1
|
Chaiwangyen W, Khantamat O, Pintha K, Kangwan N, Onsa-Ard A, Nuntaboon P, Songkrao A, Thippraphan P, Chaiyasit D, de Sousa FLP. Cleistocalyx nervosum var. paniala mitigates oxidative stress and inflammation induced by PM 10 soluble extract in trophoblast cells via miR-146a-5p. Sci Rep 2024; 14:24265. [PMID: 39414845 PMCID: PMC11484928 DOI: 10.1038/s41598-024-73000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Air pollution poses a significant global concern, notably impacting pregnancy outcomes through mechanisms such as DNA damage, oxidative stress, inflammation, and altered miRNA expression, all of which can adversely affect trophoblast functions. Cleistocalyx nervosum var. paniala, known for its abundance of anthocyanins with diverse biological activities including anti-mutagenic, antioxidant, and anti-inflammatory properties, is the focus of this study examining its effect on Particulate Matter 10 (PM10) soluble extract-induced trophoblast cell dysfunction via miRNA expression. The study involved the extraction of C. nervosum fruit using 70% ethanol, followed by fractionation with hexane, dichloromethane, and ethyl acetate. Subsequent testing for total phenolics, flavonoids, anthocyanins, and antioxidant activity revealed the ethyl acetate fraction (CN-EtOAcF) as possessing the highest phenolic and anthocyanin content along with potent antioxidant activity, prompting its selection for further investigation. In vitro studies on HTR-8/SVneo cells demonstrated that 5-10 µg/mL PM10 soluble extract exposure inhibited cell proliferation, migration, invasion, and induced apoptosis. However, pretreatment with 20-80 µg/mL CN-EtOAcF followed by 5 µg/mL PM10 soluble extract exposure exhibited protective effects against PM10 soluble extract-induced damage, including inflammation inhibition and intracellular ROS suppression. Notably, CN-EtOAcF down-regulated PM10-induced miR-146a-5p expression, with SOX5 identified as a potential target. Overall, CN-EtOAcF demonstrated the potential to protect against PM10-induced harm in trophoblast cells, suggesting its possible application in future therapeutic approaches.
Collapse
Affiliation(s)
- Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Amnart Onsa-Ard
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Angkana Songkrao
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dana Chaiyasit
- Clinical Chemistry Laboratory, Chiang Rai Prachanukroh Hospital, Chiang Rai, 57000, Thailand
| | | |
Collapse
|
2
|
Lai Y, Ramírez-Pardo I, Isern J, An J, Perdiguero E, Serrano AL, Li J, García-Domínguez E, Segalés J, Guo P, Lukesova V, Andrés E, Zuo J, Yuan Y, Liu C, Viña J, Doménech-Fernández J, Gómez-Cabrera MC, Song Y, Liu L, Xu X, Muñoz-Cánoves P, Esteban MA. Multimodal cell atlas of the ageing human skeletal muscle. Nature 2024; 629:154-164. [PMID: 38649488 PMCID: PMC11062927 DOI: 10.1038/s41586-024-07348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Collapse
Affiliation(s)
- Yiwei Lai
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ignacio Ramírez-Pardo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Juan An
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Jinxiu Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Esther García-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pengcheng Guo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Julio Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova y Hospital de Liria and Health Care Department Arnau-Lliria, Valencia, Spain
- Department of Orthopedic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- ICREA, Barcelona, Spain.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Chen Z, Shang Y, Zhang X, Duan W, Li J, Zhu L, Ma L, Xiang X, Jia J, Ji X, Gong S. METTL3 mediates SOX5 m6A methylation in bronchial epithelial cells to attenuate Th2 cell differentiation in T2 asthma. Heliyon 2024; 10:e28884. [PMID: 38601672 PMCID: PMC11004579 DOI: 10.1016/j.heliyon.2024.e28884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Objective Asthma, a chronic inflammatory disease in which type 2 T helper cells (Th2) play a causative role in the development of T2 asthma. N6-methyladenosine (m6A) modification, an mRNA modification, and methyltransferase-like 3 (METTL3) is involved in the development of T2 asthma by inhibiting Th2 cell differentiation. Sex determining region Y-box protein 5 (SOX5) is involved in regulating T cell differentiation, but its role in T2 asthma was unclear. The objective of this study was to explore the role of METTL3 and SOX5 in T2 asthma and whether there is an interaction between the two. Materials and methods Adults diagnosed with T2 asthma (n = 14) underwent clinical information collection and pulmonary function tests. In vivo and in vitro T2 asthma models were established using female C57BL/6 mice and human bronchial epithelial cells (HBE). The expressions of METTL3 and SOX5 were detected by Western blot and qRT-PCR and Western blot. Th2 cell differentiation was determined by flow cytometry and IL-4 level was detected by ELISA. m6A methylation level was determined by m6A quantitative assay. The relationship between METTL3 expression and clinical parameters was determined by Spearman rank correlation analysis. The function of METTL3 and SOX5 genes in asthma was investigated in vitro and in vivo. The RNA immunoprecipitation assay detected the specific interaction between METTL3 and SOX5. Results Patients with T2 asthma displayed lower METTL3 levels compared to healthy controls. Within this group, a negative correlation was observed between METTL3 and Th2 cells, while a positive correlation was noted between METTL3 and clinical parameters as well as Th1 cells. In both in vitro and in vivo models representing T2 asthma, METTL3 levels decreased significantly, while SOX5 levels showed the opposite trend. Overexpression of METTL3 gene in HBE cells significantly inhibited Th2 cell differentiation and increased m6A methylation activity. From a mechanism perspective, low METTL3 negatively regulates SOX5 expression through m6A modification dependence, while high SOX5 expression is positively associated with T2 asthma severity. Cell transfection experiments confirmed that METTL3 regulates Th2 cell differentiation and IL-4 release through SOX5. Conclusions Overall, our results indicate that METTL3 alleviates Th2 cell differentiation in T2 asthma by modulating the m6A methylation activity of SOX5 in bronchial epithelial cells. This mechanism could potentially serve as a target for the prevention and management of T2 asthma.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology, Zigui County Traditional Chinese Medicine Hospital, 30 Pinghu Avenue, Zigui, Hubei, 443600, China
| | - Xiufeng Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, 48 Pak Shui Tong Road, Haikou, Hainan, 570000, China
| | - Wentao Duan
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan, 410005, China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan, 410005, China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan, 410005, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, 15 Le Qun Road, Guilin, Guangxi, 541001, China
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, Guizhou, 550004, China
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| |
Collapse
|
4
|
Ahmed EA, Alzahrani AM, Abdelsalam SA, Ibrahim HIM. Flavipin from fungi as a potential inhibitor of rheumatoid arthritis signaling molecules. Inflammopharmacology 2024; 32:1171-1186. [PMID: 38349589 DOI: 10.1007/s10787-024-01429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 04/11/2024]
Abstract
Flavipin, a fungal lower molecular weight biomolecule (MW 196.16 g/mol), has not been yet extensively studied for beneficial preclinical and clinical applications. In recent years, various preclinical mouse models including adjuvant-induced arthritis (AIA) were employed to understand mechanisms associated with Rheumatoid arthritis (RA) and to develop new therapeutic drugs. In the current study, we studied the inhibitory effect of Flavipin on major signaling molecules involved in the inflammatory response during RA using both in-silico virtual interaction and in vivo mouse model of AIA. Our in-silico results clarified that Flavipin interacts with the tumor necrosis factor alpha (TNF-α) through conventional hydrogen binding (H-H) at one of TNF-α critical amino acids tyrosine residues, Tyr119, with binding energy (b.e.) -5.9. In addition, Flavipin binds to ATP-binging sites of the Jesus kinases, JAK1, JAK2 and JAK3, through H-H (b. e. between -5.8 and -6.1) and then it may inhibit JAKs, regulators of RA signaling molecules. Moreover, our molecular dynamics stimulation for the docked TNF-α/Flavipin complex confirmed the specificity and the stability of the interaction. In vitro, Flavipin is not toxic to normal cells at doses below 50 µM (its IC50 in normal fibroblast cell line was above 100 µM). However, in vivo, the arthritis score and hind paw oedema parameters were modulated in Flavipin treated mice. Consistent with the in-silico results the levels of the TNF-α, the nuclear transcription factor kappaB (NF-κB) and the signal transduction and activator of transcription (STAT3, downstream of JAKs) were modulated at joint tissues of the hind-paw of Flavipin/AIA treated mice. Our data suggest Flavipin as a potential therapeutic agent for arthritis can inhibit RA major signaling molecules.
Collapse
Affiliation(s)
- Emad A Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia.
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
| | - Abdulaah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
| | - Salah A Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt
| | - Hairul-Islam M Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam, Pondicherry, 605104, India
| |
Collapse
|
5
|
Ju J, Ma M, Zhang Y, Ding Z, Chen J. State transition and intercellular communication of synovial fibroblasts in response to chronic and acute shoulder injuries unveiled by single-cell transcriptomic analyses. Connect Tissue Res 2024; 65:73-87. [PMID: 38090785 DOI: 10.1080/03008207.2023.2295322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE We aimed to investigate the heterogeneity of synovial fibroblasts and their potential to undergo cell state transitions at the resolution of single cells. MATERIALS AND METHODS We employed the single-cell RNA sequencing (scRNA-seq) approach to comprehensively map the cellular landscape of the shoulder synovium in individuals with chronic rotator cuff tears (RCTs) and acute proximal humerus fractures (PHFs). Utilizing unbiased clustering analysis, we successfully identified distinct subpopulations of fibroblasts within the synovial environment. We utilized Monocle 3 to delineate the trajectory of synovial fibroblast state transition. And we used CellPhone DB v2.1.0 to predict cell-cell communication patterns within the synovial microenvironment. RESULTS We identified eight main cell clusters in the shoulder synovium. Unbiased clustering analysis identified four synovial fibroblast subpopulations, with diverse biological functions associated with protein secretion, ECM remodeling, inflammation regulation and cell division. Lining, mesenchymal, pro-inflammatory and proliferative fibroblasts subsets were identified. Combining the results from StemID and characteristic gene features, mesenchymal fibroblasts exhibited characteristics of fibroblast progenitor cells. The trajectory of synovial fibroblast state transition showed a transition from mesenchymal to pro-inflammatory and lining phenotypes. In addition, the cross talk between fibroblast subclusters increased in degenerative shoulder diseases compared to acute trauma. CONCLUSION We successfully generated the scRNA-seq transcriptomic atlas of the shoulder synovium, which provides a comprehensive understanding of the heterogeneity of synovial fibroblasts, their potential to undergo state transitions, and their intercellular communication in the context of chronic degenerative and acute traumatic shoulder diseases.
Collapse
Affiliation(s)
- Jiabao Ju
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Mingtai Ma
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yichong Zhang
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Zhentao Ding
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianhai Chen
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Li Z, Zhang S, Mao G, Xu Y, Kang Y, Zheng L, Long D, Chen W, Gu M, Zhang Z, Kang Y, Sheng P, Zhang Z. Identification of anterior cruciate ligament fibroblasts and their contribution to knee osteoarthritis progression using single-cell analyses. Int Immunopharmacol 2023; 125:111109. [PMID: 37883816 DOI: 10.1016/j.intimp.2023.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The mechanical properties of the anterior cruciate ligament (ACL) in the knee have been highlighted, but its role in the regulation of the joint microenvironment remains unclear, especially in the progression of Knee Osteoarthritis (KOA). Here, single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) data were integrated to reveal the transcriptional and epigenomic landscape of ACL in normal and OA states. We identified a novel subpopulation of fibroblasts in ACL, which provides new insights into the role of the ACL in knee homeostasis and disease. Degeneration of the ACL during OA mechanically alters the knee joint homeostasis and influences the microenvironment by regulating inflammatory- and osteogenic-related factors, thereby contributing to the progression of KOA. Additionally, the specific mechanism by which these Inflammation-associated Fibroblasts (IAFs) regulate KOA progression was uncovered, providing new foundation for the development of targeted treatments for KOA.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shiyong Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guping Mao
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yiyang Xu
- Department of Orthopaedics, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, China
| | - Yunze Kang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dianbo Long
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weishen Chen
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Minghui Gu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhiqi Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Yan Kang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
7
|
Song W, Zhang H, Pan Y, Xia Q, Liu Q, Wu H, Du S, Zhang F, Liu H. LED irradiation at 630 nm alleviates collagen-induced arthritis in mice by inhibition of NF-κB-mediated MMPs production. Photochem Photobiol Sci 2023; 22:2271-2283. [PMID: 37394546 DOI: 10.1007/s43630-023-00449-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/11/2023] [Indexed: 07/04/2023]
Abstract
Matrix metallopreteinase (MMP), a family of matrix degrading enzyme, plays a significant role in persistent and irreversible joint damage in rheumatoid arthritis (RA). Photobiomodulatory therapy (PBMT) has become an emerging adjunct therapy for RA. However, the molecular mechanism of PBMT on RA remains unclear. The purpose of this study is to explore the effect of 630 nm light emitting diode (LED) irradiation on RA and its underly molecular mechanism. Arthritis clinic scores, histology analysis and micro-CT results show that 630 nm LED irradiation ameliorates collagen-induced arthritis (CIA) in mice with the reduction of the extents of paw swelling, inflammation and bone damage. 630 nm LED irradiation significantly reduces MMP-3 and MMP-9 levels and inhibits p65 phosphorylation level in the paws of CIA mice. Moreover, 630 nm LED irradiation significantly inhibits the mRNA and protein levels of MMP-3 and MMP-9 in TNF-α-treated MH7A cells, a human synovial cell line. Importantly, 630 nm LED irradiation reduces TNF-α-induced the phosphorylated level of p65 but not alters STAT1, STAT3, Erk1/2, JNK and p38 phosphorylation levels. Immunofluorescence result showed that 630 nm LED irradiation blocks p65 nuclear translocation in MH7A cells. In addition, other MMPs mRNA regulated by NF-κB were also significantly inhibited by LED irradiation in vivo and in vitro. These results indicates that 630 nm LED irradiation reduces the MMPs levels to ameliorate the development of RA by inhibiting the phosphorylation of p65 selectively, suggesting that 630 nm LED irradiation may be a beneficial adjunct therapy for RA.Graphical abstract.
Collapse
Affiliation(s)
- Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hanxu Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yue Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Qing Xia
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Qiannan Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hao Wu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Siqi Du
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Hailiang Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
8
|
Qiu Y, Liu C, Shi Y, Hao N, Tan W, Wang F. Integrating bioinformatic resources to identify characteristics of rheumatoid arthritis-related usual interstitial pneumonia. BMC Genomics 2023; 24:450. [PMID: 37563706 PMCID: PMC10413595 DOI: 10.1186/s12864-023-09548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is often accompanied by a common extra-articular manifestation known as RA-related usual interstitial pneumonia (RA-UIP), which is associated with a poor prognosis. However, the mechanism remains unclear. To identify potential mechanisms, we conducted bioinformatics analysis based on high-throughput sequencing of the Gene Expression Omnibus (GEO) database. RESULTS Weighted gene co-expression network analysis (WGCNA) analysis identified 2 RA-positive related modules and 4 idiopathic pulmonary fibrosis (IPF)-positive related modules. A total of 553 overlapped differentially expressed genes (DEG) were obtained, of which 144 in the above modules were further analyzed. The biological process of "oxidative phosphorylation" was found to be the most relevant with both RA and IPF. Additionally, 498 up-regulated genes in lung tissues of RA-UIP were screened out and enriched by 7 clusters, of which 3 were closely related to immune regulation. The analysis of immune infiltration showed a characteristic distribution of peripheral immune cells in RA-UIP, compared with IPF-UIP in lung tissues. CONCLUSIONS These results describe the complex molecular and functional landscape of RA-UIP, which will help illustrate the molecular pathological mechanism of RA-UIP and identify new biomarkers and therapeutic targets for RA-UIP in the future.
Collapse
Affiliation(s)
- Yulu Qiu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chang Liu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yumeng Shi
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nannan Hao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Li C, Zhang J, Bi Y. Unveiling the prognostic significance of SOX5 in esophageal squamous cell carcinoma: a comprehensive bioinformatic and experimental analysis. Aging (Albany NY) 2023; 15:7565-7582. [PMID: 37531195 PMCID: PMC10457070 DOI: 10.18632/aging.204924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND This study aimed to investigate the expression and prognostic significance of SOX5 in esophageal squamous cell carcinoma (ESCC). METHODS Gene Expression Omnibus (GEO) data were analyzed to assess SOX5 expression in ESCC and normal tissues. Survival analysis was performed to evaluate its prognostic significance. Pathway enrichment analysis was conducted to identify pathways associated with low SOX5 expression. Methylation status of CpG sites in ESCC cases was examined, and SOX5 expression was evaluated. Differential expression and ChIP-seq data analyses were used to identify genes significantly correlated with SOX5 and to obtain target genes. A protein-protein interaction (PPI) network was constructed using hub genes, and their association with immune cell infiltration was determined. In vitro ESCC cell experiments validated the findings. RESULTS SOX5 was significantly downregulated in ESCC samples compared to normal samples. Its downregulation was associated with shorter survival in ESCC patients. Pathway enrichment analysis revealed enrichment in regulated necrosis, NLRP3 inflammasome, formation of the cornified envelope, and PD-1 signaling. Methylation status of two CpG sites negatively correlated with SOX5 expression. Differential expression analysis identified 122 genes significantly correlated with SOX5, and 28 target genes were obtained from ChIP-seq analysis. Target genes were enriched in DNA replication, cell cycle, spindle, and ATPase activity. Five hub genes were identified, and the PPI network showed significant associations with immune cell infiltration. In vitro experiments confirmed SOX5 downregulation, upregulation of hub genes, and their functional effects on ESCC cell apoptosis and proliferation. CONCLUSIONS These findings enhance understanding of SOX5 in ESCC and potential therapeutic strategies.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Cardiothoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
- Department of Cardiothoracic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Jialing Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Yanwen Bi
- Department of Cardiothoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
10
|
Wei Q, Zhu X, Wang L, Zhang W, Yang X, Wei W. Extracellular matrix in synovium development, homeostasis and arthritis disease. Int Immunopharmacol 2023; 121:110453. [PMID: 37331300 DOI: 10.1016/j.intimp.2023.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Extracellular matrix (ECM) is a three-dimensional network entity composed of extracellular macromolecules. ECM in synovium not only supports the structural integrity of synovium, but also plays a crucial role in regulating homeostasis and damage repair response in synovium. Obvious disorders in the composition, behavior and function of synovial ECM will lead to the occurrence and development of arthritis diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis (PsA). Based on the importance of synovial ECM, targeted regulation of the composition and structure of ECM is considered to be an effective measure for the treatment of arthritis disease. This paper reviews the current research status of synovial ECM biology, discusses the role and mechanism of synovial ECM in physiological status and arthritis disease, and summarizes the current strategies for targeting synovial ECM to provide information for the pathogenesis, diagnosis and treatment of arthritis disease.
Collapse
Affiliation(s)
- Qi Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuemin Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
11
|
Kasher M, Williams FMK, Freidin MB, Cherny SS, Malkin I, Livshits G. Insights into the pleiotropic relationships between chronic back pain and inflammation-related musculoskeletal conditions: rheumatoid arthritis and osteoporotic abnormalities. Pain 2023; 164:e122-e134. [PMID: 36017880 DOI: 10.1097/j.pain.0000000000002728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The ageing process includes the development of debilitating musculoskeletal (MSK) conditions, including chronic back pain (CBP), rheumatoid arthritis (RA), and osteoporosis (OP). The mechanisms involved in the genetic-epidemiological relationships between these MSK phenotypes are controversial and limited and thus require clarification, in particular, between CBP and the other MSK phenotypes. A cross-sectional statistical analysis was conducted using Europeans from the UK Biobank data collection, including 73,794 CBP, 4883 RA, and 7153 OP cases as well as 242,216 calcaneus bone mineral density scores. C-reactive protein (CRP) was measured for 402,165 subjects in this sample. Genetic correlations were assessed to evaluate shared genetic background between traits. Mendelian randomization was performed to assess a causal relationship between CBP and RA and OP along with other risk factors, such as CRP. Colocalization analysis was conducted to identify shared pleiotropic regions between the examined traits. Bayesian modelling was performed to determine a potential pathway that may explain the interrelationships among these traits. Mendelian randomization analyses revealed that CRP causally predicts CBP only (β = 0.183, 95% CI = 0.077-0.290, P -value = 0.001). Horizontally pleiotropy appeared to explain the relationship between CBP and RA and OP. Through colocalization analysis, several genomic regions emerged describing common genetic influences between CBP and its proposed risk factors, including HLA-DQA1/HLA-DQB1, APOE , SOX5, and MYH7B as well as Histone 1 genes. We speculate that among other factors, CBP and its MSK comorbidities may arise from common inflammatory mechanisms. Colocalized identified genes may aid in advancing or improving the mode of treatment in patients with CBP.
Collapse
Affiliation(s)
- Melody Kasher
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Stacey S Cherny
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ida Malkin
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, United Kingdom
- Adelson Medical School, Ariel University, Ariel, Israel
| |
Collapse
|
12
|
Chen W, Fang Y, Wang H, Tan X, Zhu X, Xu Z, Jiang H, Wu X, Hong W, Wang X, Tu J, Wei W. Role of chemokine receptor 2 in rheumatoid arthritis: A research update. Int Immunopharmacol 2023; 116:109755. [PMID: 36724626 DOI: 10.1016/j.intimp.2023.109755] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
Rheumatoid arthritis (RA) is a multisystemic and inflammatory autoimmune disease characterized by joint destruction. The C-C motif chemokine receptor 2 (CCR2) is mainly expressed in monocytes and T cells, initiating their migration to sites of inflammation, ultimately leading to cartilage damage and bone destruction. CCR2 has long been considered a prospective target for treating autoimmune diseases. However, clinical studies on inhibitors or neutralizing antibodies against CCR2 in RA have exhibited limited efficacy. Recent evidence indicates that CCR2 may play different roles in RA. Hence, a comprehensive understanding regarding the role of CCR2 may facilitate the development of targeted drugs and provide novel insights for improving CCL2-mediated inflammatory diseases. This review summarizes the biological characteristics of CCR2, the related signaling pathways, and recent developments in CCR2-targeting therapeutics.
Collapse
Affiliation(s)
- Weile Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhen Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
13
|
Renaud L, Waldrep KM, da Silveira WA, Pilewski JM, Feghali-Bostwick CA. First Characterization of the Transcriptome of Lung Fibroblasts of SSc Patients and Healthy Donors of African Ancestry. Int J Mol Sci 2023; 24:3645. [PMID: 36835058 PMCID: PMC9966000 DOI: 10.3390/ijms24043645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder that results in fibrosis of the skin and visceral organs. SSc-associated pulmonary fibrosis (SSc-PF) is the leading cause of death amongst SSc patients. Racial disparity is noted in SSc as African Americans (AA) have a higher frequency and severity of disease than European Americans (EA). Using RNAseq, we determined differentially expressed genes (DEGs; q < 0.1, log2FC > |0.6|) in primary pulmonary fibroblasts from SSc lungs (SScL) and normal lungs (NL) of AA and EA patients to characterize the unique transcriptomic signatures of AA-NL and AA-SScL fibroblasts using systems-level analysis. We identified 69 DEGs in "AA-NL vs. EA-NL" and 384 DEGs in "AA-SScL vs. EA-SScL" analyses, and a comparison of disease mechanisms revealed that only 7.5% of DEGs were commonly deregulated in AA and EA patients. Surprisingly, we also identified an SSc-like signature in AA-NL fibroblasts. Our data highlight differences in disease mechanisms between AA and EA SScL fibroblasts and suggest that AA-NL fibroblasts are in a "pre-fibrosis" state, poised to respond to potential fibrotic triggers. The DEGs and pathways identified in our study provide a wealth of novel targets to better understand disease mechanisms leading to racial disparity in SSc-PF and develop more effective and personalized therapies.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Willian A. da Silveira
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Joseph M. Pilewski
- Department of Medicine, Pulmonary, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Knights AJ, Farrell EC, Ellis OM, Lammlin L, Junginger LM, Rzeczycki PM, Bergman RF, Pervez R, Cruz M, Knight E, Farmer D, Samani AA, Wu CL, Hankenson KD, Maerz T. Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 in osteoarthritis. Ann Rheum Dis 2023; 82:272-282. [PMID: 36175067 PMCID: PMC9972892 DOI: 10.1136/ard-2022-222773] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Synovium is acutely affected following joint trauma and contributes to post-traumatic osteoarthritis (PTOA) progression. Little is known about discrete cell types and molecular mechanisms in PTOA synovium. We aimed to describe synovial cell populations and their dynamics in PTOA, with a focus on fibroblasts. We also sought to define mechanisms of synovial Wnt/β-catenin signalling, given its emerging importance in arthritis. METHODS We subjected mice to non-invasive anterior cruciate ligament rupture as a model of human joint injury. We performed single-cell RNA-sequencing to assess synovial cell populations, subjected Wnt-GFP reporter mice to joint injury to study Wnt-active cells, and performed intra-articular injections of the Wnt agonist R-spondin 2 (Rspo2) to assess whether gain of function induced pathologies characteristic of PTOA. Lastly, we used cultured fibroblasts, macrophages and chondrocytes to study how Rspo2 orchestrates crosstalk between joint cell types. RESULTS We uncovered seven distinct functional subsets of synovial fibroblasts in healthy and injured synovium, and defined their temporal dynamics in early and established PTOA. Wnt/β-catenin signalling was overactive in PTOA synovium, and Rspo2 was strongly induced after injury and secreted exclusively by Prg4hi lining fibroblasts. Trajectory analyses predicted that Prg4hi lining fibroblasts arise from a pool of Dpp4+ mesenchymal progenitors in synovium, with SOX5 identified as a potential regulator of this emergence. We also showed that Rspo2 orchestrated pathological crosstalk between synovial fibroblasts, macrophages and chondrocytes. CONCLUSIONS Synovial fibroblasts assume distinct functional identities during PTOA in mice, and Prg4hi lining fibroblasts secrete Rspo2 that may drive pathological joint crosstalk after injury.
Collapse
Affiliation(s)
- Alexander J. Knights
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Easton C. Farrell
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Olivia M. Ellis
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey Lammlin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lucas M. Junginger
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Phillip M. Rzeczycki
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel F. Bergman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rida Pervez
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Monique Cruz
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Knight
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dennis Farmer
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Alexa A. Samani
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Kurt D. Hankenson
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Long noncoding RNA H19 synergizes with STAT1 to regulate SNX10 in rheumatoid arthritis. Mol Immunol 2023; 153:106-118. [PMID: 36459790 DOI: 10.1016/j.molimm.2022.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Erosive destruction of joint structures is an important event in the rheumatoid arthritis (RA) development where fibroblast-like synoviocytes (FLS) represent the main effectors. The implication of long noncoding RNAs (lncRNAs) in RA has not been clearly established. Here, we sought to assess the function of lncRNA H19 in RA by assessing its contribution to the phenotype of FLS. H19 was overexpressed in RA-FLS, and H19 promoted RA-FLS proliferation, invasion as well as angiogenesis and reduced RA-FLS apoptosis. Moreover, H19 loss significantly alleviated joint redness and swelling and reduced inflammatory response, synovial hyperplasia and cartilage damage in arthritic mice induced by collagen. Mechanistically, H19 significantly increased the transcription of sorting nexin (SNX) 10 in RA-FLS by promoting STAT1 translocation into the nucleus. Overexpression of SNX10 or STAT1 mitigated the repressing effects of H19 loss on RA in mice. Our findings highlight that H19 upregulation may result in the development of FLS-mediated RA via the STAT1/SNX10 axis. H19 might serve as a possible therapeutic target for RA treatment.
Collapse
|
16
|
Cai L, Zhou MY, Hu S, Liu FY, Wang MQ, Wang XH, Jiang F, Feng XW, Liu XS, Li R. Umbelliferone Inhibits Migration, Invasion and Inflammation of Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Relieves Adjuvant-Induced Arthritis in Rats by Blockade of Wnt/β-Catenin Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1945-1962. [PMID: 35997647 DOI: 10.1142/s0192415x22500835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Umbelliferone (UMB), a natural coumarin compound, has been reported to possess anti-rheumatic effects on rheumatoid arthritis (RA) experimental models, but its potential role of UMB in regulating migration, invasion and inflammation of RA fibroblast-like synoviocytes (FLS) remain unclear. Herein, MTT assay was performed to confirm the non-cytotoxic concentrations (10, 20, and 40[Formula: see text][Formula: see text]M) and the treatment time (24[Formula: see text]h) of UMB on TNF-[Formula: see text]-stimulated RA FLS (MH7A cells) in vitro. Results of wound-healing, transwell and phalloidin staining assays revealed that UMB inhibited TNF-[Formula: see text]-induced migration, invasion and F-actin cytoskeletal reorganization in MH7A. Results of ELISA, western blot and gelatin zymography indicated that UMB decreased the productions of pro-inflammatory factors, including IL-1[Formula: see text], IL-6, IL-8, MMP-2 and MMP-9, and inhibited MMP-2 activity in TNF-[Formula: see text]-stimulated MH7A cells. In vivo, UMB (25[Formula: see text]mg/kg and 50[Formula: see text]mg/kg) relieved the joint damage and synovial inflammation in rats with adjuvant-induced arthritis (AIA). Mechanistically, UMB could suppress Wnt/[Formula: see text]-catenin signaling both in TNF-[Formula: see text]-induced MH7A cells and in AIA rat synovium, evidenced by decreasing Wnt1 protein level, activating GSK-3[Formula: see text] kinase by blocking GSK-3[Formula: see text] (Ser9) phosphorylation, and reducing the protein level and nuclear translocation of [Formula: see text]-catenin. Importantly, combined use of lithium chloride (a Wnt/[Formula: see text]-catenin signaling agonist) eliminated the inhibitory effects of UMB on migration, invasion and inflammation in vitro and the anti-arthritic effects of UMB in vivo. We concluded that UMB inhibited TNF-[Formula: see text]-induced migration, invasion and inflammation of RA FLS and attenuated the severity of rat AIA through its ability to block Wnt/[Formula: see text]-catenin signaling pathway.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Shuang Hu
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Xiao-Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Xiao-Wen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Xue-Song Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| |
Collapse
|
17
|
Guo D, Lin C, Lu Y, Guan H, Qi W, Zhang H, Shao Y, Zeng C, Zhang R, Zhang H, Bai X, Cai D. FABP4 secreted by M1-polarized macrophages promotes synovitis and angiogenesis to exacerbate rheumatoid arthritis. Bone Res 2022; 10:45. [PMID: 35729106 PMCID: PMC9213409 DOI: 10.1038/s41413-022-00211-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence shows that adipokines play a vital role in the development of rheumatoid arthritis (RA). Fatty acid-binding protein 4 (FABP4), a novel adipokine that regulates inflammation and angiogenesis, has been extensively studied in a variety of organs and diseases. However, the effect of FABP4 on RA remains unclear. Here, we found that FABP4 expression was upregulated in synovial M1-polarized macrophages in RA. The increase in FABP4 promoted synovitis, angiogenesis, and cartilage degradation to exacerbate RA progression in vivo and in vitro, whereas BMS309403 (a FABP4 inhibitor) and anagliptin (dipeptidyl peptidase 4 inhibitor) inhibited FABP4 expression in serum and synovial M1-polarized macrophages in mice to alleviate RA progression. Further studies showed that constitutive activation of mammalian target of rapamycin complex 1 (mTORC1) by TSC1 deletion specifically in the myeloid lineage regulated FABP4 expression in macrophages to exacerbate RA progression in mice. In contrast, inhibition of mTORC1 by ras homolog enriched in brain (Rheb1) disruption specifically in the myeloid lineage reduced FABP4 expression in macrophages to attenuate RA development in mice. Our findings established an essential role of FABP4 that is secreted by M1-polarized macrophages in synovitis, angiogenesis, and cartilage degradation in RA. BMS309403 and anagliptin inhibited FABP4 expression in synovial M1-polarized macrophages to alleviate RA development. Hence, FABP4 may represent a potential target for RA therapy.
Collapse
Affiliation(s)
- Dong Guo
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Yuheng Lu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hong Guan
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Weizhong Qi
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan Shao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China. .,State Key Laboratory of Organ Failure Research, Department of Cell Biology, Southern Medical University School of Basic Medical Sciences, Guangzhou, China.
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| |
Collapse
|
18
|
Xu Z, Shang W, Zhao Z, Zhang B, Liu C, Cai H. Curcumin alleviates rheumatoid arthritis progression through the phosphatidylinositol 3-kinase/protein kinase B pathway: an in vitro and in vivo study. Bioengineered 2022; 13:12899-12911. [PMID: 35609329 PMCID: PMC9276000 DOI: 10.1080/21655979.2022.2078942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by synovial inflammation and joint bone and cartilage destruction. Curcumin can improve joint inflammation in rats with arthritis and inhibit synovial revascularization and abnormal proliferation of fibroblasts. However, it is unclear whether curcumin affects the RA progression. The TNF-α-stimulated primary RA fibroblast-like synoviocytes (RA-FLS) and SV-40 transformed MH7A cells were used as the in vitro model of RA. A mouse model of collagen-induced arthritis (CIA) was used as the in vivo model. The effects of curcumin on cell proliferation, apoptosis, migration, invasion, and inflammatory response were assessed by colony formation, flow cytometry, wound scratch, Transwell assays, and western blotting analysis. Arthritis index scores and degree of paw swelling in mice were assessed to evaluate RA. Curcumin inhibited the TNF-α-induced proliferation, migration, invasion of MH7A and RA-FLS cells and promoted cell apoptosis. Administration with curcumin reversed the CIA-induced increase in arthritis scores, hind paw edema, and loss of appetite, while these effects were rescued by insulin-like growth factor 1, the upstream cytokine of PI3K/AKT. Moreover, curcumin suppressed the inflammatory response by reducing TNF-α, IL-6, and IL-17 secretion in CIA-stimulated mice. Curcumin has an excellent anti-RA effect in vivo and in vitro, which is exerted by inhibiting the expression of pro-inflammatory factors TNF-a, IL-6 and IL-17 and inhibiting the activation of PI3K/AKT signaling pathway. Thus, curcumin may be a promising candidate for anti-RA treatment.
Collapse
Affiliation(s)
- Zihan Xu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Shang
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Zhiming Zhao
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Beibei Zhang
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Chunli Liu
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hui Cai
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Zhang A, Lu R, Lang H, Wu M. MiR-361-5p promotes proliferation and inhibits apoptosis of fibroblast-like synoviocytes via targeting ZBTB10 in rheumatoid arthritis. Autoimmunity 2022; 55:310-317. [PMID: 35608340 DOI: 10.1080/08916934.2022.2073588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This study is aimed to explore the key role of miR-361-5p in fibroblast-like synovial (FLS) cells of rheumatoid arthritis (RA) and explore the underlying mechanism. METHODS First, we performed RT-qPCR to evaluate the expression of miR-361-5p in both synovial tissues of RA patients and cultured RA-FLS cells. Then CCK-8 assay, EdU staining, Western blot, flow cytometry, and ELISA were conducted to estimate the influence of inhibiting miR-361-5p on RA-FLS cells. Moreover, we used bioinformatics analysis to predict the potential targets of miR-361-5p and perform a dual luciferase report assay for verification. Finally, rescue experiments were performed to prove the role of miR-361-5p/Zinc Finger And BTB Domain Containing 10 (ZBTB10) in the proliferation, cell cycle, and apoptosis of RA-FLS. RESULTS We find that the expression of miR-361-5p is increased in both RA tissues and cultured RA-FLS cells. The inhibition of miR-361-5p can not only inhibit proliferation, arrest the cell cycle in G1/G0 phase, and increase apoptosis, but also reduce the inflammatory factors secreted by RA-FLS cells. In addition, ZBTB10 is a direct target for miR-361-5p, over-expression of ZBTB10 reverses the effect of miR-361-5p in RA-FLS. CONCLUSIONS MiR-361-5p promotes the progression of rheumatoid arthritis by targeting ZBTB10. Key pointsThe influences of miR-361-5p on RA-FLS cells.
Collapse
Affiliation(s)
- Aixian Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.,Department of General Practice Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rong Lu
- Department of General Practice Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huifang Lang
- Endocrine Department, The First Hospital of Tsinghua University, Beijing, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
20
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Tong Y, Bao C, Xu YQ, Tao L, Zhou Y, Zhuang L, Meng Y, Zhang H, Xue J, Wang W, Zhang L, Pan Q, Shao Z, Hu T, Guo Q, Xue Q, Lu H, Luo Y. The β3/5 Integrin-MMP9 Axis Regulates Pulmonary Inflammatory Response and Endothelial Leakage in Acute Lung Injury. J Inflamm Res 2021; 14:5079-5094. [PMID: 34675589 PMCID: PMC8502060 DOI: 10.2147/jir.s331939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute lung injury (ALI) is a severe respiratory disease with high rates of morbidity and mortality. Many mediators regarding endogenous or exogenous are involved in the pathophysiology of ALI. Here, we have uncovered the involvement of integrins and matrix metalloproteinases, as critical determinants of excessive inflammation and endothelial permeability, in the regulation of ALI. Methods Inflammatory cytokines were measured by quantitative real-time PCR for mRNA levels and ELISA for secretion levels. Endothelial permeability assay was detected by the passage of rhodamine B isothiocyanate-dextran. Mice lung permeability was assayed by Evans blue albumin (EBA). Western blot was used for protein level measurements. The intracellular reactive oxygen species (ROS) were evaluated using a cell-permeable probe, DCFH-DA. Intratracheal injection of lipopolysaccharide (LPS) into mice was conducted to establish the lung injury model. Results Exogenous MMP-9 significantly aggravated the inflammatory response and permeability in mouse pulmonary microvascular endothelial cells (PMVECs) treated by LPS, whereas knockdown of MMP-9 exhibited the opposite phenotypes. Knockdown of integrin β3 or β5 in LPS-treated PMVECs significantly downregulated MMP-9 expression and decreased inflammatory response and permeability in the presence or absence of exogenous MMP-9. Additionally, the interaction of MMP-9 and integrin β5 was impaired by a ROS scavenger, which further decreased the pro-inflammatory cytokines production and endothelial leakage in PMVECs subjected to co-treatment (LPS with exogenous MMP-9). In vivo studies, exogenous MMP-9 treatment or knockdown β3 integrin significantly decreased survival in ALI mice. Notably, knockdown of β5 integrin alone had no remarkable effect on survival, but which combined with anti-MMP-9 treatment significantly improved the survival by ameliorating excessive lung inflammation and permeability in ALI mice. Conclusion These findings support the β3/5 integrin-MMP-9 axis as an endogenous signal that could play a pivotal role in regulating inflammatory response and alveolar-capillary permeability in ALI.
Collapse
Affiliation(s)
- Yao Tong
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Chengrong Bao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yi-Qiong Xu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lei Tao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yao Zhou
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Ying Meng
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Hui Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jingjing Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Weijun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lele Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qingbo Pan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhenzhen Shao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Tianran Hu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qian Guo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
22
|
Activity of fibroblast-like synoviocytes in rheumatoid arthritis was impaired by dickkopf-1 targeting siRNA. Chin Med J (Engl) 2021:679-686. [PMID: 32068606 PMCID: PMC7190238 DOI: 10.1097/cm9.0000000000000697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLSs), resident mesenchymal cells of synovial joints, play an important role in the pathogenesis of rheumatoid arthritis (RA). Dickkopf-1 (DKK-1) has been proposed to be a master regulator of bone remodeling in inflammatory arthritis. Here, potential impairation on the activity of FLSs derived from RA to small interfering RNAs (siRNAs) targeting DKK-1 was investigated. METHODS siRNAs targeting DKK-1 were transfected into FLSs of patients with RA. Interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP) 2, MMP3, MMP9, transforming growth factor (TGF)-β1, TGF-β2 and monocyte chemoattractant protein (MCP)-1 levels in the cell culture supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Invasion assay and H incorporation assay were utilized to investigate the effects of siRNAs targeting DKK-1 on FLSs invasion and cell proliferation, respectively. Western blotting was performed to analyze the expression of nuclear factor (NF)-κB, interleukin-1 receptor-associated kinase (IRAK)1, extracellular regulated protein kinases (ERK)1, Jun N-terminal kinase (JNK) and β-catenin in FLSs. RESULTS DKK-1 targeting siRNAs inhibited the expression of DKK-1 in FLSs (P < 0.01). siRNAs induced a significant reduction of the levels of IL-6, IL-8, MMP2, MMP3 and MMP9 in FLSs compared to the control group (P < 0.05). DKK-1 targeting siRNAs inhibited the proliferation and invasion of FLSs (P < 0.05). Important molecules of pro-inflammatory signaling in FLSs, including IRAK1 and ERK1, were decreased by the inhibition of DKK-1 in FLSs. In contrast, β-catenin, a pivotal downstream molecule of the Wnt signaling pathway was increased. CONCLUSIONS By inhibiting DKK-1, we were able to inhibit the proliferation, invasion and pro-inflammatory cytokine secretion of FLSs derived from RA, which was mediated by the ERK or the IRAK-1 signaling pathway. These data indicate the application of DKK-1 silencing could be a potential therapeutic approach to RA.
Collapse
|
23
|
Wei H, Wu Q, Shi Y, Luo A, Lin S, Feng X, Jiang J, Zhang M, Wang F, Tan W. MicroRNA-15a/16/SOX5 axis promotes migration, invasion and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Aging (Albany NY) 2020; 12:14376-14390. [PMID: 32678069 PMCID: PMC7425471 DOI: 10.18632/aging.103480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Fibroblast-like synoviocytes (FLSs) are key effector cells in the pathogenesis of rheumatoid arthritis (RA) and display a unique aggressive tumor-like phenotype with remarkable hyperplasia, increased cell migration and invasion. How FLSs undergo these changes in RA remains unknown. We previously reported a novel function of transcription factor SOX5 in RA-FLSs that promote cell migration and invasion. In this study, we found that miR-15a/16 directly targets the SOX5 3’UTR and suppresses SOX5 expression. Moreover, miR-15a/16 is significantly down-regulated in RA-FLSs, which negatively correlates with SOX5 expression. Transfection with miR-15a/16 mimics in RA-FLSs inhibits cell migration, invasion, IL-1β and TNFα expression. Overexpression SOX5 in RA-FLSs decreases miR-15a/16 expression and rescues miR-15a/16-mediated inhibitory effect. Furthermore, RA patients with the lower baseline serum miR-15a/16 level present poor response of 3 months disease-modifying antirheumatic drugs (DMARDs) therapy. Collectively, this study reveals that miR-15a/16/SOX5 axis functions as a key driver of RA-FLSs invasion, migration and inflammatory response in a mutual negative feedback loop and correlates with DMARDs treatment response in RA.
Collapse
Affiliation(s)
- Hua Wei
- Division of Rheumatology, Clinical Medical College, Yangzhou University, Jiangsu Province, China
| | - Qin Wu
- Division of Rheumatology, Clinical Medical College, Yangzhou University, Jiangsu Province, China
| | - Yumeng Shi
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Aishu Luo
- Division of Rheumatology, The First People's Hospital of Yancheng, Jiangsu Province, China
| | - Shiyu Lin
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Xiaoke Feng
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Jiangsu Province, China
| | - Jintao Jiang
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Jiangsu Province, China
| | - Miaojia Zhang
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Fang Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Wenfeng Tan
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
24
|
Song B, Li X, Xu Q, Yin S, Wu S, Meng X, Huang C, Li J. Inhibition of BMP3 increases the inflammatory response of fibroblast-like synoviocytes in rheumatoid arthritis. Aging (Albany NY) 2020; 12:12305-12323. [PMID: 32568738 PMCID: PMC7343483 DOI: 10.18632/aging.103422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disease. Fibroblast-like synoviocytes (FLS) are a key component of invasive pannus and a pathogenetic mechanism in RA. Expression of bone morphogenetic protein 3 (BMP3) mRNA is reportedly decreased in the arthritic synovium. We previously showed that BMP3 expression is significantly downregulated in the synovial tissues of RA patients and models of adjuvant-induced arthritis (AIA). In the present study, we explored the association between BMP3 and FLS migration and secretion of proinflammatory factors in RA. We found that inhibition of BMP3 expression using BMP3 siRNA increased the proinflammatory chemokines and migration of FLS stimulated with TNF-α. Inhibition of BMP3 expression also increased expression of IL-6, IL-1β, IL-17A, CCL-2, CCL-3, VCAM-1, MMP-3, and MMP-9, but not TIMP-1, in AIA and RA FLS. Correspondingly, induction of BMP3 overexpression through intra-articular injection of ad-BMP3 diminished arthritis severity in AIA rats. We also found that BMP3 may inhibit activation of TGF-β1/Smad signaling. These data indicate that BMP3 may suppress the proliferation and migration of FLS via the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Biao Song
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Suqin Yin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Sha Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| |
Collapse
|
25
|
Tolg C, Liu M, Cousteils K, Telmer P, Alam K, Ma J, Mendina L, McCarthy JB, Morris VL, Turley EA. Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization. J Biol Chem 2020; 295:5427-5448. [PMID: 32165498 PMCID: PMC7170511 DOI: 10.1074/jbc.ra119.010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/27/2020] [Indexed: 01/04/2023] Open
Abstract
Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context-dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor-regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Muhan Liu
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Katelyn Cousteils
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Patrick Telmer
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Khandakar Alam
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Jenny Ma
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Leslie Mendina
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Vincent L Morris
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 3K7, Canada
| | - Eva A Turley
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada; Departments of Oncology, Biochemistry, and Surgery, Schulich School of Medicine, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
26
|
Zhang L, Xu X, Chen Y, Li L, Zhang L, Li Q. Mapping of developmental dysplasia of the hip to two novel regions at 8q23-q24 and 12p12. Exp Ther Med 2020; 19:2799-2803. [PMID: 32256763 DOI: 10.3892/etm.2020.8513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022] Open
Abstract
Developmental dysplasia of the hip (DDH), previously known as congenital hip dislocation, is a frequently disabling condition characterized by premature arthritis later in life. Genetic factors play a key role in the aetiology of DDH. In the present study, a genome-wide linkage scan with the Affymetrix 10K GeneChip was performed on a four-generation Chinese family, which included 19 healthy members and 5 patients. Parametric and non-parametric multipoint linkage analyses were carried out with Genespring GT v.2.0 software, and the logarithm of odds (LOD) score and nonparametric linkage (NPL) score were calculated. Parametric linkage analysis was performed, assuming an autosomal recessive trait with full penetrance and Affymetrix 'Asian' allele frequencies. The strongest evidence for linkage was found on chromosome 8q23-24, with a peak LOD score of 2.658 (θ=0), covering 2.377 Mb from single nucleotide polymorphisms (SNPs) rs724717 to rs720132. This interval included nine additional successive SNPs: rs1566071, rs1902121, rs756404, rs702768, rs777813, rs2033995, rs147959, rs2884367 and rs1898287. The same region also yielded the highest NPL score of 2.883 (P=0.0156) from the non-parametric multipoint linkage analysis. Additionally, the second highest NPL score of 2.727 (P=0.0156) and LOD score of 2.528 (θ=0) were obtained on chromosome 12p12 for three consecutive markers (rs1919980, rs763853 and rs725124). This region overlapped a narrow distance of 0.642 Mb. Notably, in addition to these two regions; no significant linkage was identified for other chromosomal regions (with LOD and NPL scores >2.0). For the first time, at least for this pedigree, the evidence in the present study showed that DDH is mapped to two novel regions at 8q23-q24 and 12p12.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaowen Xu
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yufan Chen
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lianyong Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lijun Zhang
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qiwei Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
27
|
Tong X, Zeng H, Gu P, Wang K, Zhang H, Lin X. Monocyte chemoattractant protein‑1 promotes the proliferation, migration and differentiation potential of fibroblast‑like synoviocytes via the PI3K/P38 cellular signaling pathway. Mol Med Rep 2020; 21:1623-1632. [PMID: 32016482 DOI: 10.3892/mmr.2020.10969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and joint destruction. Monocyte chemoattractant protein 1 (MCP‑1) is highly expressed in the joints of patients suffering from RA. The present study aimed to evaluate the effects of MCP‑1 on the phenotype of fibroblast‑like synoviocytes (FLSs) and their differentiation potential towards vascular endothelial cells. The expression of MCP‑1 in collagen‑induced arthritis (CIA) rats was investigated by PCR, ELISA and immunohistology. Cell proliferation induced by MCP‑1 was measured using a Cell Counting Kit‑8 (CCK‑8) and 5‑Bromo‑2‑deoxyuridine ELISA assay. In addition, the effects of MCP‑1 on the migration of FLSs was examined using a Transwell assay. Activation of PI3K and P38 were investigated by western blotting following MCP‑1 treatment. The vascular endothelial cell markers, tumor necrosis factor alpha (TNF‑α) and interleukin‑1 beta (IL‑β), were also examined by western blotting. LY294002 [PI3K inhibitor, (LY)] and SB203580 [P38 inhibitor, (SB)] were used to examine the proliferative and pro‑differentiation effect of PI3K and P38. The present findings showed that the expression level of MCP‑1 in the synovium of CIA rats was significantly higher compared with controls. The present in vitro study suggested that MCP‑1 increased the FLSs cell numbers with a maximal effect at 200 ng/ml, and induced the maximal phosphorylation of PI3K at 15 min and P38 at 30 min. In addition, MCP‑1 stimulation significantly increased the migration of FLSs. Furthermore, MCP‑1‑induced the expression of vascular endothelial growth factor and CD31 in FLSs. Suppression of PI3K and P38 was found to reduce MCP‑1 induced FLSs proliferation and migration, and decreased the expression levels of angiogenesis markers increased following MCP‑1 treatment. MCP‑1 was also found to increase the expression levels of both TNF‑α and IL‑β. Therefore, MCP‑1 could promote the proliferation and migration of FLSs, and was found to increase the expression levels of various angiogenesis markers via PI3K/P38, suggesting a role for this pathway in synovium hyperplasia in RA.
Collapse
Affiliation(s)
- Xiang Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Huangjian Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Pengchen Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Kai Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Han Zhang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiangjin Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
28
|
Wen S, Sun L, An R, Zhang W, Xiang L, Li Q, Lai X, Huo M, Li D, Sun S. A combination of Citrus reticulata peel and black tea inhibits migration and invasion of liver cancer via PI3K/AKT and MMPs signaling pathway. Mol Biol Rep 2019; 47:507-519. [PMID: 31673889 DOI: 10.1007/s11033-019-05157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Liver cancer, one of the most common malignancies, is the second leading cause of cancer death in the world. The citrus reticulate peel and black tea have been studied for their beneficial health effects. In spite of the many studies have been reported, the underlying molecular mechanisms underlying its health benefits are still not fully understood. In present study, we developed a unique citrus reticulate peel black tea (CRPBT) by combined citrus reticulate peel and black tea and assessed its active ingredients, anti-oxidant and anti-liver cancer effects in vitro. The results suggested that CRPBT exhibited antioxidant capacity and effectively inhibited proliferation and migration of liver cancer cells in a dose- and time- dependent manner. Mechanistically, CRPBT significantly down-regulated phosphorylation of PI3K and AKT, and up-regulated the ratio of Bax/Bcl-2, and suppressed the expression of MMP2/9, N-cadherin and Vimetin proteins in liver cancer cells. Taken together, CRPBT has good effect on inhibiting migration, invasion, proliferation, and inducing apoptosis in liver cancer cells.
Collapse
Affiliation(s)
- Shuai Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Limin Xiang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Mengen Huo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China.
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, People's Republic of China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
29
|
Medeiros NI, Gomes JAS, Fiuza JA, Sousa GR, Almeida EF, Novaes RO, Rocha VLS, Chaves AT, Dutra WO, Rocha MOC, Correa-Oliveira R. MMP-2 and MMP-9 plasma levels are potential biomarkers for indeterminate and cardiac clinical forms progression in chronic Chagas disease. Sci Rep 2019; 9:14170. [PMID: 31578449 PMCID: PMC6775161 DOI: 10.1038/s41598-019-50791-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
One of the major challenges in chronic Chagas disease is to understand the mechanisms that predict the clinical evolution from asymptomatic to severe cardiac clinical forms. Our cohort consisted of twenty-eight Chagas disease patients followed for twenty years. Plasma levels of MMP-2 and MMP-9 gelatinases and TIMPs were evaluated by multiplexed immunoassay at two points in time with an average interval of six years. MMP-2 plasma levels, but not MMP-9, increased in cardiac patients over time. TIMP-1 levels diminished in cardiac patients, while TIMP-3 dropped in asymptomatic patients in the course of the evaluated interval. An inversion of time lines was observed relative to the clinical asymptomatic and cardiac forms for MMP-2. Receiver Operating Characteristic (ROC) curve analysis identified MMP-2 as a biomarker to distinguish asymptomatic from cardiac clinical forms, while MMP-9 is a biomarker that segregates infected from non-infected patients. We have pointed out that MMP-2 and MMP-9 together can predict clinical evolution in Chagas disease. MMP-2 was suggested as a biomarker for fibrosis replacement in early remodeling and a sensitive predictor for initial changes in asymptomatic patients that may evolve into the cardiac clinical form. MMP-9 seems to be a biomarker for late fibrosis and severe cardiac remodeling in cardiac patients.
Collapse
Affiliation(s)
- Nayara I Medeiros
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.,Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana A S Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Jacqueline A Fiuza
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Giovane R Sousa
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eliane F Almeida
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata O Novaes
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Virgínia L S Rocha
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana T Chaves
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walderez O Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais - INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| | - Manoel O C Rocha
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Correa-Oliveira
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais - INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Wang F, Luo A, Xuan W, Qi L, Wu Q, Gan K, Zhang Q, Zhang M, Tan W. The Bone Marrow Edema Links to an Osteoclastic Environment and Precedes Synovitis During the Development of Collagen Induced Arthritis. Front Immunol 2019; 10:884. [PMID: 31068949 PMCID: PMC6491763 DOI: 10.3389/fimmu.2019.00884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/05/2019] [Indexed: 01/16/2023] Open
Abstract
Objectives: To determine the relationship between bone marrow edema (BME), synovitis, and bone erosion longitudinally using a collagen induced arthritis mice (CIA) model and to explore the potential pathogenic role of BME in bone erosion. Methods: CIA was induced in DBA/1J mice. BME and corresponding clinical symptoms of arthritis and synovitis during the different time points of CIA development were assayed by magnetic resonance imaging (MRI), arthritis sore, and histologic analyses. The expression of osteoclasts (OCs), OCs-related cytokines, and immune cells in bone marrow were determined by flow cytometry, immunohistochemistry, immunofluorescence staining, and real-time PCR. The OCs formation was estimated using in vitro assays. Results: MRI detected BME could emerge at day 25 in 70% mice after the first immunization (n = 10), when there were not any arthritic symptoms, histological or MRI synovitis. At day 28, BME occurred in 90% mice whereas the arthritic symptom and histological synovitis were only presented in 30 and 20% CIA mice at that time (n = 10). The emergence of BME was associated with an increased bone marrow OCs number and an altered distribution of OCs adherent to subchondral bone surface, which resulted in increased subchondral erosion and decreased trabecular bone number during the CIA process. Obvious marrow environment changes were identified after BME emergence, consisting of multiple OCs related signals, including highly expressed RANKL, increased proinflammatory cytokines and chemokines, and highly activated T cells and monocytes. Conclusions: BME reflects a unique marrow "osteoclastic environment," preceding the arthritic symptoms and synovitis during the development of CIA.
Collapse
Affiliation(s)
- Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aishu Luo
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhua Xuan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Wu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Gan
- Department of Traditional Chinese Medicine, Nanjing Traditional Chinese Medicine University, Nanjing, China
| | - Qiande Zhang
- Department of Chinese Medicine, Nanjing Medicine University Institute of Integration of Traditional Chinese and Western Medicine, Nanjing, China
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Chen SJ, Lin GJ, Chen JW, Wang KC, Tien CH, Hu CF, Chang CN, Hsu WF, Fan HC, Sytwu HK. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. Int J Mol Sci 2019; 20:ijms20061332. [PMID: 30884802 PMCID: PMC6470801 DOI: 10.3390/ijms20061332] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anticitrullinated peptide antibodies. The orchestra of the inflammatory process among various immune cells, cytokines, chemokines, proteases, matrix metalloproteinases (MMPs), and reactive oxidative stress play critical immunopathologic roles in the inflammatory cascade of the joint environment, leading to clinical impairment and RA. With the growing understanding of the immunopathogenic mechanisms, increasingly novel marked and potential biologic agents have merged for the treatment of RA in recent years. In this review, we focus on the current understanding of pathogenic mechanisms, highlight novel biologic disease-modifying antirheumatic drugs (DMRADs), targeted synthetic DMRADs, and immune-modulating agents, and identify the applicable immune-mediated therapeutic strategies of the near future. In conclusion, new therapeutic approaches are emerging through a better understanding of the immunopathophysiology of RA, which is improving disease outcomes better than ever.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Kai-Chen Wang
- School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei City 112, Taiwan.
- Department of Neurology, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Pai-Tou, Taipei City 112, Taiwan.
| | - Chiung-Hsi Tien
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chih-Fen Hu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chia-Ning Chang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Wan-Fu Hsu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Tungs' Taichung MetroHarborHospital, No. 699, Section 8, Taiwan Blvd., Taichung City 435, Taiwan.
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 350, Taiwan.
| |
Collapse
|
32
|
Regulation of fibroblast-like synoviocyte transformation by transcription factors in arthritic diseases. Biochem Pharmacol 2019; 165:145-151. [PMID: 30878552 DOI: 10.1016/j.bcp.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Inflammation in the synovium is known to mediate joint destruction in several forms of arthritis. Fibroblast-like synoviocytes (FLS) are cells that reside in the synovial lining of joints and are known to be key contributors to inflammation associated with arthritis. FLS are a major source of inflammatory cytokines and catabolic enzymes that promote joint degeneration. We now know that there exists a direct correlation between the signaling pathways that are activated by the pro-inflammatory molecules produced by the FLS, and the severity of joint degeneration in arthritis. Research focused on understanding the signaling pathways that are activated by these pro-inflammatory molecules has led to major advancements in the understanding of the joint pathology in arthritis. Transcription factors (TFs) that act as downstream mediators of the pro-inflammatory signaling cascades in various cell types have been reported to play an important role in inducing the deleterious transformation of the FLS. Interestingly, recent studies have started uncovering that several TFs that were previously reported to play role in embryonic development and cancer, but not known to have pronounced roles in tissue inflammation, can actually play crucial roles in the regulation of the pathological properties of the FLS. In this review, we will discuss reports that have been able to impart novel arthritogenic roles to TFs that are specialized in embryonic development. We also discuss the therapeutic potential of targeting these newly identified regulators of FLS transformation in the treatment of arthritis.
Collapse
|