1
|
Ding J, Xu N, Wang J, He Y, Wang X, Liu M, Liu X. Plancitoxin-1 mediates extracellular trap evasion by the parasitic helminth Trichinella spiralis. BMC Biol 2024; 22:158. [PMID: 39075478 PMCID: PMC11287892 DOI: 10.1186/s12915-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Trichinella spiralis (T. spiralis) is a parasitic helminth that causes a globally prevalent neglected zoonotic disease, and worms at different developmental stages (muscle larvae, adult worms, newborn larvae) induce immune attack at different infection sites, causing serious harm to host health. Several innate immune cells release extracellular traps (ETs) to entrap and kill most pathogens that invade the body. In response, some unicellular pathogens have evolved a strategy to escape capture by ETs through the secretion of nucleases, but few related studies have investigated multicellular helminths. RESULTS In the present study, we observed that ETs from neutrophils capture adult worms of T. spiralis, while ETs from macrophages trap muscle larvae and newborn larvae, and ETs had a killing effect on parasites in vitro. To defend against this immune attack, T. spiralis secretes plancitoxin-1, a DNase II-like protein, to degrade ETs and escape capture, which is essential for the survival of T. spiralis in the host. CONCLUSIONS In summary, these findings demonstrate that T. spiralis escapes ET-mediated capture by secreting deoxyribonuclease as a potential conserved immune evasion mechanism, and plancitoxin-1 could be used as a potential vaccine candidate.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yushu He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Akkus GN, Yildiz K. Extracellular traps development in canine neutrophils induced by infective stage Toxocara canis larvae. Vet Parasitol 2024; 328:110186. [PMID: 38640875 DOI: 10.1016/j.vetpar.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Neutrophils, a crucial element of the host defense system, develop extracellular traps against helminth parasites. Neutrophils accumulate around the larvae of Toxocara canis (T. canis) in the tissues of the organism. This study aimed to determine the reaction in canine neutrophils after incubation with infective stage T. canis larvae (L3) in vitro. Most L3 were still active and moved between the extracellular traps (NETs) after 60-min incubation. NETs were not disintegrated by L3 movement. The L3 was only immobilized by NETs, entrapped larvae were still motile between the traps at the 24 h incubation. NETs were observed not only to accumulate around the mouth, excretory pole or anus but also the entire body of live L3. The extracellular DNA amount released from the canine neutrophils after being induced with phorbol 12-myristate 13-acetate was not affected by T. canis excretory/secretory products obtained from 250 L3. To the Authors'knowledge, the extracellular trap structures was firstly observed in canine neutrophils against T. canis L3 in vitro. NETs decorated with myeloperoxidase, neutrophil elastase and histone (H3) were observed under fluorescence microscope. There were not significant differences in the amount of extracellular DNA (P > 0.05), but the morphological structure of NETs was different in the live and head-inactivated T. canis larvae.
Collapse
Affiliation(s)
- Gozde Nur Akkus
- Kirikkale University, Health Sciences Institute, Department of Parasitology, Kirikkale, Turkey
| | - Kader Yildiz
- Kirikkale University, Faculty of Veterinary Medicine, Department of Parasitology, Kirikkale, Turkey.
| |
Collapse
|
3
|
Muñoz-Caro T, Gómez-Ceruti M, Silva LMR, Gutiérrez-Expósito D, Wagner H, Taubert A, Hermosilla C. Fasciola hepatica soluble antigens (FhAg) induce ovine PMN innate immune reactions and NET formation in vitro and in vivo. Vet Res 2023; 54:105. [PMID: 37953317 PMCID: PMC10642000 DOI: 10.1186/s13567-023-01236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Fasciola hepatica causes liver fluke disease, a worldwide neglected and re-emerging zoonotic disease, leading to hepatitis in humans and livestock. In the pathogenesis, flukes actively migrate through liver parenchyma provoking tissue damage. Here, parasites must confront leukocytes of the innate immune system in vivo. Polymorphonuclear neutrophils (PMN) are the most abundant granulocytes and first ones arriving at infection sites. PMN may display neutrophil extracellular traps (NETs), consisting of nuclear DNA, decorated with histones, enzymes, and antimicrobial peptides. We investigated for the first time whether F. hepatica soluble antigens (FhAg) can also trigger NETosis and innate immune reactions in exposed ovine PMN. Thus, isolated PMN were co-cultured with FhAg and NET formation was visualized by immunofluorescence and scanning electron microscopy analyses resulting in various phenotypes with spread NETs being the most detected in vitro. In line, NETs quantification via Picogreen®-fluorometric measurements revealed induction of anchored- and cell free NETs phenotypes. Live cell 3D-holotomographic microscopy revealed degranulation of stimulated PMN at 30 min exposure to FhAg. Functional PMN chemotaxis assays showed a significant increase of PMN migration (p = 0.010) and intracellular ROS production significantly increased throughout time (p = 0.028). Contrary, metabolic activities profiles of FhAg-exposed PMN did not significantly increase. Finally, in vivo histopathological analysis on F. hepatica-parasitized liver tissue sections of sheep showed multifocal infiltration of inflammatory cells within liver parenchyma, and further fluorescence microscopy analyses confirmed NETs formation in vivo. Overall, we hypothesized that NET-formation is a relevant host defence mechanism that might have a role in the pathogenesis of fasciolosis in vivo.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria y Recursos Naturales, Universidad Santo Tomás, Talca, Chile.
| | - Marcela Gómez-Ceruti
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
- Centro de Investigación de Ovinos Para El Secano OVISNOVA, Facultad de Medicina Veterinaria y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
| | - Liliana M R Silva
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Caparica, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Universidade de Évora, Evora, Portugal
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Henrik Wagner
- Veterinary Clinic for Reproduction and Neonatology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Rajković M, Glavinić U, Bogunović D, Vejnović B, Davitkov D, Đelić N, Stanimirović Z. "Slow kill" treatment reduces DNA damage in leukocytes of dogs naturally infected with Dirofilaria immitis. Vet Parasitol 2023; 322:110008. [PMID: 37643566 DOI: 10.1016/j.vetpar.2023.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Parasitic diseases are considered to be a cause of oxidative stress which leads to oxidative damage of various molecules including DNA. This can result in mutations, replication errors, and genome instability. Therefore, aim of this study was to measure DNA damage induced by Dirofilaria immitis in the single cells such as dogs' leukocytes using the comet assay. Also, we monitored the effects of antiparasitic treatment on mitigation of sensitivity to DNA damage in leukocytes treated with H2O2 using the in vivo and ex vivo comet assay. The whole blood samples from 34 dogs from Serbia were used, both males and females, from one to 13 years old, both pure and mixed-breeds. A rapid immunochromatographic test (Antigen Rapid Heartworm Ag 2.0 Test Kit, Bionote, Minnesota, USA) was used for the detection of D. immitis antigens. The modified Knott's test and PCR were used in the aim of detecting D. immitis microfilariae in dogs' blood, and evaluating the number of circulating microfilariae during the treatment. The genotoxicity evaluation showed that D. immitis infection resulted in DNA damage in naturally infected dogs, with the highest DNA damage occurring in the group of dogs with severe clinical signs. Treatment with ivermectin and doxycycline decreased DNA damage in leukocytes of dogs in all groups, as the intensity of infection decreased due to applied therapy. Ex vivo comet assay results showed that leukocytes exhibited decreased sensitivity to H2O2-induced DNA damage during treatment. The results of the modified Knott's test and PCR in our study showed that treatment with ivermectin and doxycycline was successful in decreasing the average number of microfilariae during the time and at the end eliminating them from the dogs' blood.
Collapse
Affiliation(s)
- Milan Rajković
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Uroš Glavinić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Danica Bogunović
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Branislav Vejnović
- Department of Economics and Statistics, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia.
| | - Darko Davitkov
- Department of Equine, Small Animal, Poultry and Wild Animal Diseases, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Ninoslav Đelić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Zoran Stanimirović
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| |
Collapse
|
5
|
Grabbe M, Conejeros I, Velásquez ZD, Hasheminasab SS, Kamena F, Wehrend A, Gärtner U, Taubert A, Hermosilla CR. Cryptosporidium parvum-induced neutrophil extracellular traps in neonatal calves is a stage-independent process. Front Vet Sci 2023; 10:1256726. [PMID: 37662980 PMCID: PMC10470472 DOI: 10.3389/fvets.2023.1256726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Infections with the apicomplexan obligate intracellular parasite Cryptosporidium parvum lead to cryptosporidiosis-a worldwide zoonotic infection. C. parvum is one of the most common diarrheal pathogens in young calves, which are the main reservoir of the pathogen. Cryptosporidiosis leads to severe economic losses in the calf industry and being a major contributor to diarrhea morbidity and mortality in children. Polymorphonuclear neutrophils (PMN) are part of the innate immune system. Their effector mechanisms directed against invasive parasites include phagocytosis, production of antimicrobial molecules as well as the formation of so-called neutrophil extracellular traps (NETs). Like other leukocytes of the innate immune system, PMN are thus able to release chromatin fibers enriched with antimicrobial granular molecules extracellularly thereby immobilizing and partially killing invasive bacteria, viruses, fungi and parasites. Methods In vitro interactions of neonatal bovine PMN and C. parvum-oocysts and sporozoites were illustrated microscopically via scanning electron microscopy- and live cell imaging 3D holotomographic microscopy analyses. C. parvum-triggered NETosis was quantified via extracellular DNA measurements as well as verified via detection of NET-typical molecules [histones, neutrophil elastase (NE)] through immunofluorescence microscopy analysis. To verify the role of ATP in neonatal-derived NETosis, inhibition experiments were performed with NF449 (purinergic receptor antagonist with high specificity to P2X1 receptor). Results and discussion Using immunofluorescence- and SEM-based analyses, we demonstrate here for the first time that neonate bovine PMN are capable of forming NETs against C. parvum-sporozoites and oocysts, thus as a stage-independent cell death process. Our data further showed that C. parvum strongly induces suicidal neonatal NETosis in a P2X1-dependent manner, suggesting anti-cryptosporidial effects not only through firm sporozoite ensnarement and hampered sporozoite excystation, but also via direct exposure to NETs-associated toxic components.
Collapse
Affiliation(s)
- Magdalena Grabbe
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Seyed Sajjad Hasheminasab
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals With Veterinary Ambulance, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Rodrigo Hermosilla
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Demattio L, Conejeros I, Grob D, Gärtner U, Taubert A, Hermosilla C, Wehrend A. Induction of NETosis in ovine colostral PMN upon exposure to Neospora caninum tachyzoites. Front Vet Sci 2023; 10:1176144. [PMID: 37404777 PMCID: PMC10315531 DOI: 10.3389/fvets.2023.1176144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 07/06/2023] Open
Abstract
Colostrum is one of the most important factors influencing the health and development of mammalian neonates. It is well-established that leukocytes, including polymorphonuclear neutrophils (PMN), migrate from the mother to the infant via colostrum uptake. In this study, for the first time, we studied the ability of ovine colostral-derived PMN to extrude neutrophil extracellular traps (NETs) against the abortive apicomplexan parasite Neospora caninum. Although this cell population plays a significant role in the transmission of maternal innate immunity to neonates, little is known about colostral PMN activities in sheep. However, this cell population is a significant source of the transfer of maternal immunity to the neonate. Colostral PMN continues to exert immunological effects even after transitioning into the colostrum. The present study aimed to investigate the extrusion of NETs by ovine colostral PMN exposed to the apicomplexan parasite, N. caninum, which is known to cause devastating reproductive disorders in cattle, small ruminants, wildlife animals, and dogs. The present study is the first to demonstrate that ovine colostral PMN can produce NETs after stimulation with vital N. caninum tachyzoites. Ovine colostrum-derived NETs were detected by chromatin staining and antibody-based immunofluorescence staining of NET-specific structures, including neutrophil elastase (NE) and global histones (H1, H2A/H2B, H3, H4), as well as scanning electron microscopy (SEM) analysis.
Collapse
Affiliation(s)
- Lukas Demattio
- Clinic for Obstetrics, Gynaecology and Andrology of Small and Large Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ivan Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Daniela Grob
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology of Small and Large Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Omar M, Abdelal H. NETosis in Parasitic Infections: A Puzzle That Remains Unsolved. Int J Mol Sci 2023; 24:ijms24108975. [PMID: 37240321 DOI: 10.3390/ijms24108975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the key players in the innate immune system, being weaponized with numerous strategies to eliminate pathogens. The production of extracellular traps is one of the effector mechanisms operated by neutrophils in a process called NETosis. Neutrophil extracellular traps (NETs) are complex webs of extracellular DNA studded with histones and cytoplasmic granular proteins. Since their first description in 2004, NETs have been widely investigated in different infectious processes. Bacteria, viruses, and fungi have been shown to induce the generation of NETs. Knowledge is only beginning to emerge about the participation of DNA webs in the host's battle against parasitic infections. Referring to helminthic infections, we ought to look beyond the scope of confining the roles of NETs solely to parasitic ensnarement or immobilization. Hence, this review provides detailed insights into the less-explored activities of NETs against invading helminths. In addition, most of the studies that have addressed the implications of NETs in protozoan infections have chiefly focused on their protective side, either through trapping or killing. Challenging this belief, we propose several limitations regarding protozoan-NETs interaction. One of many is the duality in the functional responses of NETs, in which both the positive and pathological aspects seem to be closely intertwined.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines, Esch-Belval, L-4366 Luxembourg, Luxembourg
| |
Collapse
|
9
|
Hussain S, Hussain A, Aziz MU, Song B, Zeb J, Hasib FMY, Almendros A, Cabezas-Cruz A, George D, Sparagano O. First molecular confirmation of multiple zoonotic vector-borne diseases in pet dogs and cats of Hong Kong SAR. Ticks Tick Borne Dis 2023; 14:102191. [PMID: 37121216 DOI: 10.1016/j.ttbdis.2023.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
In recent years, the incidence of vector-borne diseases (VBDs) has increased throughout the globe. In particular, tick-borne diseases (e.g., caused by Ehrlichia canis, E. ewingii, Anaplasma phagocytophilum, A. platys, Borrelia burgdorferi sensu stricto (s.s.) and Babesia gibsoni) and mosquito-borne diseases (e.g., caused by Dirofilaria immitis) diseases pose a burden on animal health. Nevertheless, there have been no studies undertaken on the occurrence of VBDs in pet dogs and cats in Hong Kong SAR. This study fills this gap, and is the first to determine the seroprevalence of major VBDs, such as those caused by D. immitis, E. canis, E. ewingii, A. phagocytophilum, A. platys and B. burgdorferi s.s, in dogs and cats through commercially available SNAP 4Dx plus testing. Infection by all these pathogens and Babesia sp. was further assessed through PCR and DNA sequencing. A total of 224 blood samples were collected from domestic dogs (n = 159) and cats (n = 65) in Hong Kong SAR during summer 2022. Hematocrit and platelet counts were determined in each blood sample and other hematological parameters were assessed using an automatic hematology analyzer and vortex the specimen for one to two minutes at or near the highest setting to minimize the clumping. All cat sera samples were negative for tested pathogens, but antibodies against some of the pathogens were detected in dog sera samples. Here, the highest figures were recorded for seroprevalence of E. canis/E. ewingii (10.7%), followed by D. immitis (5.7%), and A. phagocytophilum/A. platys (2.5%). No B. burgdorferi s.s. antibodies were detected in any of the dogs tested. Through molecular diagnostics, we detected the presence of B. gibsoni (3.7%), E. canis (3.1%), D. immitis (5.7%), and A. phagocytophilum (1.3%). Neighbor-Joining phylogenetic trees for vector-borne pathogens (i.e., genus Anaplasma sp.) showed 100% clustering to Japan, the USA and Germany, whereas genus Ehrlichia sp. showed 100% clustering to China, Turkey, Cuba, and Greece. Similarly, genus Babesia sp. clustered 100% to India, Sri Lanka and Austria, while D. immitis clustered in Iraq, South Korea, Portugal, France, the USA and Italy. This study provides the first evidence on the occurrence of tick-borne pathogens in pet dogs in Hong Kong SAR. Based on these findings, it is recommended that appropriate screening should be undertaken in domestic dogs to evaluate the prevalence of these pathogens and promote the timely control of VBDs.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, United States.
| | - Abrar Hussain
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, 61802, United States
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - F M Yasir Hasib
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Angel Almendros
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
10
|
Salinas C, Barriga K, Albornoz A, Alarcon P, Quiroga J, Uberti B, Sarmiento J, Henriquez C, Ehrenfeld P, Burgos RA, Moran G. Tamoxifen triggers the in vitro release of neutrophil extracellular traps in healthy horses. Front Vet Sci 2023; 9:1025249. [PMID: 36686170 PMCID: PMC9853556 DOI: 10.3389/fvets.2022.1025249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Neutrophils display an array of biological functions including the formation of neutrophil extracellular traps (NETs), web-like structures specialized in trapping, neutralizing, killing and preventing microbial dissemination within the host. However, NETs contribute to a number of inflammatory pathologies, including severe equine asthma. Tamoxifen (TX) is a selective estrogen receptor modulator which belongs to the triphenylethyllenes group of molecules, and which is used as a treatment in all stages of estrogen-positive human breast cancer. Our previous results suggest that tamoxifen can modulate neutrophil functionality and promote resolution of inflammation; this would partly explain the clinical beneficial effect of this drug in horses with airway inflammation. Enhanced NETs production has been reported with tamoxifen use in humans, but minimal data exists regarding the drug's effect on NETs in horses. The aim of this study is to assess the in vitro effect of TX on NETs formation from peripheral blood of healthy horses. Five clinically healthy mixed-breed adult horses were enrolled in the study. For this, cellular free DNA quantification, immunofluorescence for the visualization of NETs, assessment of different types of NETs, and detection of mitochondrial superoxide. TX induced NETs formation at a concentration of 10 uM. Our results show that only two types of NETs were induced by TX: 95% spread NETs (sprNETs) and 5% aggregated NETs (aggNETs). Furthermore, induction of these NETs could be influenced by mitochondrial ROS. Future research should involve an In vivo study of horses with severe asthma and TX treatment, to evaluate BALF neutrophil NET formation. In conclusion, this in vitro study suggests that the resolution of inflammation by TX in horses with airway inflammation is due to inhibition of other neutrophilic functions but not to NET formation.
Collapse
Affiliation(s)
- Constanza Salinas
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Kassandra Barriga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Albornoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcon
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henriquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A. Burgos
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Moran
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile,*Correspondence: Gabriel Moran ✉
| |
Collapse
|
11
|
Demattio L, Conejeros I, Grob D, Gärtner U, Taubert A, Hermosilla C, Wehrend A. Neospora caninum-induced NETosis in canine colostral polymorphonuclear neutrophils. J Reprod Immunol 2022; 154:103749. [PMID: 36152379 DOI: 10.1016/j.jri.2022.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Neospora caninum represents an obligate intracellular apicomplexan parasite of the family Sarcocystidae causing severe reproductive disorders in cattle, small ruminants, wild animals and canids worldwide. Neutrophil extracellular traps (NETs) were recently described as effective host defense mechanism of polymorphonuclear neutrophils (PMN) derived from cattle, dogs, goats and dolphins against N. caninum tachyzoites. Nonetheless, nothing is known so far on canine colostral PMN immune reactions against N. caninum although breeding bitches represent a susceptible dog cohort and infected bitches may spread tachyzoites through transplacental transmission to their offspring. Thus, isolated colostrum PMN from bitches were assessed for PMN phagocytic activities as well as NETs release against viable N. caninum tachyzoites. In vitro interactions of canine colostrum-derived PMN with tachyzoites were analyzed at different ratios and time spans. Extracellular chromatin staining was applied in order to unveil classical molecules of NETs, such as neutrophil elastase (NE), global histones (H1, H2A/H2B, H3, H4) and myeloperoxidase (MPO), via antibody-based immunofluorescence microscopy analysis. N. caninum tachyzoites induced canine NETs in colostral PMN and scanning electron microscopy (SEM) analysis revealed NETs formation by colostral PMN thereby ensnaring tachyzoites after exposure. In summary, NETs released from canine colostral PMN might represent an early and effective maternal defense mechanism of the definitive host helping neonates to reduce initial intracellular replication of not only parasites but of other invasive pathogens after colostrum consumption.
Collapse
Affiliation(s)
- Lukas Demattio
- Clinic for Obstetrics, Gynaecology and Andrology, Justus Liebig University Giessen, Giessen, Germany.
| | - Ivan Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| | - Daniela Grob
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Ehrens A, Hoerauf A, Hübner MP. Eosinophils in filarial infections: Inducers of protection or pathology? Front Immunol 2022; 13:983812. [PMID: 36389745 PMCID: PMC9659639 DOI: 10.3389/fimmu.2022.983812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 05/29/2024] Open
Abstract
Filariae are parasitic roundworms, which can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Lymphatic filariasis, also known as elephantiasis, and onchocerciasis, commonly referred to as river blindness, can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Filariae typically induce a type 2 immune response, which is characterized by cytokines, i.e., IL-4, IL-5 and IL-13 as well as type 2 immune cells including alternatively activated macrophages, innate lymphoid cells and Th2 cells. However, the hallmark characteristic of filarial infections is a profound eosinophilia. Eosinophils are innate immune cells and pivotal in controlling helminth infections in general and filarial infections in particular. By modulating the function of other leukocytes, eosinophils support and drive type 2 immune responses. Moreover, as primary effector cells, eosinophils can directly attack filariae through the release of granules containing toxic cationic proteins with or without extracellular DNA traps. At the same time, eosinophils can be a driving force for filarial pathology as observed during tropical pulmonary eosinophilia in lymphatic filariasis, in dermatitis in onchocerciasis patients as well as adverse events after treatment of onchocerciasis patients with diethylcarbamazine. This review summarizes the latest findings of the importance of eosinophil effector functions including the role of eosinophil-derived proteins in controlling filarial infections and their impact on filarial pathology analyzing both human and experimental animal studies.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
13
|
High Presence of NETotic Cells and Neutrophil Extracellular Traps in Vaginal Discharges of Women with Vaginitis: An Exploratory Study. Cells 2022; 11:cells11203185. [PMID: 36291053 PMCID: PMC9600883 DOI: 10.3390/cells11203185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Infectious vaginitis is a microbiological syndrome of great importance in public health that affects millions of women worldwide. However, no studies have explored the phenomenon of the production of the neutrophil extracellular traps (NETs) that are released into the female reproductive tract in these pathologies. This study aimed to determine the presence of NETosis in vaginal discharges of women with bacterial vaginosis, candidiasis, and trichomoniasis by characterizing NETs. Extracellular DNA with neutrophil elastase and citrullinated histones was identified to confirm the NET components (n = 10). The concentration, phenotypes of NETs, and number of NETotic cells were determined. The results showed an increase in NETotic cells in women with Candida albicans (CA) and Trichomonas vaginalis (TV) and an increase in NETs in TV-induced vaginitis. Samples of CA- and TV-infected women showed different NET phenotypes (diffNETs, sprNETs, and aggNETs); diffNETs were found in high concentrations in samples with CA and were increased in three types of NETs in TV infections. Samples with intermediate microbiota and bacterial vaginosis showed increased NETotic cells while the intermediate microbiota presented a higher concentration of NETs. Therefore, alterations in the microbiota and the presence of fungal and parasitic infections are important stimuli for the activation and induction of NETosis, and their cytotoxic effects could enhance tissue damage.
Collapse
|
14
|
Gurltia paralysans: A Neglected Angio-Neurotropic Parasite of Domestic Cats (Felis catus) and Free-Ranging Wild Felids (Leopardus spp.) in South America. Pathogens 2022; 11:pathogens11070792. [PMID: 35890036 PMCID: PMC9324590 DOI: 10.3390/pathogens11070792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 12/03/2022] Open
Abstract
Gurltia paralysans is a neglected and re-emerging metastrongyloid angio-neurotropic nematode causing severe chronic meningomyelitis in domestic cats (Felis catus) as well as in free-ranging small wild felids such as kodkods (Leopardus guigna), margays (Leopardus wiedii) and the northern tiger cat (Leopardus triginus) in South America. Within these definitive hosts (DH), adult males and females of G. paralysans parasitize the leptomeningeal veins of the subarachnoid space and/or the meningeal veins of spinal cord parenchyma, inducing vascular alterations. Feline gurltiosis has been associated with progressive thrombophlebitis of the meningeal veins, resulting in ambulatory paraparesis, paraplegia, ataxia, hindlimb proprioceptive deficit, uni- or bilateral hyperactive patellar reflexes, faecal and urinary incontinence, and tail paralysis. The complete life cycle of G. paralysans has not been elucidated yet, but most probably involves gastropods as obligate intermediate hosts (IH). In terms of epidemiology, G. paralysans infections in domestic and wild felids are scattered around various South American countries, with hyperendemic areas in southern parts of Chile. Etiological diagnosis of G. paralysans still represents a challenge for clinicians due to a lack of evidence of the excretion of either eggs or larvae in faeces or in other body fluids. Diagnosis is based on clinical neurological signs, imaging findings through computed tomography (CT), myelography, magnetic resonance imaging (MRI), and post mortem examination. Nonetheless, novel diagnostic tools have been developed, including semi-nested PCR for detecting circulating G. paralysans DNA in the cerebrospinal fluid, serum and blood samples as well as in serological diagnostic kits detecting parasite-derived antigens, but these need validation for routine usage. The hypothetical life cycle of G. paralysans is addressed in this article, including the exogenous stages (i.e., eggs, and first- (L1), second- (L2) and third-stage (L3) larvae) and obligate gastropod IH and/or paratenic hosts (PH), and we propose possible anatomical migration routes of infective L3 that reach the leptomeningeal veins in vivo. Finally, the pro-inflammatory endothelium- and leukocyte-derived innate immune reactions of the host against G. paralysans, which most likely result in thrombophlebitis and meningomyelitis, are briefly touched on.
Collapse
|
15
|
Wohlsein JC, Meurer M, Neßler J, Wohlsein P, von Köckritz-Blickwede M, Baumgärtner W, Tipold A. Detection of Extracellular Traps in Canine Steroid-Responsive Meningitis-Arteritis. Front Vet Sci 2022; 9:863579. [PMID: 35591872 PMCID: PMC9111528 DOI: 10.3389/fvets.2022.863579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular traps (ETs) are DNA networks formed by immune cells to fight infectious diseases by catching and attacking pathogenic microorganisms. Uncontrolled ET formation or impaired ET clearance can cause tissue and organ damage. Steroid-responsive meningitis-arteritis (SRMA) represents an immune-mediated, presumably non-infectious, purulent leptomeningitis and fibrinoid-necrotizing arteritis and periarteritis of young-adult dogs. Chronic and recurrent cases of SRMA are characterized by lymphohistiocytic inflammatory cell infiltration in the meninges and perivascular tissue. This study aimed to identify extracellular traps in dogs with SRMA, a model for immune-mediated diseases in the central nervous system (CNS). Hematoxylin and eosin-stained samples of two young dogs with chronic, recurrent SRMA were examined by light microscopy for characteristic lesions and consecutive slices of affected tissues were stained for detection of ETs by immunofluorescence microscopy using antibodies against DNA–histone-1 complexes, myeloperoxidase, and citrullinated histone H3. Histology revealed purulent and lymphohistiocytic leptomeningitis (n = 2/2) with meningeal periarteritis (n = 2/2) and periadrenal located lymphohistiocytic periarteritis (n = 1). Extracellular DNA networks and inflammatory cell infiltrates of macrophages, neutrophil granulocytes, and lymphocytes were detected in the subarachnoid space of the leptomeninx (n = 2/2) and perivascularly in meningeal (n = 2/2) as well as periadrenal vessels (n = 1/1). In summary, extracellular DNA fibers and attached ET markers are detectable in affected perivascular and meningeal tissues of dogs suffering from SRMA. The proof of principle could be confirmed that ETs are present in canine, inflammatory, and non-infectious CNS diseases and possibly play a role in the pathogenesis of SRMA.
Collapse
Affiliation(s)
- Jan C. Wohlsein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Jan C. Wohlsein
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center of Emerging Diseases and Zoonosis, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasmin Neßler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center of Emerging Diseases and Zoonosis, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
16
|
Yildiz K, Sursal Simsek N, Gurcan IS. Determination of extracellular traps structures from sheep polymorphonuclear leukocytes to Echinococcus granulosus protoscoleces. Exp Parasitol 2022; 239:108283. [DOI: 10.1016/j.exppara.2022.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
|
17
|
Doolan R, Bouchery T. Hookworm infections: Reappraising the evidence for a role of Neutrophils in light of NETosis. Parasite Immunol 2022; 44:e12911. [PMID: 35124825 PMCID: PMC9285577 DOI: 10.1111/pim.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
In Hookworm infection, neutrophils have long had the image of the villain, being recruited to the site of larval migration because of damage but participating themselves in tissue injury. With recent developments in neutrophil biology, there is an increasing body of evidence for the role of neutrophils as effector cells in hookworm immunity. In particular, their ability to release extracellular traps, or neutrophil extracellular traps (NETs), confer neutrophils a larvicidal activity. Here, we review recent evidence in this nascent field and discuss the avenue for future research on NETs/hookworm interactions.
Collapse
Affiliation(s)
- Rory Doolan
- Hookworm Immunobiology Laboratory Department of Medical Parasitology & Infection Biology Swiss Tropical and Public Health Institute Socinstrasse 57 4051 CH Basel Switzerland
| | - Tiffany Bouchery
- Hookworm Immunobiology Laboratory Department of Medical Parasitology & Infection Biology Swiss Tropical and Public Health Institute Socinstrasse 57 4051 CH Basel Switzerland
| |
Collapse
|
18
|
Fichtner T, Kotarski F, Gärtner U, Conejeros I, Hermosilla C, Wrenzycki C, Taubert A. Bovine sperm samples induce different NET phenotypes in a NADPH oxidase-, PAD4-, and Ca++-dependent process†. Biol Reprod 2021; 102:902-914. [PMID: 31967293 DOI: 10.1093/biolre/ioaa003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Deposition of sperm during artificial insemination in the bovine female reproductive tract results in early host innate immune reactions of polymorphonuclear neutrophils (PMNs). Furthermore, sperm-mediated neutrophil extracellular trap (NET) formation (NETosis) was recently reported to occur in different mammalian species, including humans. We, here, investigated the interactions of bovine PMN with different semen-derived samples and analyzed in more depth molecular aspects of this effector mechanism. Overall, confrontation of PMN with sperm/cell preparation (SCP) resulted in a rapid and dose-dependent NET formation leading to effective spermatozoa entrapment. Thereby, spermatozoa induced different phenotypes of NETs. Immunostaining analyses revealed the presence of histones (H3), neutrophil elastase (NE), and pentraxin (PTX) in sperm-triggered NET structures. Fresh SCP strongly induced NETosis than frozen-thawed ones. The level of NETosis was not related to spermatozoa viability. SCP as well as purified sperm cells (SCs) and supernatant (SN) induce NETosis, although the reaction in SC was lower. Enhanced levels of oxygen consumption and proton leak in PMN revealed sperm SNs but not purified SCs as PMN activators. Functional inhibition experiments revealed sperm-triggered NETosis as an NADPH oxidase- and peptidylarginine deiminase 4-dependent process and proved to be dependent on intra- and extracellular Ca++ influxes while myeloperoxidase activity and as ERK1/2- and PI3K-related signaling pathways did not seem to play a pivotal role in this effector mechanism. From these findings, we speculate that sperm-derived NETosis might also occur in vivo during artificial insemination and might therefore play a role related to reduced fertility.
Collapse
Affiliation(s)
- Theresa Fichtner
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.,Chair for Molecular Reproductive Medicine, Clinic of Veterinary Obstetrics, Gynecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Franziska Kotarski
- Chair for Molecular Reproductive Medicine, Clinic of Veterinary Obstetrics, Gynecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic of Veterinary Obstetrics, Gynecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Methylprednisolone Induces Extracellular Trap Formation and Enhances Bactericidal Effect of Canine Neutrophils. Int J Mol Sci 2021; 22:ijms22147734. [PMID: 34299355 PMCID: PMC8304006 DOI: 10.3390/ijms22147734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Methylprednisolone is a glucocorticoid and can negatively influence immune defense mechanisms. During bacterial infections in the dog, neutrophils infiltrate infected tissue and mediate antimicrobial effects with different mechanisms such as phagocytosis and neutrophil extracellular trap (NET) formation. Here, we investigated the influence of methylprednisolone on canine NET formation and neutrophil killing efficiency of Gram positive and Gram negative bacteria. Therefore, canine blood derived neutrophils were treated with different concentrations of methylprednisolone over time. The survival factor of Staphylococcus pseudintermedius, Streptococcus canis or Escherichia coli was determined in presence of stimulated neutrophils. Additionally, free DNA and nucleosomes as NET marker were analyzed in supernatants and neutrophils were assessed for NET formation by immunofluorescence microscopy. Methylprednisolone concentrations of 62.5 and 625 µg/mL enhanced the neutrophil killing of Gram positive bacteria, whereas no significant influence was detected for the Gram negative Escherichia coli. Interestingly, higher amounts of free DNA were detected under methylprednisolone stimulation in a concentration dependency and in the presence of Streptococcus canis and Escherichia coli. The nucleosome release by neutrophils is induced by bacterial infection and differs depending on the concentration of methylprednisolone. Furthermore, immunofluorescence microscopy analysis identified methylprednisolone at a concentration of 62.5 µg/mL as a NET inducer. In summary, methylprednisolone enhances NET-formation and time-dependent and concentration-dependent the bactericidal effect of canine neutrophils on Gram positive bacteria.
Collapse
|
20
|
Grob D, Conejeros I, López-Osorio S, Velásquez ZD, Segeritz L, Gärtner U, Schaper R, Hermosilla C, Taubert A. Canine Angiostrongylus vasorum-Induced Early Innate Immune Reactions Based on NETs Formation and Canine Vascular Endothelial Cell Activation In Vitro. BIOLOGY 2021; 10:biology10050427. [PMID: 34065858 PMCID: PMC8151090 DOI: 10.3390/biology10050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Angiostrongylus vasorum is a cardiopulmonary nematode that affects canids, residing in the pulmonary artery and right atrium/ventricle. Due to its location, the parasite will have a close interaction with the different components of the innate immune system, including endothelial cells and polymorphonuclear neutrophils (PMN). Here we evaluated the expression of adhesion molecules of canine aortic endothelial cells (CAEC), and NETs formation by co-culture of freshly isolated canine PMN with A. vasorum L3. Overall, we found distinct inter-donor variations in adhesion molecule expression among CAEC isolates. Additionally, PMN and A. vasorum co-culture induced NETs release without affecting larval viability. Abstract Due to its localization in the canine blood stream, Angiostrongylus vasorum is exposed to circulating polymorphonuclear neutrophils (PMN) and the endothelial cells of vessels. NETs release of canine PMN exposed to A. vasorum infective stages (third stage larvae, L3) and early pro-inflammatory immune reactions of primary canine aortic endothelial cells (CAEC) stimulated with A. vasorum L3-derived soluble antigens (AvAg) were analyzed. Expression profiles of the pro-inflammatory adhesion molecules ICAM-1, VCAM-1, P-selectin and E-selectin were analyzed in AvAg-stimulated CAEC. Immunofluorescence analyses demonstrated that motile A. vasorum L3 triggered different NETs phenotypes, with spread NETs (sprNETs) as the most abundant. Scanning electron microscopy confirmed that the co-culture of canine PMN with A. vasorum L3 resulted in significant larval entanglement. Distinct inter-donor variations of P-selectin, E-selectin, ICAM-1 and VCAM-1 gene transcription and protein expression were observed in CAEC isolates which might contribute to the high individual variability of pathological findings in severe canine angiostrongylosis. Even though canine NETs did not result in larval killing, the entanglement of L3 might facilitate further leukocyte attraction to their surface. Since NETs have already been documented as involved in both thrombosis and endothelium damage events, we speculate that A. vasorum-triggered NETs might play a critical role in disease outcome in vivo.
Collapse
Affiliation(s)
- Daniela Grob
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Correspondence:
| | - Iván Conejeros
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Sara López-Osorio
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Grupo de Investigación CIBAV, Universidad de Antioquia UdeA, Medellín 050034, Colombia
| | - Zahady D. Velásquez
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Lisa Segeritz
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | | | - Carlos Hermosilla
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Anja Taubert
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| |
Collapse
|
21
|
Haematological and biochemical abnormalities in hunting dogs infected with Acanthocheilonema reconditum, associated risk factors, and a European overview. Parasitol Res 2021; 120:2109-2124. [PMID: 33963428 PMCID: PMC8184713 DOI: 10.1007/s00436-021-07179-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 10/29/2022]
Abstract
Acanthocheilonema reconditum is a filarial parasite transmitted by arthropods (fleas, lice, and ticks) that infect dogs. There is minimal published data available to date on potential haematological and biochemical changes associated with this parasitic infection. Study aims were (i) provide an overview of A. reconditum in Europe, (ii) define A. reconditum prevalence and risk factors in a specific dog population (hunting) from southern Italy, and (iii) assess the frequency of haemato-biochemical abnormalities associated with infection. Blood samples collected from 3020 dogs were tested by a modified Knott's technique to count and identify microfilariae. Eighty-four dogs were infected by A. reconditum (2.78%; 95% CI 2.19-3.37%). Microfilariae ranged from 1 to 212/ml. Based on clinical examination, all but six dogs with non-specific symptoms were healthy. Haematological abnormalities included leucocytosis (n = 15), with eosinophilia (n = 14) and monocytosis (n = 13). Serum biochemical abnormalities included increased total serum proteins (n = 19), albumins (n = 7), total globulins (n = 14), ALT (n = 1), and ALP (n = 1); one dog was hypoalbuminemic, and BUN was mildly increased in 2 dogs. Risk factors included the province origin (Napoli, OR=5.4, 95%CI: 2.1-14.0; Caserta, OR=5.1, 95%CI: 2.5-10.6), hunting wild mammals (OR=2.8, 95% 95%CI: 1.6-4.8), and ectoparasite infestation (OR=1.9, 95%CI: 1.1-3.1). There was a negative correlation between microfilaraemic load and decreased albumin level (-0.37; p=0.021). Our results showed that A. reconditum circulates within the hunting dog population of southern Italy, with seemingly low pathogenic potential.
Collapse
|
22
|
Muñoz-Caro T, Gibson AJ, Conejeros I, Werling D, Taubert A, Hermosilla C. The Role of TLR2 and TLR4 in Recognition and Uptake of the Apicomplexan Parasite Eimeria bovis and Their Effects on NET Formation. Pathogens 2021; 10:pathogens10020118. [PMID: 33498871 PMCID: PMC7912269 DOI: 10.3390/pathogens10020118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bovine polymorphonuclear neutrophils (PMN) constitutively express the Toll-like receptors (TLRs) TLR2 and TLR4 and have been shown to generate Neutrophil extracellular traps (NETs) upon exposure to Eimeria bovis. The present work investigated the role of TLR2 and TLR4 in the recognition and uptake of E. bovis sporozoites, IL-8 production and neutrophil extracellular trap (NET) formation. METHODS TLR expression was performed by flow cytometric analysis on PMN exposed to live carboxyfluorescein succinimidyl ester (CFSE)-stained sporozoites. Supernatants of PMN exposed to different E. bovis sporozoite preparations and antigens in the absence or presence of TLR antibodies were assessed for IL-8 secretion. Cells were exposed to sporozoite preparations and assessed for the activation of transcription factor NF-κB using a luciferase reporter assay. Immunofluorescence analysis was done to investigate TLR2 and TLR4 surface expression and NET formation on bovine PMN exposed to vital sporozoites. RESULTS we observed significantly increased TLR2 and TLR4 expression with a mean increase in expression that was greater for TLR2 than TLR4. This upregulation neither inhibited nor promoted sporozoite phagocytosis by bovine PMN. Live sporozoites together with anti-TLR2 mAb resulted in a significant enhancement of IL-8 production. NF-κB activation was more strongly induced in TLR2-HEK cells than in TLR4/MD2-HEK cells exposed to heat-killed sporozoites and antigens. Immunofluorescence analysis showed TLR-positive signals on the surface of PMN and concomitant NET formation. CONCLUSIONS This is the first report on E. bovis-induced concomitant TLR2 and TLR4 expression during bovine PMN-derived NETosis.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 3460000, Chile
| | - Amanda J. Gibson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK; (A.J.G.); (D.W.)
- Centre of Excellence in Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Wales SY23 3FD, UK
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK; (A.J.G.); (D.W.)
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
- Correspondence:
| |
Collapse
|
23
|
Peixoto R, Silva LMR, López-Osório S, Zhou E, Gärtner U, Conejeros I, Taubert A, Hermosilla C. Fasciola hepatica induces weak NETosis and low production of intra- and extracellular ROS in exposed bovine polymorphonuclear neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103787. [PMID: 32791176 DOI: 10.1016/j.dci.2020.103787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Fasciola hepatica is the causative agent of fasciolosis, a worldwide distributed zoonotic disease, leading to hepatitis in humans and livestock. Newly excysted juveniles (NEJ) of F. hepatica are the first invasive stages to encounter leukocytes of host innate immune system in vivo. Among leukocytes, polymorphonuclear neutrophils (PMN) are the most abundant granulocytes of blood system and first ones to migrate into infection sites. PMN are able to cast neutrophil extracellular traps (NETs), also known as NETosis, consisting of nuclear DNA, decorated with histones, enzymes and antimicrobial peptides, which can entrap and eventually kill invasive parasites. Given that only few large parasitic helminths have been identified as potent NETosis inducers, here we studied for first time whether different F. hepatica stages can also trigger NETosis. Therefore, isolated bovine PMN were co-cultured with viable F. hepatica-NEJ, -metacercariae, -eggs and soluble antigen (FhAg). Interestingly, all stages failed to induce considerable levels of NETosis as detected by immunofluorescence- and scanning electron microscopy (SEM) analyses. NEJ remained motile until the end of incubation period. In line, NETosis quantification via nuclear area expansion (NAE) analysis revealed NEJ as weak NETosis inducers. However, bovine PMN frequently displaced towards motile NEJ and were found attached to NEJ surfaces. Functional PMN chemotaxis assays using vital F. hepatica-NEJ revealed a slight increase of PMN migration when compared to non-exposed controls. Additional experiments on intra- and extracellular reactive oxygen species (ROS) production revealed that soluble FhAg failed to induce ROS production of exposed PMN. Finally, mitochondrial oxygen consumption rates (OCR), extracellular acidification rates (ERAC) and proton production rates (PPR) were not significantly increased in FhAg-stimulated PMN. In summary, data suggest that F. hepatica might effectively evade PMN activation and NETosis by secreting parasite-specific molecules to either resolve NETs or to impair NETosis signaling pathways. We call for future molecular analysis not only on F. hepatica-derived NETosis modulation but also on its possible role in fasciolosis-associated pathology in vivo.
Collapse
Affiliation(s)
- Raquel Peixoto
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| | - Liliana M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osório
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany; CIBAV Research Group, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Ershun Zhou
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Faculty of Human Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ivan Conejeros
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
24
|
Ehrens A, Lenz B, Neumann AL, Giarrizzo S, Reichwald JJ, Frohberger SJ, Stamminger W, Buerfent BC, Fercoq F, Martin C, Kulke D, Hoerauf A, Hübner MP. Microfilariae Trigger Eosinophil Extracellular DNA Traps in a Dectin-1-Dependent Manner. Cell Rep 2021; 34:108621. [PMID: 33440150 DOI: 10.1016/j.celrep.2020.108621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 08/03/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Eosinophils mediate protection against filarial nematodes. Our results demonstrate that eosinophil extracellular traps (EETosis) are induced by microfilariae and infective L3 larvae of Litomosoides sigmodontis. These extracellular DNA traps inhibit microfilariae motility in a DNA- and contact-dependent manner in vitro. Accordingly, microfilariae-injection triggers DNA release in an eosinophil-dependent manner in vivo and microfilariae covered with DNA traps are cleared more rapidly. Using dectin-1, we identify the required receptor for the microfilariae-induced EETosis, whereas signaling via other C-type lectin receptors, prior priming of eosinophils, and presence of antibodies are not required. The DNA released upon microfilariae-induced EETosis is mainly of mitochondrial origin, but acetylated and citrullinated histones are found within the traps. We further demonstrate that the presented DNA-dependent inhibition of microfilariae motility by eosinophils represents a conserved mechanism, as microfilariae from L. sigmodontis and the canine heartworm Dirofilaria immitis induce ETosis in murine and human eosinophils.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Samuela Giarrizzo
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Jennifer Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Stefan Julian Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Benedikt Christian Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Frédéric Fercoq
- UMR7245 MCAM Museum National d'Histoire Naturelle, CNRS, Paris, France
| | - Coralie Martin
- UMR7245 MCAM Museum National d'Histoire Naturelle, CNRS, Paris, France
| | - Daniel Kulke
- Elanco Animal Health - Research and Exploratory Development, Monheim 40789, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc Peter Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
25
|
Joekel DE, Nur S, Monné Rodriguez J, Kronenberg PA, Kipar A, LeibundGut-Landmann S, Deplazes P. Agranulocytosis leads to intestinal Echinococcus multilocularis oncosphere invasion and hepatic metacestode development in naturally resistant Wistar rats. Parasitology 2021; 148:53-62. [PMID: 33087186 PMCID: PMC11010136 DOI: 10.1017/s0031182020002012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Susceptibility to Echinococcus multilocularis infection considerably varies among intermediate (mostly rodents) and dead-end host species (e.g. humans and pig), in particular regarding intestinal oncosphere invasion and subsequent hepatic metacestode development. Wistar rats are highly resistant to infection and subsequent diseases upon oral inoculation with E. multilocularis eggs, however, after immunosuppressive treatment with dexamethasone, rats become susceptible. To address the role of the cellular innate immunity, Wistar rats were individually or combined depleted of natural killer (NK) cells, macrophages (MΦ) and granulocytes (polymorphonuclear cells, PMN) prior to E. multilocularis egg inoculation. Although NK cell and MΦ depletion did not alter the resistance status of rats, the majority of PMN-depleted animals developed liver metacestodes within 10 weeks, indicating that PMN are key players in preventing oncosphere migration and/or development in Wistar rats. In vitro studies indicated that resistance is not caused by neutrophil reactive oxygen species or NETosis. Also, light microscopical examinations of the small intestine showed that oral inoculation of E. multilocularis eggs does not elicit a mucosal neutrophil response, suggesting that the interaction of oncospheres and neutrophils may occur after the former have entered the peripheral blood. We suggest to consider granulocytes as mediators of resistance in more resistant species, such as humans.
Collapse
Affiliation(s)
- Deborah E. Joekel
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | - Selim Nur
- Section of Immunology, Institute of Virology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057Zurich, Switzerland
| | - Josep Monné Rodriguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Philipp A. Kronenberg
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012Bern, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Institute of Virology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057Zurich, Switzerland
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Pérez D, Muñoz-Caro T, Silva LMR, Muñoz MC, Molina JM, Taubert A, Hermosilla C, Ruiz A. Eimeria ninakohlyakimovae casts NOX-independent NETosis and induces enhanced IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in caprine PMN. Exp Parasitol 2020; 220:108034. [PMID: 33188795 DOI: 10.1016/j.exppara.2020.108034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
Eimeria ninakohlyakimovae represents a highly pathogenic coccidian parasite causing severe haemorrhagic typhlocolitis in goat kids worldwide. NETosis was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites in vitro and in vivo. In vitro interactions of caprine PMN with parasitic stages of E. ninakohlyakimovae (i. e. oocysts and sporozoites) as well as soluble oocyst antigens (SOA) were analyzed at different ratios, concentrations and time spans. Extracellular DNA staining was used to illustrate classical molecules induced during caprine NETosis [i. e. histones (H3) and neutrophil elastase (NE)] via antibody-based immunofluorescence analyses. Functional inhibitor treatments with DPI and DNase I were applied to unveil role of NADPH oxidase (NOX) and characterize DNA-backbone composition of E. ninakohlyakimovae-triggered caprine NETosis. Scanning electron microscopy (SEM)- and immunofluorescence-analyses demonstrated that caprine PMN underwent NETosis upon contact with sporozoites and oocysts of E. ninakohlyakimovae, ensnaring filaments which firmly entrapped parasites. Detailed co-localization studies of E. ninakohlyakimovae-induced caprine NETosis revealed presence of PMN-derived DNA being adorned with nuclear H3 and NE corroborating molecular characteristics of NETosis. E. ninakohlyakoimovae-induced caprine NETosis was found to be NOX-independent since DPI inhibition led to a slight decrease of NETosis. Exposure of caprine PMN to vital E. ninakohlyakimovae sporozoites as well as SOA resulted in up-regulation of IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in stimulated PMN. Since vital E. ninakohlyakimovae-sporozoites induced caprine NETosis, this effective entrapment mechanism might reduce initial sporozoite epithelial host cell invasion during goat coccidiosis ultimately resulting in less macromeront formation and reduced merozoites I production.
Collapse
Affiliation(s)
- D Pérez
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - T Muñoz-Caro
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomas, Chile
| | - L M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M C Muñoz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - J M Molina
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - A Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - C Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - A Ruiz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
27
|
Grob D, Conejeros I, Velásquez ZD, Preußer C, Gärtner U, Alarcón P, Burgos RA, Hermosilla C, Taubert A. Trypanosoma brucei brucei Induces Polymorphonuclear Neutrophil Activation and Neutrophil Extracellular Traps Release. Front Immunol 2020; 11:559561. [PMID: 33193328 PMCID: PMC7649812 DOI: 10.3389/fimmu.2020.559561] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei brucei trypomastigotes are classical blood parasites of cattle, these stages might become potential targets for circulating polymorphonuclear neutrophils (PMN). We here investigated NETs extrusion and related oxygen consumption in bovine PMN exposed to motile T. b. brucei trypomastigotes in vitro. Parasite exposure induced PMN activation as detected by enhanced oxygen consumption rates (OCR), extracellular acidification rates (ECAR), and production of total and extracellular reactive oxygen species (ROS). Scanning electron microscopy (SEM) showed that co-cultivation of bovine PMN with motile trypomastigotes resulted in NETs formation within 120 min of exposure. T. b. brucei-induced NETs were confirmed by confocal microscopy demonstrating co-localization of extruded DNA with neutrophil elastase (NE) and nuclear histones. Immunofluorescence analyses demonstrated that trypomastigotes induced different phenotypes of NETs in bovine PMN, such as aggregated NETs (aggNETs), spread NETs (sprNETs), and diffuse NETs (diffNETs) with aggNETs being the most abundant ones. Furthermore, live cell 3D-holotomographic microscopy unveiled detailed morphological changes during the NETotic process. Quantification of T. b. brucei-induced NETs formation was estimated by DNA and nuclear area analysis (DANA) and confirmed enhanced NETs formation in response to trypomastigote stages. Formation of NETs does not result in a decrease of T. b. brucei viability, but a decrease of 26% in the number of motile parasites. Referring the involved signaling pathways, trypomastigote-induced NETs formation seems to be purinergic-dependent, since inhibition via NF449 treatment resulted in a significant reduction of T. b. brucei-triggered DNA extrusion. Overall, future studies will have to analyze whether the formation of aggNETs indeed plays a role in the outcome of clinical disease and bovine African trypanosomiasis-related immunopathological disorders, such as increased intravascular coagulopathy and vascular permeability, often reported to occur in this disease.
Collapse
Affiliation(s)
- Daniela Grob
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Christian Preußer
- Institute of Biochemistry, Department of Biology and Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Zambrano F, Schulz M, Pilatz A, Wagenlehner F, Schuppe HC, Conejeros I, Uribe P, Taubert A, Sánchez R, Hermosilla C. Increase of leucocyte-derived extracellular traps (ETs) in semen samples from human acute epididymitis patients-a pilot study. J Assist Reprod Genet 2020; 37:2223-2231. [PMID: 32651678 DOI: 10.1007/s10815-020-01883-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To study the effector mechanism against pathogens of polymorphonuclear neutrophils (PMN) and macrophages, called ETosis, involving the release of extracellular traps (ETs) in patients with acute epididymitis. To assess the different ET phenotypes present in semen samples and to identify correlations between ETosis and clinical parameters. MATERIALS AND METHODS Samples from patients diagnosed with acute epididymitis were examined and compared with samples from uninfected controls. Biochemical analyses of seminal fluid included determination of peroxidase, α-glucosidase, fructose, and elastase levels. ETosis in semen was determined through presence of citrullinated histones, global histones, and extracellular DNA. Different ETosis phenotypes such as spread ETs, aggregated ETs, and diffuse ETs were identified by co-localisation of extruded DNA with myeloperoxidase and global histones. Anti-CD15+ and anti-CD68+ antibodies were used to identify different cell lines. RESULTS Revealed a high number of ETs compared with the control group. The mean number of CD15+PMN and CD68+ macrophages was higher in the acute epididymitis group. ETosis increase in ejaculates correlated with clinical parameters such as enhancement of elastase concentrations and diminution of fructose in the semen. CONCLUSIONS This work shows for the first time the presence of ETs and their components in semen from patients with acute epididymitis. The presence of infections is an important factor for induction of ETs in semen. Furthermore, the presence of ETosis in ejaculates is suggestive of developing infectious processes and might possibly have a diagnostic value.
Collapse
Affiliation(s)
- Fabiola Zambrano
- Laboratory in Reproductive Medicine and Molecular Endocrinology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Universidad de La Frontera, Avenida Alemania, 0458, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Mabel Schulz
- Laboratory in Reproductive Medicine and Molecular Endocrinology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Universidad de La Frontera, Avenida Alemania, 0458, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Florian Wagenlehner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Ivan Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Pamela Uribe
- Laboratory in Reproductive Medicine and Molecular Endocrinology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Universidad de La Frontera, Avenida Alemania, 0458, Temuco, Chile
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Raúl Sánchez
- Laboratory in Reproductive Medicine and Molecular Endocrinology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Universidad de La Frontera, Avenida Alemania, 0458, Temuco, Chile. .,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Pionnier N, Sjoberg H, Furlong-Silva J, Marriott A, Halliday A, Archer J, Steven A, Taylor MJ, Turner JD. Eosinophil-Mediated Immune Control of Adult Filarial Nematode Infection Can Proceed in the Absence of IL-4 Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:731-740. [PMID: 32571840 PMCID: PMC7372315 DOI: 10.4049/jimmunol.1901244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Immunity to chronic filarial worm infection is apparent in IL-4Rα–deficient mice. Delayed immunity in IL-4Rα−/− mice is due to suboptimal tissue eosinophilia. Eosinophil recruitment in the absence of IL-4R signaling requires CCR3 and IL-5.
Helminth infections are accompanied by eosinophilia in parasitized tissues. Eosinophils are effectors of immunity to tissue helminths. We previously reported that in the context of experimental filarial nematode infection, optimum tissue eosinophil recruitment was coordinated by local macrophage populations following IL-4R–dependent in situ proliferation and alternative activation. However, in the current study, we identify that control of chronic adult filarial worm infection is evident in IL-4Rα–deficient (IL-4Rα−/−) mice, whereby the majority of infections do not achieve patency. An associated residual eosinophilia was apparent in infected IL-4Rα−/− mice. By treating IL-4Rα−/− mice serially with anti-CCR3 Ab or introducing a compound deficiency in CCR3 within IL-4Rα−/− mice, residual eosinophilia was ablated, and susceptibility to chronic adult Brugia malayi infection was established, promoting a functional role for CCR3-dependent eosinophil influx in immune control in the absence of IL-4/IL-13–dependent immune mechanisms. We investigated additional cytokine signals involved in residual eosinophilia in the absence IL-4Rα signaling and defined that IL-4Rα−/−/IL-5−/− double-knockout mice displayed significant eosinophil deficiency compared with IL-4Rα−/− mice and were susceptible to chronic fecund adult filarial infections. Contrastingly, there was no evidence that either IL-4R–dependent or IL-4R–independent/CCR3/IL-5–dependent immunity influenced B. malayi microfilarial loads in the blood. Our data demonstrate multiplicity of Th2-cytokine control of eosinophil tissue recruitment during chronic filarial infection and that IL-4R–independent/IL-5– and CCR3-dependent pathways are sufficient to control filarial adult infection via an eosinophil-dependent effector response prior to patency.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Julio Furlong-Silva
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Amy Marriott
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alice Halliday
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
30
|
Frohberger SJ, Fercoq F, Neumann AL, Surendar J, Stamminger W, Ehrens A, Karunakaran I, Remion E, Vogl T, Hoerauf A, Martin C, Hübner MP. S100A8/S100A9 deficiency increases neutrophil activation and protective immune responses against invading infective L3 larvae of the filarial nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 2020; 14:e0008119. [PMID: 32107497 PMCID: PMC7064255 DOI: 10.1371/journal.pntd.0008119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/10/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.
Collapse
Affiliation(s)
- Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Estelle Remion
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Thomas Vogl
- Institute of Immunology, University Hospital of Münster, Münster, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
31
|
Neumann A, Brogden G, von Köckritz-Blickwede M. Extracellular Traps: An Ancient Weapon of Multiple Kingdoms. BIOLOGY 2020; 9:biology9020034. [PMID: 32085405 PMCID: PMC7168307 DOI: 10.3390/biology9020034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life.
Collapse
Affiliation(s)
- Ariane Neumann
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Baravägen 27, 22184 Lund, Sweden;
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany;
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
- Correspondence: ; Tel.: +49-511-953-8787
| |
Collapse
|
32
|
Imlau M, Conejeros I, Muñoz-Caro T, Zhou E, Gärtner U, Ternes K, Taubert A, Hermosilla C. Dolphin-derived NETosis results in rapid Toxoplasma gondii tachyzoite ensnarement and different phenotypes of NETs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103527. [PMID: 31655127 DOI: 10.1016/j.dci.2019.103527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Toxoplasma gondii is a cosmopolitan zoonotic parasite and nowadays considered as an emerging neozoan pathogen in the marine environment. Cetacean innate immune reactions against T. gondii stages have not yet been investigated. Thus, T. gondii tachyzoites were utilized to trigger neutrophil extracellular traps (NETs) in bottlenose dolphin (Tursiops truncatus) polymorphonuclear neutrophils (PMN). Scanning electron microscopy unveiled T. gondii tachyzoites as potent and rapid inducers of cetacean-derived NETosis. Co-localization of extracellular chromatin with global histones, granulocytic myeloperoxidase and neutrophil elastase confirmed classical characteristics of NETosis. Interestingly, different phenotypes of NETs were induced by tachyzoites resulting in spread, diffuse and aggregated NET formation and moreover, 'anchored' and 'cell free' NETosis was also detected. Current data indicate that cetacean-derived NETosis might represent an early, ancient and well-conserved host innate defense mechanism that not only acts against T. gondii but might also occur in response to other closely related emerging apicomplexan parasites affecting marine cetaceans.
Collapse
Affiliation(s)
- Michelle Imlau
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
33
|
Abstract
Besnoitia besnoiti is an obligate intracellular apicomplexan protozoan parasite, which causes bovine besnoitiosis. Recently increased emergence within Europe was responsible for significant economic losses in the cattle industry due to the significant reduction of productivity. However, still limited knowledge exists on interactions between B. besnoiti and host innate immune system. Here, B. besnoiti bradyzoites were successfully isolated from tissue cysts located in skin biopsies of a naturally infected animal, and we aimed to investigate for the first time reactions of polymorphonuclear neutrophils (PMN) exposed to these vital bradyzoites. Freshly isolated bovine PMN were confronted to B. besnoiti bradyzoites. Scanning electron microscopy (s.e.m.)- and immunofluorescence microscopy-analyses demonstrated fine extracellular networks released by exposed bovine PMN resembling suicidal NETosis. Classical NETosis components were confirmed via co-localization of extracellular DNA decorated with histone 3 (H3) and neutrophil elastase (NE). Live cell imaging by 3D holotomographic microscopy (Nanolive®) unveiled rapid vital NETosis against this parasite. A significant increase of autophagosomes visualized by specific-LC3B antibodies and confocal microscopy was observed in B. besnoiti-stimulated bovine PMN when compared to non-stimulated group. As such, a significant positive correlation (r = 0.37; P = 0.042) was found between B. besnoiti-triggered suicidal NETosis and autophagy. These findings suggest that vital- as well as suicidal-NETosis might play a role in early innate host defence mechanisms against released B. besnoiti bradyzoites from tissue cysts, and possibly hampering further parasitic replication. Our data generate first hints on autophagy being associated with B. besnoiti bradyzoite-induced suicidal NETosis and highlighting for first time occurrence of parasite-mediated vital NETosis.
Collapse
|
34
|
Metabolic requirements of Besnoitia besnoiti tachyzoite-triggered NETosis. Parasitol Res 2019; 119:545-557. [PMID: 31782011 DOI: 10.1007/s00436-019-06543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023]
Abstract
Besnoitia besnoiti is the causative agent of bovine besnoitiosis, a disease affecting both, animal welfare and cattle productivity. NETosis represents an important and early host innate effector mechanism of polymorphonuclear neutrophils (PMN) that also acts against B. besnoiti tachyzoites. So far, no data are available on metabolic requirements of B. besnoiti tachyzoite-triggered NETosis. Therefore, here we analyzed metabolic signatures of tachyzoite-exposed PMN and determined the relevance of distinct PMN-derived metabolic pathways via pharmacological inhibition experiments. Overall, tachyzoite exposure induced a significant increase in glucose and serine consumption as well as glutamate production in PMN. Moreover, tachyzoite-induced cell-free NETs were significantly diminished via PMN pre-treatments with oxamate and dichloroacetate which both induce an inhibition of lactate release as well as oxythiamine, which inhibits pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase, thereby indicating a key role of pyruvate- and lactate-mediated metabolic pathways for proper tachyzoite-mediated NETosis. Furthermore, NETosis was increased by enhanced pH conditions; however, inhibitors of MCT-lactate transporters (AR-C141900, AR-C151858) failed to influence NET formation. Moreover, a significant reduction of tachyzoite-induced NET formation was also achieved by treatments with oligomycin A (inhibitor of ATP synthase) and NF449 (purinergic receptor P2X1 antagonist) thereby suggesting a pivotal role of ATP availability for tachyzoite-mediated NETosis. In summary, the current data provide first evidence on carbohydrate-related metabolic pathways and energy supply to be involved in B. besnoiti tachyzoite-induced NETosis.
Collapse
|
35
|
Schulz M, Zambrano F, Schuppe HC, Wagenlehner F, Taubert A, Gaertner U, Sánchez R, Hermosilla C. Monocyte-derived extracellular trap (MET) formation induces aggregation and affects motility of human spermatozoa in vitro. Syst Biol Reprod Med 2019; 65:357-366. [PMID: 31208212 DOI: 10.1080/19396368.2019.1624873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The presence of bacteria and/or leukocytes can alter semen quality resulting in low sperm quality and infertility. Inflammation or infection increases the numbers of PMN or macrophages/monocytes in male genital tract. Release of extracellular traps (ETs) by leukocytes has been recognized as a novel mechanism of early host innate immunity, in response to invasive pathogens. This is the first work that evaluated the mechanism of triggered ETs in monocytes co-incubated with spermatozoa or bacteria and the effect on sperm function. Selected spermatozoa and human monocytes isolated from peripheral blood were obtained by healthy donors. Two experimental models were developed, one aseptic (non-infectious) incubating spermatozoa and monocytes, and septic models (infectious) incubating spermatozoa with monocytes and uropathogenic Escherichia coli (E. coli). ETs of monocytes (METs) (DNA, global histone and citrullinated histones) were visualized by scanning electron microscopy (SEM) and immunofluorescence analyses. Progressive motility was performed at 0, 10, 30, 60, and 180 min after co-incubation with CASA system. SEM- and immunofluorescence-analyses revealed human spermatozoa alone or in the presence of E. coli as strong inducers METs. In aseptic model, the motility decreased to 65.2 ± 3.5% at 10 min of incubation and 29.3 ± 3.3% at 30 min (p < 0.001). In septic model, motility decreased to 44.5 ± 5.9% (10 min) and 12.7 ± 2.2% (30 min) (p < 0.001). MET-derived small spermatozoa aggregations were observed in both models. METs might physically block spermatozoa and decrease motility after a brief contact. This may impair male fertility, especially in patients with genital tract infections or chronic inflammation. Abbreviations: PMN: polymorphonuclear; ETs: extracellular traps; E. coli: Escherichia coli; METs: ETs of monocytes; SEM: scanning electron microscopy; NE: neutrophil elastase; MPO: myeloperoxidase; MAGI: male accessory gland infection; PBMC: peripheral blood mononuclear cells; RT: room temperature; CFU: colony forming units; CASA: computer-aided sperm analysis; H4Cit3: histone H4 citrullinated 3.
Collapse
Affiliation(s)
- Mabel Schulz
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera , Temuco , Chile.,Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera , Temuco , Chile.,Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen , Giessen , Germany
| | - Fabiola Zambrano
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera , Temuco , Chile.,Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera , Temuco , Chile
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen , Giessen , Germany
| | - Florian Wagenlehner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen , Giessen , Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen , Giessen , Germany
| | - Ulrich Gaertner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen , Giessen , Germany
| | - Rául Sánchez
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera , Temuco , Chile.,Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera , Temuco , Chile
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen , Giessen , Germany
| |
Collapse
|
36
|
Zhou E, Conejeros I, Velásquez ZD, Muñoz-Caro T, Gärtner U, Hermosilla C, Taubert A. Simultaneous and Positively Correlated NET Formation and Autophagy in Besnoitia besnoiti Tachyzoite-Exposed Bovine Polymorphonuclear Neutrophils. Front Immunol 2019; 10:1131. [PMID: 31191523 PMCID: PMC6540735 DOI: 10.3389/fimmu.2019.01131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Given that B. besnoiti tachyzoites infect host endothelial cells of vessels in vivo, they become potential targets for professional phagocytes [e.g., polymorphonuclear neutrophils (PMN)] when in search for adequate host cells or in case of host cell lysis. It was recently reported that B. besnoiti-tachyzoites can efficiently be trapped by neutrophil extracellular traps (NETs) released by bovine PMN. So far, the potential role of autophagy in parasite-triggered NET formation is unclear. Thus, we here analyzed autophagosome formation and activation of AMP-activated protein kinase α (AMPKα) in potentially NET-forming innate leukocytes being exposed to B. besnoiti tachyzoites. Blood was collected from healthy adult dairy cows, and bovine PMN were isolated via density gradient centrifugation. Scanning electron microscopy confirmed PMN to undergo NET formation upon contact with B. besnoiti tachyzoites. Nuclear area expansion (NAE) analysis and cell-free and anchored NETs quantification were performed in B. besnoiti-induced NET formation. Interestingly, tachyzoites of B. besnoiti additionally induced LC3B-related autophagosome formation in parallel to NET formation in bovine PMN. Notably, both rapamycin- and wortmannin-treatments failed to influence B. besnoiti-triggered NET formation and autophagosome formation. Also, isolated NETs fail to induce autophagy suggesting independence between both cellular processes. Finally, enhanced phosphorylation of AMP activated kinase α (AMPKα), a key regulator molecule of autophagy, was observed within the first minutes of interaction in tachyzoite-exposed PMN thereby emphasizing that B. besnoiti-triggered NET formation indeed occurs in parallel to autophagy.
Collapse
Affiliation(s)
- Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
37
|
Frohberger SJ, Ajendra J, Surendar J, Stamminger W, Ehrens A, Buerfent BC, Gentil K, Hoerauf A, Hübner MP. Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils. Parasit Vectors 2019; 12:248. [PMID: 31109364 PMCID: PMC6528299 DOI: 10.1186/s13071-019-3502-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mice are susceptible to infections with the rodent filarial nematode Litomosoides sigmodontis and develop immune responses that resemble those of human filarial infections. Thus, the L. sigmodontis model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against L. sigmodontis, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of L. sigmodontis infection. Methods Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5−/− mice, IL-4R−/− mice and IL-4R−/−/IL-5−/− mice were infected with L. sigmodontis. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R−/−/IL-5−/− mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen. Results Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R−/−/IL-5−/− mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival. Conclusions These data indicate that mice deficient for IL-4R−/−/IL-5−/− have the highest susceptibility for L. sigmodontis infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival. Electronic supplementary material The online version of this article (10.1186/s13071-019-3502-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Benedikt C Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Katrin Gentil
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
38
|
Berrafato T, Coates R, Reaves BJ, Kulke D, Wolstenholme AJ. Macrocyclic lactone anthelmintic-induced leukocyte binding to Dirofilaria immitis microfilariae: Influence of the drug resistance status of the parasite. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:45-50. [PMID: 31054498 PMCID: PMC6500911 DOI: 10.1016/j.ijpddr.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
The macrocyclic lactone anthelmintics are the only class of drug currently used to prevent heartworm disease. Their extremely high potency in vivo is not mirrored by their activity against Dirofilaria immitis larvae in vitro, leading to suggestions that they may require host immune functions to kill the parasites. We have previously shown that ivermectin stimulates the binding of canine peripheral blood mononuclear cells (PBMCs) and polymorphonuclear leukocytes (PMNs) to D. immitis microfilariae (Mf). We have now extended these studies to moxidectin and examined the ability of both drugs to stimulate canine PBMC and PMN attachment to Mf from multiple strains of D. immitis, including two that are proven to be resistant to ivermectin in vivo. Both ivermectin and moxidectin significantly increased the percentage of drug-susceptible parasites with cells attached at very low concentrations (<10 nM), but much higher concentrations of ivermectin (>100 nM) were required to increase the percentage of the two resistant strains, Yazoo-2013 and Metairie-2014, with cells attached. Moxidectin increased the percentage of the two resistant strains with cells attached at lower concentrations (<10 nM) than did ivermectin. The attachment of the PBMCs and PMNs did not result in any parasite killing in vitro. These data support the biological relevance of the drug-stimulated attachment of canine leukocytes to D. immitis Mf and suggest that this phenomenon is related to the drug resistance status of the parasites. Ivermectin promotes attachment of PMN and PBMC to D. immitis microfilariae in vitro. Moxidectin has a similar effect. Higher ivermectin concentrations are needed if Mf of ML-resistant strains are used. Moxidectin is more effective at promoting cell attachment to resistant Mf. Neither PMN nor PBMC attachment does not result in parasite death in vitro.
Collapse
Affiliation(s)
- Tessa Berrafato
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Ruby Coates
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Barbara J Reaves
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Daniel Kulke
- Bayer Animal Health GmbH, 51373, Leverkusen, Germany.
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
39
|
Villagra-Blanco R, Silva LMR, Conejeros I, Taubert A, Hermosilla C. Pinniped- and Cetacean-Derived ETosis Contributes to Combating Emerging Apicomplexan Parasites ( Toxoplasma gondii, Neospora caninum) Circulating in Marine Environments. BIOLOGY 2019; 8:biology8010012. [PMID: 30857289 PMCID: PMC6466332 DOI: 10.3390/biology8010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
Leukocytes play a major role in combating infections either by phagocytosis, release of antimicrobial granules, or extracellular trap (ET) formation. ET formation is preceded by a certain leukocyte cell death form, known as ETosis, an evolutionarily conserved mechanism of the innate immune system also observed in marine mammals. Besides several biomolecules and microbial stimuli, marine mammal ETosis is also trigged by various terrestrial protozoa and metazoa, considered nowadays as neozoan parasites, which are circulating in oceans worldwide and causing critical emerging marine diseases. Recent studies demonstrated that pinniped- and cetacean-derived polymorphonuclear neutrophils (PMNs) and monocytes are able to form different phenotypes of ET structures composed of nuclear DNA, histones, and cytoplasmic peptides/proteases against terrestrial apicomplexan parasites, e.g., Toxoplasma gondii and Neospora caninum. Detailed molecular analyses and functional studies proved that marine mammal PMNs and monocytes cast ETs in a similar way as terrestrial mammals, entrapping and immobilizing T. gondii and N. caninum tachyzoites. Pinniped- and cetacean leukocytes induce vital and suicidal ETosis, with highly reliant actions of nicotinamide adenine dinucleotide phosphate oxidase (NOX), generation of reactive oxygen species (ROS), and combined mechanisms of myeloperoxidase (MPO), neutrophil elastase (NE), and DNA citrullination via peptidylarginine deiminase IV (PAD4).This scoping review intends to summarize the knowledge on emerging protozoans in the marine environment and secondly to review limited data about ETosis mechanisms in marine mammalian species.
Collapse
Affiliation(s)
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|