1
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Prakash S, Kumar M. The Hidden Enemy Within: Uncovering the Secrets of HIV Tissues Reservoirs and Current mRNA Vaccine Development. Curr HIV Res 2024; 22:73-81. [PMID: 38639272 DOI: 10.2174/011570162x301593240409072840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
Human Immunodeficiency Viruses (HIV) continue to pose a significant global health threat despite the availability of antiretroviral therapy (ART). As a retrovirus, HIV persists as a stable, integrated, and replication-competent provirus within a diverse array of long-lived cells for many years, often termed “latent reservoirs” in individuals. Thus, this review aims to furnish a comprehensive overview of diverse tissue reservoirs where HIV persists, elucidating their pathogenesis and advancement in their strategies for clinical management. Understanding the mechanisms underlying HIV persistence within tissue reservoirs is of significant interest in developing effective ART for suppressing the virus in the blood. In addition, we also discussed the ongoing mRNA HIV vaccine that has shown promising results in clinical trials to elicit broadly neutralizing antibodies and effective T-cell responses against HIV.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India
| | - Mayank Kumar
- Technical Research Analyst (TRA), Electronics/Biomedical Engineering, Aranca, Maharashtra, Mumbai, 400076, India
| |
Collapse
|
3
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
4
|
Navigating the complexity of chronic HIV-1 associated immune dysregulation. Curr Opin Immunol 2022; 76:102186. [PMID: 35567953 DOI: 10.1016/j.coi.2022.102186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
Despite successful viral suppression with antiretroviral therapy, chronic HIV-1 infection is associated with ongoing immune dysfunction. Investigation of the complex immune response in treated and untreated individuals with chronic HIV-1 infection is warranted. Immune alterations such as monocyte phenotype and Th-17/Treg ratios often persist years after the reduction in viraemia and predispose many individuals to long-term comorbidities such as cardiovascular disease or cancer. Furthermore, while there has been extensive research on the latent reservoir of treated patients with chronic HIV-1, which prevents the discontinuation of treatment, the mechanism behind this remains elusive and needs further investigation. In this review, we assist in navigating the recent research on these groups of individuals and provide a basis for further investigation.
Collapse
|
5
|
Pegu A, Xu L, DeMouth ME, Fabozzi G, March K, Almasri CG, Cully MD, Wang K, Yang ES, Dias J, Fennessey CM, Hataye J, Wei RR, Rao E, Casazza JP, Promsote W, Asokan M, McKee K, Schmidt SD, Chen X, Liu C, Shi W, Geng H, Foulds KE, Kao SF, Noe A, Li H, Shaw GM, Zhou T, Petrovas C, Todd JP, Keele BF, Lifson JD, Doria-Rose N, Koup RA, Yang ZY, Nabel GJ, Mascola JR. Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Rep 2022; 38:110199. [PMID: 34986348 PMCID: PMC8767641 DOI: 10.1016/j.celrep.2021.110199] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Xu
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Megan E. DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kylie March
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cassandra G. Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michelle D. Cully
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joana Dias
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason Hataye
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Ercole Rao
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shing-Fen Kao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy Noe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Gary J. Nabel
- Sanofi, 640 Memorial Dr., Cambridge MA, USA,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA,Lead contact,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| |
Collapse
|
6
|
Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle. ACS NANO 2021; 15:17582-17601. [PMID: 34705425 PMCID: PMC8565460 DOI: 10.1021/acsnano.1c05002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 05/16/2023]
Abstract
The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2 (SC2). A variety of anti-SC2 vaccines have been approved for human applications, including those using messenger RNA (mRNA), adenoviruses expressing SC2 spike (S) protein, and inactivated virus. The protective periods of immunization afforded by these intramuscularly administered vaccines are currently unknown. An alternative self-administrable vaccine capable of mounting long-lasting immunity via sterilizing neutralizing antibodies would be hugely advantageous in tackling emerging mutant SC2 variants. This could also diminish the possibility of vaccinated individuals acting as passive carriers of COVID-19. Here, we investigate the potential of an intranasal (IN)-delivered DNA vaccine encoding the S protein of SC2 in BALB/c and C57BL/6J immunocompetent mouse models. The immune response to IN delivery of this SC2-spike DNA vaccine transported on a modified gold-chitosan nanocarrier shows a strong and consistent surge in antibodies (IgG, IgA, and IgM) and effective neutralization of pseudoviruses expressing S proteins of different SC2 variants (Wuhan, beta, and D614G). Immunophenotyping and histological analyses reveal chronological events involved in the recognition of SC2 S antigen by resident dendritic cells and alveolar macrophages, which prime the draining lymph nodes and spleen for peak SC2-specific cellular and humoral immune responses. The attainable high levels of anti-SC2 IgA in lung mucosa and tissue-resident memory T cells can efficiently inhibit SC2 and its variants at the site of entry and also provide long-lasting immunity.
Collapse
Affiliation(s)
- Uday S. Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rayhaneh Afjei
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katherine Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
8
|
Li X, Zhang Q, Zhang W, Ye G, Ma Y, Wen C, Gu S, Tang L, Li Y. Expanded circulating follicular dendritic cells facilitate immune responses in chronic HBV infection. J Transl Med 2020; 18:417. [PMID: 33160362 PMCID: PMC7648402 DOI: 10.1186/s12967-020-02584-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background The restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. The goal of the present study was to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results We observed that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared to that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, positive correlations were observed between the frequencies of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells. Notably, in vitro experimental results demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells. Conclusions Expanded FDCs in patients with chronic HBV infection may favor host immune responses against HBV. The identification of this unique population of cell may contribute to a better understanding of the immune regulatory mechanisms associated with chronic HBV infection and provide a potential immunotherapeutic target for this disease.
Collapse
Affiliation(s)
- Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qifan Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyue Zhang
- The Air Force Hospital of Southern Theater Command, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yanchen Ma
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Tice C, McDevitt J, Langford D. Astrocytes, HIV and the Glymphatic System: A Disease of Disrupted Waste Management? Front Cell Infect Microbiol 2020; 10:523379. [PMID: 33134185 PMCID: PMC7550659 DOI: 10.3389/fcimb.2020.523379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of the glial-lymphatic or glymphatic fluid clearance pathway in the rodent brain led researchers to search for a parallel system in humans and to question the implications of this pathway in neurodegenerative diseases. Magnetic resonance imaging studies revealed that several features of the glymphatic system may be present in humans. In both rodents and humans, this pathway promotes the exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF) through the arterial perivascular spaces into the brain parenchyma. This process is facilitated in part by aquaporin-4 (AQP4) water channels located primarily on astrocytic end feet that abut cerebral endothelial cells of the blood brain barrier. Decreased expression or mislocalization of AQP4 from astrocytic end feet results in decreased interstitial flow, thereby, promoting accumulation of extracellular waste products like hyperphosphorylated Tau (pTau). Accumulation of pTau is a neuropathological hallmark in Alzheimer's disease (AD) and is accompanied by mislocalization of APQ4 from astrocyte end feet to the cell body. HIV infection shares many neuropathological characteristics with AD. Similar to AD, HIV infection of the CNS contributes to abnormal aging with altered AQP4 localization, accumulation of pTau and chronic neuroinflammation. Up to 30% of people with HIV (PWH) suffer from HIV-associated neurocognitive disorders (HAND), and changes in AQP4 may be clinically important as a contributor to cognitive disturbances. In this review, we provide an overview and discussion of the potential contributions of NeuroHIV to glymphatic system functions by focusing on astrocytes and AQP4. Although HAND encompasses a wide range of neurocognitive impairments and levels of neuroinflammation vary among and within PWH, the potential contribution of disruption in AQP4 may be clinically important in some cases. In this review we discuss implications for possible AQP4 disruption on NeuroHIV disease trajectory and how HIV may influence AQP4 function.
Collapse
Affiliation(s)
- Caitlin Tice
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jane McDevitt
- Department of Kinesiology, College of Public Health at Temple University, Philadelphia, PA, United States
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
10
|
Jaffe RJ, Dave RS, Byrareddy SN. Meningeal lymphatics in aging and Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S2. [PMID: 31032283 DOI: 10.21037/atm.2019.01.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Russell J Jaffe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rajnish S Dave
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
11
|
Suslov KV. Transient immunosuppression during short interruption of HAART: Another key to HIV cure in the "Berlin patient"? Med Hypotheses 2018; 123:6-8. [PMID: 30696593 DOI: 10.1016/j.mehy.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Transient immunosuppression in lentiviral infections leads to an auto-vaccination followed by the rise of serum neutralizing activity and a significant decrease in a set-point viral load, which becomes undetectable in some cases. Arguably, in the "Berlin patient" (Hütter G, et al., N Engl J Med, 2009) an induction chemotherapy-mediated transient immunosuppression episode during short interruption of HAART might have led to at least a "functional cure" before allogeneic stem cell transplantation. Neutralization-enhancing RF antibodies (NeRFa) induced as a part of secondary immune response after transient immunosuppression may have played a key role in neutralization of infectious HIV-IgG complexes in extracellular reservoirs. Transient immunosuppression during short non-structured treatment interruption (TI-SNSTI/HAART) regimen would be promising for the achievement of HIV cure on a large scale.
Collapse
|
12
|
Milagres L, Silva G, Pereira-Manfro W, Frota AC, Hofer C, Ferreira B, Barreto D, Figueredo M, Coelho B, Villela L, Petrovas C, Koup R. Baseline Circulating Activated TFH and Tissue-Like Exhausted B Cells Negatively Correlate With Meningococcal C Conjugate Vaccine Induced Antibodies in HIV-Infected Individuals. Front Immunol 2018; 9:2500. [PMID: 30420858 PMCID: PMC6215828 DOI: 10.3389/fimmu.2018.02500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
Since 2006, meningococcal serogroup C (MenC) conjugate (MCC) vaccines have been supplied by the Brazilian government for HIV-infected children under 13 years old. For measuring protection against MenC, the serum bactericidal antibody (SBA) assay is the method of choice. The characterization of T follicular helper cells (TFH) cells has been an area of intensive study because of their significance in multiple human diseases and in vaccinology. The objective of this study was to characterize the phenotype of peripheral TFH cells and B cells and how they associated with each other and with SBA levels induced by vaccination as well as with serum cytokine levels of HIV-infected and non-infected children and adolescents. We found that CD27−IgD−CD21−CD38+ (exhausted B cells) as well as short-lived plasmablasts (CD27+IgD−CD21−CD38+) are increased in cART treated HIV patients and negatively associated with MCC vaccine induced SBA levels. Baseline frequency of activated peripheral TFH cells was a negative correlate for SBA response to MCC vaccine but positively correlated with circulating plasmablast frequency. Baseline IL4-levels positively associated with SBA response but showed a negative correlation with activated peripheral TFH cells frequency. The increased frequency of activated peripheral TFH cells found in non-responders to the vaccine implies that higher activation/differentiation of CD4 T cells within the lymph node is not necessarily associated with induction of vaccine responses.
Collapse
Affiliation(s)
- Lucimar Milagres
- Department of Microbiology Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.,Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Giselle Silva
- Department of Microbiology Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wânia Pereira-Manfro
- Department of Microbiology Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina Frota
- Department of Pediatrics, Instituto de Puericultura e Pediatria Martagão Gesteira, Rio de Janeiro, Brazil
| | - Cristina Hofer
- Department of Pediatrics, Instituto de Puericultura e Pediatria Martagão Gesteira, Rio de Janeiro, Brazil.,Preventive Medicine Department, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Ferreira
- Department of Pediatrics, Instituto de Puericultura e Pediatria Martagão Gesteira, Rio de Janeiro, Brazil
| | - Daniela Barreto
- Department of Pediatrics, Instituto de Puericultura e Pediatria Martagão Gesteira, Rio de Janeiro, Brazil
| | - Marcelo Figueredo
- Department of Periodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara Coelho
- Department of Periodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Villela
- Laboratory of Immunology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Richard Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|