Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Lucie Poggi
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| |
Collapse
|
22
|
Sun P, Meng LH. Emerging roles of class I PI3K inhibitors in modulating tumor microenvironment and immunity. Acta Pharmacol Sin 2020; 41:1395-1402. [PMID: 32939035 DOI: 10.1038/s41401-020-00500-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Immune system-mediated tumor killing has revolutionized anti-tumor therapies, providing long-term and durable responses in some patients. The phosphoinositide 3-kinase (PI3K) pathway controls multiple biological processes and is frequently dysregulated in malignancies. Enormous efforts have been made to develop inhibitors against class I PI3K. Notably, with the increasing understanding of PI3K, it has been widely accepted that PI3K inhibition not only restrains tumor progression, but also reshapes the immunosuppressive tumor microenvironment. In this review, we focus on the pivotal roles of class I PI3Ks in adaptive and innate immune cells, as well as other stromal components. We discuss the modulation by PI3K inhibitors of the tumor-supportive microenvironment, including eliminating the regulatory immune cells, restoring cytotoxic cells or regulating angiogenesis. The potential combinations of PI3K inhibitors with other therapies to enhance the anti-tumor immunity are also described.
Collapse
|
23
|
Lu T, Yang X, Shi Y, Zhao M, Bi G, Liang J, Chen Z, Huang Y, Jiang W, Lin Z, Xi J, Wang S, Yang Y, Zhan C, Wang Q, Tan L. Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules. Cell Discov 2020; 6:69. [PMID: 33083004 PMCID: PMC7536439 DOI: 10.1038/s41421-020-00200-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
As an early type of lung adenocarcinoma, ground glass nodule (GGN) has been detected increasingly and now accounts for most lung cancer outpatients. GGN has a satisfactory prognosis and its characteristics are quite different from solid adenocarcinoma (SADC). We compared the GGN adenocarcinoma (GGN-ADC) with SADC using the single-cell RNA sequencing (scRNA-seq) to fully understand GGNs. The tumor samples of five patients with lung GGN-ADCs and five with SADCs underwent surgery were digested to a single-cell suspension and analyzed using 10× Genomic scRNA-seq techniques. We obtained 60,459 cells and then classified them as eight cell types, including cancer cells, endothelial cells, fibroblasts, T cells, B cells, Nature killer cells, mast cells, and myeloid cells. We provided a comprehensive description of the cancer cells and stromal cells. We found that the signaling pathways related to cell proliferation were downregulated in GGN-ADC cancer cells, and stromal cells had different effects in GGN-ADC and SADC based on the analyses of scRNA-seq results. In GGN-ADC, the signaling pathways of angiogenesis were downregulated, fibroblasts expressed low levels of some collagens, and immune cells were more activated. Furthermore, we used flow cytometry to isolate the cancer cells and T cells in 12 GGN-ADC samples and in an equal number of SADC samples, including CD4+ T and CD8+ T cells, and validated the expression of key molecules by quantitative real-time polymerase chain reaction analyses. Through comprehensive analyses of cell phenotypes in GGNs, we provide deep insights into lung carcinogenesis that will be beneficial in lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yong Yang
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
- Department of Thoracic Surgery, Suzhou Hospital affiliated to Nanjing Medical University, Suzhou, Jiangsu 215001 China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
24
|
Melo CM, Prado HP, Attie GA, Ruiz DL, Girão MJBC, Pinhal MADS. In silico investigation of heparanase-correlated genes in breast cancer subtypes. EINSTEIN-SAO PAULO 2020; 18:eAO5447. [PMID: 33053017 PMCID: PMC7531901 DOI: 10.31744/einstein_journal/2020ao5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/16/2020] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the possible genes that may be related to the mechanisms that modulate heparanase-1. Methods The analysis was conducted at Universidade Federal de São Paulo, on the data provided by: The Cancer Genome Atlas, University of California Santa Cruz Genome Browser, Kyoto Encyclopedia of Genes and Genomes Pathway Database, Database for Annotation, Visualization and Integrated Discovery Bioinformatics Database and the softwares cBioPortal and Ingenuity Pathway Analysis. Results Using messenger RNA expression pattern of different molecular subtypes of breast cancer, we proposed that heparinase-1 was co-related with its progression. In addition, genes that were analyzed presented co-expression with heparanase-1. The results that showed that heparanase-1 co-expressed with phosphoinositide 3-kinase adapter protein 1, sialic acid-binding immunoglobulin-like lectin 7, and leukocyte-associated immunoglobulin-like receptor 1 are directed related with immune system evasion during breast cancer progression. Furthermore, cathepsin L was co-expressed with heparanase-1 and transformed inactive heparanase-1 form into active heparanase-1, triggering extracellular matrix remodeling, which contributes to enhanced tumor-host interaction of the tumor. Conclusion The signaling pathway analysis using bioinformatics tools gives supporting evidence of possible mechanisms related to breast cancer development. Evasion genes of the immune system co-expressed with heparanase-1, a enzyme related with tumor progression.
Collapse
|
25
|
Baleydier F, Bernard F, Ansari M. The Possibilities of Immunotherapy for Children with Primary Immunodeficiencies Associated with Cancers. Biomolecules 2020; 10:biom10081112. [PMID: 32731356 PMCID: PMC7464796 DOI: 10.3390/biom10081112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Many primary immunodeficiencies (PIDs) are recognised as being associated with malignancies, particularly lymphoid malignancies, which represent the highest proportion of cancers occurring in conjunction with this underlying condition. When patients present with genetic errors of immunity, clinicians must often reflect on whether to manage antitumoral treatment conventionally or to take a more personalised approach, considering possible existing comorbidities and the underlying status of immunodeficiency. Recent advances in antitumoral immunotherapies, such as monoclonal antibodies, antigen-specific adoptive cell therapies or compounds with targeted effects, potentially offer significant opportunities for optimising treatment for those patients, especially with lymphoid malignancies. In cases involving PIDs, variable oncogenic mechanisms exist, and opportunities for antitumoral immunotherapies can be considered accordingly. In cases involving a DNA repair defect or genetic instability, monoclonal antibodies can be proposed instead of chemotherapy to avoid severe toxicity. Malignancies secondary to uncontrolled virus-driven proliferation or the loss of antitumoral immunosurveillance may benefit from antivirus cell therapies or allogeneic stem cell transplantation in order to restore the immune antitumoral caretaker function. A subset of PIDs is caused by gene defects affecting targetable signalling pathways directly involved in the oncogenic process, such as the constitutive activation of phosphoinositol 3-kinase/protein kinase B (PI3K/AKT) in activated phosphoinositide 3-kinase delta syndrome (APDS), which can be settled with PI3K/AKT inhibitors. Therefore, immunotherapy provides clinicians with interesting antitumoral therapeutic weapons to treat malignancies when there is an underlying PID.
Collapse
Affiliation(s)
- Frederic Baleydier
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-79-55-34-221; Fax: +41-22-37-24-720
| | - Fanette Bernard
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
| | - Marc Ansari
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
26
|
PTEN Function at the Interface between Cancer and Tumor Microenvironment: Implications for Response to Immunotherapy. Int J Mol Sci 2020; 21:ijms21155337. [PMID: 32727102 PMCID: PMC7432882 DOI: 10.3390/ijms21155337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Mounting preclinical and clinical evidence indicates that rewiring the host immune system in favor of an antitumor microenvironment achieves remarkable clinical efficacy in the treatment of many hematological and solid cancer patients. Nevertheless, despite the promising development of many new and interesting therapeutic strategies, many of these still fail from a clinical point of view, probably due to the lack of prognostic and predictive biomarkers. In that respect, several data shed new light on the role of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) in affecting the composition and function of the tumor microenvironment (TME) as well as resistance/sensitivity to immunotherapy. In this review, we summarize current knowledge on PTEN functions in different TME compartments (immune and stromal cells) and how they can modulate sensitivity/resistance to different immunological manipulations and ultimately influence clinical response to cancer immunotherapy.
Collapse
|
27
|
Xia T, Zhang B, Li Y, Fang B, Zhu X, Xu B, Zhang J, Wang M, Fang J. New insight into 20(S)-ginsenoside Rh2 against T-cell acute lymphoblastic leukemia associated with the gut microbiota and the immune system. Eur J Med Chem 2020; 203:112582. [PMID: 32682197 DOI: 10.1016/j.ejmech.2020.112582] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy associated with unfavorable factors including male gender and over nine years of age. Chemotherapy toxicity continues to present a major challenge. There is a need to develop novel natural agents to improve survival and quality of life in patients with T-ALL. 20(S)-ginsenoside Rh2 (GRh2) exhibits immune regulation and anti-tumor effects in both cellular and murine xenograft models. In the present study, the anti-cancer mechanisms of 20(S)-GRh2 involved in the immune system and intestinal microbiota were investigated in T-ALL mice. We revealed that 20(S)-Rh2 suppressed T-ALL by blocking the PI3K/Akt/mTOR signaling pathway, and enhanced immunity in the spleen by regulating immune factors. In addition, 20(S)-GRh2 altered the composition of the gut microbiota, and promoted intestinal homeostasis by elevating the levels of tight junction proteins, antimicrobial peptides and IgA. 20(S)-GRh2 ameliorated the LPS-induced inflammatory response in the intestine of T-ALL mice. Furthermore, Bacteroidetes, Verrucomicrobia, Akkermansia, Lactobacillus, and Lachnospiraceae_NK4A136_group were positively correlated with anti-tumor immune factors, intestinal barrier-related factors, and the anti-inflammatory response. Conversely, Firmicutes, Proteobacteria, Parabacteroides and Alistipes had the opposite correlation. Collectively, these results suggest that 20(S)-GRh2 is a safe and effective natural product, that shows promise for the prevention and treatment of T-ALL.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yu Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Bin Fang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xiaoxuan Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Bicheng Xu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guang Dong, 510120, PR China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, Guang Dong, 510120, PR China.
| |
Collapse
|
28
|
Dorsch M, Urlaub D, Bönnemann V, Bröde P, Sandusky M, Watzl C. Quantitative analysis of human NK cell reactivity using latex beads coated with defined amounts of antibodies. Eur J Immunol 2020; 50:656-665. [PMID: 32027754 DOI: 10.1002/eji.201948344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 01/17/2023]
Abstract
Natural Killer (NK) cell responses are regulated by a variety of different surface receptors. While we can determine the overall positive or negative effect of a given receptor on NK cell functions, investigating NK cell regulation in a quantitative way is challenging. To quantitatively investigate individual receptors for their effect on NK cell activation, we chose to functionalize latex beads that have approximately the same size as lymphocytes with defined amounts of specific antibodies directed against distinct activating receptors. This enabled us to investigate NK cell reactivity in a defined, clean, and controllable system. Only CD16 and NKp30 could activate the degranulation of resting human NK cells. CD16, NKG2D, NKp30, NKp44, and NKp46 were able to activate cultured NK cells. NK cell activation resulted in the induction of polyfunctional cells that degranulated and produced IFN-γ and MIP-1β. Interestingly, polyfunctional NK cells were only induced by triggering ITAM-coupled receptors. NKp44 showed a very sensitive response pattern, where a small increase in receptor stimulation caused maximal NK cell activity. In contrast, stimulation of 2B4 induced very little NK cell degranulation, while providing sufficient signal for NK cell adhesion. Our data demonstrate that activating receptors differ in their effectiveness to stimulate NK cells.
Collapse
Affiliation(s)
- Madeleine Dorsch
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Doris Urlaub
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Vivian Bönnemann
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Peter Bröde
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| |
Collapse
|
29
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
30
|
Tabellini G, Baronio M, Patrizi O, Benevenuto A, Gazzurelli L, Plebani A, Parolini S, Lougaris V. The RAC2-PI3K axis regulates human NK cell maturation and function. Clin Immunol 2019; 208:108257. [PMID: 31491520 DOI: 10.1016/j.clim.2019.108257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessio Benevenuto
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Luisa Gazzurelli
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy.
| |
Collapse
|
31
|
Tabellini G, Patrizi O, Dobbs K, Lougaris V, Baronio M, Coltrini D, Plebani A, Badolato R, Notarangelo LD, Parolini S. From Natural Killer Cell Receptor Discovery to Characterization of Natural Killer Cell Defects in Primary Immunodeficiencies. Front Immunol 2019; 10:1757. [PMID: 31396241 PMCID: PMC6668486 DOI: 10.3389/fimmu.2019.01757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
Alessandro Moretta was Professor of Histology at University of Brescia from 1994 to 1997. It was in that period that we met and started a collaboration that continued in the years to follow. He immediately involved us in the production of monoclonal antibodies (mAbs) that allowed the identification and fine characterization of novel receptor molecules that were able to activate or inhibit human Natural Killer cell function, including several antibodies specific for Natural Cytotoxicity Receptor (NCR) and Killer-cell Immunoglobulin-like Receptor (KIR) molecules. These reagents, generated in our laboratory in Brescia, contributed to complete the studies aimed to characterize innate lymphoid NK cells, that had been initiated by Alessandro and his brother Lorenzo in Genoa. Soon, we identified an anti-KIR3DL2 that was subsequently shown to be helpful for the diagnosis and treatment of various forms of cutaneous T cell lymphoma. While in Brescia, Alessandro established a partnership with those of us who were working in the Department of Pediatrics; together, in short time we tackled the goal of studying the role of NK cells in patients with primary immunodeficiencies. This collaboration led to novel discoveries that shed light on the critical role played by NK cells in the immune response against virus and tumors in humans, as best exemplified by our characterization of the molecular mechanisms of impaired control of Epstein-Barr Virus (EBV) infection in patients with X-linked lymphoproliferative (XLP) disease. After Alessandro left Brescia to return to Genoa, our collaboration continued with the same enthusiasm, and even from a distance he remained an extraordinary example of an inspirational and generous mentor. This review is a sign of our gratitude to a mentor and a friend whom we deeply miss.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
32
|
Romeo V, Gierke S, Edgar KA, Liu SD. Effects of PI3K Inhibition on Afucosylated Antibody-Driven FcγRIIIa Events and Phospho-S6 Activity in NK Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:137-147. [PMID: 31092639 DOI: 10.4049/jimmunol.1801418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
Abstract
PI3K is one of the most frequently mutated genes in cancers and has been the target of numerous anticancer therapies. With the additional development of therapeutics that mobilize the immune system, such as Abs with effector functions, bispecific Abs, and checkpoint inhibitors, many small molecule inhibitors that target PI3K are being combined with these immunomodulatory treatments. However, the PI3K pathway is also essential for lymphocyte function, and the presence of the PI3K inhibitor may render the immunomodulatory therapeutic ineffective in these combinatorial treatments. Therefore, therapeutics with enhanced activity, such as afucosylated Abs, which promote signaling and function, may be ideal in these types of treatments to offset the negative effect of PI3K inhibitors on immune cell function. Indeed, we show that afucosylated Abs can counterbalance these inhibitory effects on FcγRIIIa-driven signaling in human NK cells to produce signals similar to cells treated only with fucosylated Ab. Furthermore, NK cell activation, degranulation, chemokine/cytokine production, and Ab-dependent cellular cytotoxicity were similar between inhibitor-treated, afucosylated Ab-stimulated NK cells and cells activated only with its fucosylated counterpart. To our knowledge, these studies also identified a previously undefined role for phospho-S6 in human NK cells. In this study, a kinetic delay in PI3K-driven phosphorylation of S6 was observed to control transcription of the temporally regulated production of IFN-γ and TNF-α but not MIP-1α, MIP-1β, and RANTES. Together, these studies demonstrate the importance of the PI3K pathway for S6 phosphorylation in human NK cells and the need to combine PI3K inhibitors with therapeutic molecules that enhance immunomodulatory function for anticancer therapies.
Collapse
Affiliation(s)
- Valentina Romeo
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Sarah Gierke
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080; and
| | - Kyle A Edgar
- Department of Translation Oncology, Genentech, Inc., South San Francisco, CA 94080
| | - Scot D Liu
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080; and
| |
Collapse
|
33
|
Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev 2019; 287:202-225. [PMID: 30565241 PMCID: PMC6310041 DOI: 10.1111/imr.12725] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
Human NK cells are innate immune effectors that play a critical roles in the control of viral infection and malignancy. The importance of their homeostasis and function can be demonstrated by the study of patients with primary immunodeficiencies (PIDs), which are part of the family of diseases known as inborn defects of immunity. While NK cells are affected in many PIDs in ways that may contribute to a patient's clinical phenotype, a small number of PIDs have an NK cell abnormality as their major immunological defect. These PIDs can be collectively referred to as NK cell deficiency (NKD) disorders and include effects upon NK cell numbers, subsets, and/or functions. The clinical impact of NKD can be severe including fatal viral infection, with particular susceptibility to herpesviral infections, such as cytomegalovirus, varicella zoster virus, and Epstein-Barr virus. While NKD is rare, studies of these diseases are important for defining specific requirements for human NK cell development and homeostasis. New themes in NK cell biology are emerging through the study of both known and novel NKD, particularly those affecting cell cycle and DNA damage repair, as well as broader PIDs having substantive impact upon NK cells. In addition, the discovery of NKD that affects other innate lymphoid cell (ILC) subsets opens new doors for better understanding the relationship between conventional NK cells and other ILC subsets. Here, we describe the biology underlying human NKD, particularly in the context of new insights into innate immune cell function, including a discussion of recently described NKD with accompanying effects on ILC subsets. Given the impact of these disorders upon human immunity with a common focus upon NK cells, the unifying message of a critical role for NK cells in human host defense singularly emerges.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
34
|
Eissing M, Ripken L, Schreibelt G, Westdorp H, Ligtenberg M, Netea-Maier R, Netea MG, de Vries IJM, Hoogerbrugge N. PTEN Hamartoma Tumor Syndrome and Immune Dysregulation. Transl Oncol 2018; 12:361-367. [PMID: 30504085 PMCID: PMC6277246 DOI: 10.1016/j.tranon.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Carriers of a pathogenic germline mutations in the PTEN gene, a well-known tumor suppressor gene, are at increased risk of multiple benign and malignant tumors, e.g. breast, thyroid, endometrial and colon cancer. This is called PTEN Hamartomous Tumor Syndrome (PHTS). PHTS patients may also have an increased risk of immunological dysregulation, such as autoimmunity and immune deficiencies. The effects of PTEN on the immune system have been studied in murine knockout models demonstrating that loss of PTEN function leads to dysregulation of the immune response. This results in susceptibility to autoimmunity, impaired B cell class switching with subsequent hypogammaglobulinemia. Additionally, a decreased ability of dendritic cells to prime CD8+ T cells was observed, leading to impaired tumor eradication. Immune dysfunction in PHTS patients has not yet been extensively studied but might be a manageable contributing factor to the increased cancer risk in PHTS.
Collapse
Affiliation(s)
- Marc Eissing
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Lise Ripken
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Harm Westdorp
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Marjolijn Ligtenberg
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid1 0, 6525, GA, Nijmegen, The Netherlands
| | - Romana Netea-Maier
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands; Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands; Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|