1
|
Zhang F, Mehta H, Choudhary HH, Islam R, Hanafy KA. TRPV4 Channel in Neurological Disease: from Molecular Mechanisms to Therapeutic Potential. Mol Neurobiol 2025; 62:3877-3891. [PMID: 39333347 PMCID: PMC11790740 DOI: 10.1007/s12035-024-04518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a non-selective cation channel with pivotal roles in various physiological processes, including osmosensitivity, mechanosensation, neuronal development, vascular tone regulation, and bone homeostasis in human bodies. Recent studies have made significant progress in understanding the structure and functional role of TRPV4, shedding light on its involvement in pathological processes, particularly in the realm of neurological diseases. Here, we aim to provide a comprehensive exploration of the multifaceted contributions of TRPV4 to neurological diseases, spanning its intricate molecular mechanisms to its potential as a target for therapeutic interventions. We delve into the structural and functional attributes of TRPV4, scrutinize its expression profile, and elucidate the possible mechanisms through which it participates in the pathogenesis of neurological disorders. Furthermore, we discussed recent years' progress in therapeutic strategies aimed at harnessing TRPV4 for the treatment of these diseases. These insights will provide a basis for understanding and designing modality-specific pharmacological agents to treat TRPV4-associated disorders.
Collapse
Affiliation(s)
- Feng Zhang
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hritik Mehta
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hadi Hasan Choudhary
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Rezwanul Islam
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Khalid A Hanafy
- Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper University Health Care, Camden, NJ, USA.
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper Neurological Institute Center for Neuroinflammation, Cooper Medical School at Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Li X, Du YX, Yu CL, Niu N. Ion channels in macrophages: Implications for disease progression. Int Immunopharmacol 2025; 144:113628. [PMID: 39566388 DOI: 10.1016/j.intimp.2024.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
RATIONALE Macrophages are immune cells found throughout the body and exhibit morphological and functional diversity. Macrophages have been implicated in a wide range of diseases, including autoimmune diseases, acute liver injury, cardiovascular diseases, lung diseases and tumours. Ion channels are transmembrane glycoproteins with important functions in maintaining homeostasis in the intra- and extracellular environment and mediating signal transduction. Many studies have shown that different types of ion channels influence the role of macrophages in the development of various diseases. In recent years, studies on the role of ion channels in macrophages in immune regulation and inflammatory responses have attracted much attention. OBJECTIVE AND FINDINGS In order to gain a deeper understanding of the role of macrophage ion channels, this paper reviews the recent research progress on the role of macrophage ion channels in recent years. The aim is to explore the role of different ion channels in the regulation of macrophage function and their impact on a variety of disease processes. The most studied channels are calcium, sodium and potassium channels, most of which are located in the cell membrane. Among these, TRP channels have a more complex role in M1 and M2 macrophage types. CONCLUSION Ion channels are critical for the functional regulation of macrophages. Targeting ion channels provides new avenues for disease prevention and treatment. This review provides researchers with new ideas and introduces readers to the current state of research on ion channels in macrophages.
Collapse
Affiliation(s)
- Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Chun-Lei Yu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
3
|
Zhang M, Chen X, Zhang L, Li J, Sun C, Zhou G, Wan H, Lu W, Dong H. Zinc pyrithione ameliorates colitis in mice by interacting on intestinal epithelial TRPA1 and TRPV4 channels. Life Sci 2024; 358:123090. [PMID: 39384148 DOI: 10.1016/j.lfs.2024.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
AIMS Although zinc pyrithione (ZPT) has been studied as topical antimicrobial and cosmetic consumer products, little is known about its pharmacological actions in gastrointestinal (GI) health and inflammation. Our aims were to investigate the effects of ZPT on transient receptor potential (TRP) channels and Ca2+ signaling in intestinal epithelial cells (IECs) and its therapeutic potential for colitis. MAIN METHODS Digital Ca2+ imaging and patch-clamp electrophysiology were performed on human colonic epithelial cells (HCoEpiC) and rat small intestinal epithelial cells (IEC-6). The transcription levels of proinflammatory cytokines such as IL-1β were detected by RTq-PCR. Dextran sulfate sodium (DSS) was used to induce colitis in mice. KEY FINDINGS ZPT dose-dependently induced Ca2+ signaling and membrane currents in IECs, which were attenuated by selective blockers of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 4 (TRPV4) channels, respectively. Interestingly, Ca2+ entry via TRPA1 channels inhibited the activity of TRPV4 channels in HCoEpiC, but not vice versa. ZPT significantly promoted migration of IECs by activating TRPA1 and TRPV4 channels. ZPT reversed lipopolysaccharides (LPS)-induced changes in mRNA expression of TRPA1 and TRPV4. Moreover, ZPT decreased mRNA levels of pro-inflammatory factors promoted by LPS in HCoEpiC, which were restored by selective TRPA1 blocker. In whole animal studies in vivo, ZPT significantly ameliorated DSS-induced body weight loss, colon shortening and increases in stool score, serum calprotectin and lactic acid (LD) in mouse model of colitis. SIGNIFICANCE ZPT exerts anti-colitic action likely by anti-inflammation and pro-mucosal healing through TRP channels in IECs. The present study not only expands pharmacology spectrum of ZPT in GI tract, but also repurposes it to a potential drug for colitis therapy.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Xiongying Chen
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Luyun Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Junhui Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chensijin Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Guolong Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
4
|
Rajan S, Shalygin A, Gudermann T, Chubanov V, Dietrich A. TRPM2 channels are essential for regulation of cytokine production in lung interstitial macrophages. J Cell Physiol 2024; 239:e31322. [PMID: 38785126 DOI: 10.1002/jcp.31322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Interstitial macrophages (IMs) are essential for organ homeostasis, inflammation, and autonomous immune response in lung tissues, which are achieved through polarization to a pro-inflammatory M1 and an M2 state for tissue repair. Their remote parenchymal localization and low counts, however, are limiting factors for their isolation and molecular characterization of their specific role during tissue inflammation. We isolated viable murine IMs in sufficient quantities by coculturing them with stromal cells and analyzed mRNA expression patterns of transient receptor potential (TRP) channels in naïve and M1 polarized IMs after application of lipopolysaccharide (LPS) and interferon γ. M-RNAs for the second member of the melastatin family of TRP channels, TRPM2, were upregulated in the M1 state and functional channels were identified by their characteristic currents induced by ADP-ribose, its specific activator. Most interestingly, cytokine production and secretion of interleukin-1α (IL-1α), IL-6 and tumor necrosis factor-α in M1 polarized but TRPM2-deficient IMs was significantly enhanced compared to WT cells. Activation of TRPM2 channels by ADP-ribose (ADPR) released from mitochondria by ROS-produced H2O2 significantly increases plasma membrane depolarization, which inhibits production of reactive oxygen species by NADPH oxidases and reduces cytokine production and secretion in a negative feedback loop. Therefore, TRPM2 channels are essential for the regulation of cytokine production in M1-polarized murine IMs. Specific activation of these channels may promote an anti-inflammatory phenotype and prevent a harmful cytokine storm often observed in COVID-19 patients.
Collapse
Affiliation(s)
- Suhasini Rajan
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Alexey Shalygin
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| |
Collapse
|
5
|
Chinreddy SR, Mashozhera NT, Rashrash B, Flores-Iga G, Nimmakayala P, Hankins GR, Harris RT, Reddy UK. Unraveling TRPV1's Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin. Molecules 2024; 29:4729. [PMID: 39407657 PMCID: PMC11477668 DOI: 10.3390/molecules29194729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer is a global health challenge with rising incidence and mortality rates, posing significant concerns. The World Health Organization reports cancer as a leading cause of death worldwide, contributing to nearly one in six deaths. Cancer pathogenesis involves disruptions in cellular signaling pathways, resulting in uncontrolled cell growth and metastasis. Among emerging players in cancer biology, Transient Receptor Potential (TRP) channels, notably TRPV1, have garnered attention due to their altered expression in cancer cells and roles in tumorigenesis and progression. TRPV1, also known as the capsaicin receptor, is pivotal in cancer cell death and pain mediation, offering promise as a therapeutic target. Activation of TRPV1 triggers calcium influx and affects cell signaling linked to growth and death. Additionally, TRPV1 is implicated in cancer-induced pain and chemo-sensitivity, with upregulation observed in sensory neurons innervating oral cancers. Also, when capsaicin, a compound from chili peppers, interacts with TRPV1, it elicits a "hot" sensation and influences cancer processes through calcium influx. Understanding TRPV1's multifaceted roles in cancer may lead to novel therapeutic strategies for managing cancer-related symptoms and improving patient outcomes. The current review elucidates the comprehensive role of capsaicin in cancer therapy, particularly through the TRPV1 channel, highlighting its effects in various cells via different signaling pathways and discussing its limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (S.R.C.); (N.T.M.); (B.R.); (G.F.-I.); (P.N.); (G.R.H.); (R.T.H.)
| |
Collapse
|
6
|
Simon-Chica A, Klesen A, Emig R, Chan A, Greiner J, Grün D, Lother A, Hilgendorf I, Rog-Zielinska EA, Ravens U, Kohl P, Schneider-Warme F, Peyronnet R. Piezo1 stretch-activated channel activity differs between murine bone marrow-derived and cardiac tissue-resident macrophages. J Physiol 2024; 602:4437-4456. [PMID: 38642051 DOI: 10.1113/jp284805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024] Open
Abstract
Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦBM), form a popular research model. This study explores the activity of mechanosensitive ion channels (MSC) in murine MΦBM and compares it to MSC activity in MΦ enzymatically isolated from cardiac tissue (tissue-resident MΦ; MΦTR). We show that MΦBM and MΦTR have stretch-induced currents, indicating the presence of functional MSC in their plasma membrane. The current profiles in MΦBM and in MΦTR show characteristics of cation non-selective MSC such as Piezo1 or transient receptor potential channels. While Piezo1 ion channel activity is detectable in the plasma membrane of MΦBM using the patch-clamp technique, or by measuring cytosolic calcium concentration upon perfusion with the Piezo1 channel agonist Yoda1, no Piezo1 channel activity was observed in MΦTR. The selective transient receptor potential vanilloid 4 (TRPV4) channel agonist GSK1016790A induces calcium entry in MΦTR and in MΦBM. In MΦ isolated from left-ventricular scar tissue 28 days after cryoablation, stretch-induced current characteristics are not significantly different compared to non-injured control tissue, even though scarred ventricular tissue is expected to be mechanically remodelled and to contain an altered composition of pre-existing cardiac and circulation-recruited MΦ. Our data suggest that the in vitro differentiation protocols used to obtain MΦBM generate cells that differ from MΦ recruited from the circulation during tissue repair in vivo. Further investigations are needed to explore MSC identity in lineage-traced MΦ in scar tissue, and to compare mechanosensitivity of circulating monocytes with that of MΦBM. KEY POINTS: Bone marrow-derived (MΦBM) and tissue resident (MΦTR) macrophages have stretch-induced currents, indicating expression of functional mechanosensitive channels (MSC) in their plasma membrane. Stretch-activated current profiles show characteristics of cation non-selective MSC; and mRNA coding for MSC, including Piezo1 and TRPV4, is expressed in murine MΦBM and in MΦTR. Calcium entry upon pharmacological activation of TRPV4 confirms functionality of the channel in MΦTR and in MΦBM. Piezo1 ion channel activity is detected in the plasma membrane of MΦBM but not in MΦTR, suggesting that MΦBM may not be a good model to study the mechanotransduction of MΦTR. Stretch-induced currents, Piezo1 mRNA expression and response to pharmacological activation are not significantly changed in cardiac MΦ 28 days after cryoinjury compared to sham operated mice.
Collapse
Affiliation(s)
- Ana Simon-Chica
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alexander Klesen
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Congenital Heart Defects and Paediatric Cardiology, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andy Chan
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Achim Lother
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Pourteymour S, Fan J, Majhi RK, Guo S, Sun X, Huang Z, Liu Y, Winter H, Bäcklund A, Skenteris NT, Chernogubova E, Werngren O, Li Z, Skogsberg J, Li Y, Matic L, Hedin U, Maegdefessel L, Ehrenborg E, Tian Y, Jin H. PIEZO1 targeting in macrophages boosts phagocytic activity and foam cell apoptosis in atherosclerosis. Cell Mol Life Sci 2024; 81:331. [PMID: 39107572 PMCID: PMC11335255 DOI: 10.1007/s00018-024-05372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
The rising incidences of atherosclerosis have necessitated efforts to identify novel targets for therapeutic interventions. In the present study, we observed increased expression of the mechanosensitive calcium channel Piezo1 transcript in mouse and human atherosclerotic plaques, correlating with infiltration of PIEZO1-expressing macrophages. In vitro administration of Yoda1, a specific agonist for PIEZO1, led to increased foam cell apoptosis and enhanced phagocytosis by macrophages. Mechanistically, PIEZO1 activation resulted in intracellular F-actin rearrangement, elevated mitochondrial ROS levels and induction of mitochondrial fragmentation upon PIEZO1 activation, as well as increased expression of anti-inflammatory genes. In vivo, ApoE-/- mice treated with Yoda1 exhibited regression of atherosclerosis, enhanced stability of advanced lesions, reduced plaque size and necrotic core, increased collagen content, and reduced expression levels of inflammatory markers. Our findings propose PIEZO1 as a novel and potential therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway.
| | - Jingxue Fan
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Rakesh Kumar Majhi
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Shuyuan Guo
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Hanna Winter
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Alexandra Bäcklund
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos-Taxiarchis Skenteris
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Olivera Werngren
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Zhaolong Li
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yuhuang Li
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Ewa Ehrenborg
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China.
| | - Hong Jin
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Vašek D, Fikarová N, Marková VN, Honc O, Pacáková L, Porubská B, Somova V, Novotný J, Melkes B, Krulová M. Lipopolysaccharide pretreatment increases the sensitivity of the TRPV1 channel and promotes an anti-inflammatory phenotype of capsaicin-activated macrophages. J Inflamm (Lond) 2024; 21:17. [PMID: 38790047 PMCID: PMC11127439 DOI: 10.1186/s12950-024-00391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The transient receptor potential vanilloid 1 (TRPV1) is well-established in neuronal function, yet its role in immune reactions remains enigmatic. The conflicting data on its inflammatory role, suggesting both pro-inflammatory and anti-inflammatory effects upon TRPV1 stimulation in immune cells, adds complexity. To unravel TRPV1 immunomodulatory mechanisms, we investigated how the TRPV1 agonist capsaicin influences lipopolysaccharide (LPS)-induced pro-inflammatory macrophage phenotypes. RESULTS Changes in the surface molecules, cytokine production, and signaling cascades linked to the phenotype of M1 or M2 macrophages of the J774 macrophage cell line and bone marrow-derived macrophages, treated with capsaicin before or after the LPS-induced inflammatory reaction were determined. The functional capacity of macrophages was also assessed by infecting the stimulated macrophages with the intracellular parasite Leishmania mexicana. CONCLUSION Our findings reveal that TRPV1 activation yields distinct macrophage responses influenced by the inflammatory context. LPS pre-treatment followed by capsaicin activation prompted increased calcium influx, accompanied by a shift toward an anti-inflammatory M2b-like polarization state.
Collapse
Affiliation(s)
- Daniel Vašek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Natálie Fikarová
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Vendula Nagy Marková
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Ondřej Honc
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Lenka Pacáková
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Bianka Porubská
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Veronika Somova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Magdaléna Krulová
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic.
| |
Collapse
|
9
|
Zhu W, Bai D, Ji W, Gao J. TRP channels associated with macrophages as targets for the treatment of obese asthma. Lipids Health Dis 2024; 23:49. [PMID: 38365763 PMCID: PMC10874053 DOI: 10.1186/s12944-024-02016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
Globally, obesity and asthma pose significant health challenges, with obesity being a key factor influencing asthma. Despite this, effective treatments for obese asthma, a distinct phenotype, remain elusive. Since the discovery of transient receptor potential (TRP) channels in 1969, their value as therapeutic targets for various diseases has been acknowledged. TRP channels, present in adipose tissue cells, influence fat cell heat production and the secretion of adipokines and cytokines, which are closely associated with asthma and obesity. This paper aims to investigate the mechanisms by which obesity exacerbates asthma-related inflammation and suggests that targeting TRP channels in adipose tissue could potentially suppress obese asthma and offer novel insights into its treatment.
Collapse
Affiliation(s)
- Wenzhao Zhu
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Dinxi Bai
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Wenting Ji
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Jing Gao
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Alavi MS, Soheili V, Roohbakhsh A. The role of transient receptor potential (TRP) channels in phagocytosis: A comprehensive review. Eur J Pharmacol 2024; 964:176302. [PMID: 38154767 DOI: 10.1016/j.ejphar.2023.176302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
When host cells are exposed to foreign particles, dead cells, or cell hazards, a sophisticated process called phagocytosis begins. During this process, macrophages, dendritic cells, and neutrophils engulf the target by expanding their membranes. Phagocytosis of apoptotic cells is called efferocytosis. This process is of significant importance as billions of cells are eliminated daily without provoking inflammation. Both phagocytosis and efferocytosis depend on Ca2+ signaling. A big family of Ca2+ permeable channels is transient receptor potentials (TRPs) divided into nine subfamilies. We aimed to review their roles in phagocytosis. The present review article shows that various TRP channels such as TRPV1, 2, 3, 4, TRPM2, 4, 7, 8, TRPML1, TRPA1, TRPC1, 3, 5, 6 have roles at various stages of phagocytosis. They are involved in the phagocytosis of amyloid β, α-synuclein, myelin debris, bacteria, and apoptotic cells. In particular, TRPC3 and TRPM7 contribute to efferocytosis. These effects are mediated by changing Ca2+ signaling or targeting intracellular enzymes such as Akt. In addition, they contribute to the chemotaxis of phagocytic cells towards targets. Although a limited number of studies have assessed the role of TRP channels in phagocytosis and efferocytosis, their findings indicate that they have critical roles in these processes. In some cases, their ablation completely abolished the phagocytic function of the cells. As a result, TRP channels are potential targets for developing new therapeutics that modulate phagocytosis.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Shikha D, Mahish C, Sing R, Chattopadhyay S, Goswami C. Modulation of TRPM8 alters the phagocytic activity of microglia and induces changes in sub-cellular organelle functions. Biochem Biophys Res Commun 2023; 682:56-63. [PMID: 37801990 DOI: 10.1016/j.bbrc.2023.09.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
In this work, we investigated the presence and function of TRPM8, a non-selective and cold-sensitive Ca2+-permeable ion channel in the primary microglia cell as well as in microglia cell line BV2. We demonstrate that primary microglia as well as BV2 express TRPM8 endogenously. Both pharmacological activation or inhibition of TRPM8 causes enhanced uptake of bacterial particles at early time points of infection. In BV2, TRPM8 activation and/or LPS-signaling alters its surface expression and cytosolic ROS production. TRPM8 modulation in the absence and presence of LPS causes differential regulation of cytosolic pH and lysosomal pH. Notably, TRPM8 modulation also alters the correlation between lysosomal pH and cytosolic pH depending on TRPM8 modulation and the presence or absence of LPS. Collectively our data suggest that TRPM8 is involved in the regulation of subcellular organelle, i.e. mitochondrial and lysosomal functions. Data also suggest that primarily TRPM8 activation, but often deviation from endogenous TRPM8 function is linked with better innate immune function mediated by microglial cells. We suggest that TRPM8-mediated regulations of sub-cellular organelle functions are more context-dependent manner. Such understanding is relevant in the context of microglial cell functions and innate immunity.
Collapse
Affiliation(s)
- Deep Shikha
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India
| | - Chandan Mahish
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India
| | - Raima Sing
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha, 752050, India.
| |
Collapse
|
12
|
Wang C, Wang X, Zhang D, Sun X, Wu Y, Wang J, Li Q, Jiang G. The macrophage polarization by miRNAs and its potential role in the treatment of tumor and inflammation (Review). Oncol Rep 2023; 50:190. [PMID: 37711048 PMCID: PMC10523439 DOI: 10.3892/or.2023.8627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
The characteristics of monocyte/macrophage lineage are diversity and plasticity, mainly manifested by M1 and M2 subtypes in the body tissues, and playing different roles in the immunity. In the polarization process of macrophages, the classic molecular mechanism is related to sequential transcription factors. Whether in tumor or inflammatory local microenvironment, the pathological factors of the local microenvironment often affect the polarization of M1 and M2 macrophages, and participate in the occurrence and development of these pathological processes. In recent years, a growing number of research results demonstrated that non‑coding RNA (ncRNA) also participates in the polarization process of macrophages, in addition to traditional cytokines and transcriptional regulation signal pathway molecules. Among numerous ncRNAs, microRNAs (miRNAs) have attracted more attention from scholars both domestically and internationally, and significant progress has been made in basic and clinical research. Therefore, for improved understanding of the molecular mechanism of miRNAs in macrophage polarization and analysis of the potential value of this regulatory pathway in tumor and inflammatory intervention therapy, a comprehensive review of the progress of relevant literature research was conducted and some viewpoints and perspectives were proposed.
Collapse
Affiliation(s)
- Chaozhe Wang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Xidi Wang
- Department of Laboratory Medicine, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Danfeng Zhang
- Department of Laboratory Medicine, Lixia People's Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiaolin Sun
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Yunhua Wu
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Jing Wang
- Department of Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250013, P.R. China
| | - Qing Li
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| |
Collapse
|
13
|
Wu X, Singla S, Liu JJ, Hong L. The role of macrophage ion channels in the progression of atherosclerosis. Front Immunol 2023; 14:1225178. [PMID: 37588590 PMCID: PMC10425548 DOI: 10.3389/fimmu.2023.1225178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis is a complex inflammatory disease that affects the arteries and can lead to severe complications such as heart attack and stroke. Macrophages, a type of immune cell, play a crucial role in atherosclerosis initiation and progression. Emerging studies revealed that ion channels regulate macrophage activation, polarization, phagocytosis, and cytokine secretion. Moreover, macrophage ion channel dysfunction is implicated in macrophage-derived foam cell formation and atherogenesis. In this context, exploring the regulatory role of ion channels in macrophage function and their impacts on the progression of atherosclerosis emerges as a promising avenue for research. Studies in the field will provide insights into novel therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sidhant Singla
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jianhua J. Liu
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
15
|
Chen X, Lu W, Lu C, Zhang L, Xu F, Dong H. The CaSR/TRPV4 coupling mediates pro-inflammatory macrophage function. Acta Physiol (Oxf) 2023; 237:e13926. [PMID: 36606511 DOI: 10.1111/apha.13926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Although calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 4 (TRPV4) channels are functionally expressed on macrophages, it is unclear if they work coordinately to mediate macrophage function. The present study investigates whether CaSR couples to TRPV4 channels and mediates macrophage polarization via Ca2+ signaling. METHODS The role of CaSR/TRPV4/Ca2+ signaling was assessed in lipopolysaccharide (LPS)-treated peritoneal macrophages (PMs) from wild-type (WT) and TRPV4 knockout (TRPV4 KO) mice. The expression and function of CaSR and TRPV4 in PMs were analyzed by immunofluorescence and digital Ca2+ imaging. The correlation factors of M1 polarization, CCR7, IL-1β, and TNFα were detected using q-PCR, western blot, and ELISA. RESULTS We found that PMs expressed CaSR and TRPV4, and CaSR activation-induced marked Ca2+ signaling predominately through extracellular Ca2+ entry, which was inhibited by selective pharmacological blockers of CaSR and TRPV4 channels. The CaSR activation-induced Ca2+ signaling was significantly attenuated in PMs from TRPV4 KO mice compared to those from WT mice. Moreover, the CaSR activation-induced Ca2+ entry via TRPV4 channels was inhibited by blocking phospholipases A2 (PLA2)/cytochromeP450 (CYP450) and phospholipase C (PLC)/Protein kinase C (PKC) pathways. Finally, CaSR activation promoted the expression and release of M1-associated cytokines IL-1β and TNFɑ, which were attenuated in PMs from TRPV4 KO mice. CONCLUSION We reveal a novel coupling of the CaSR and TRPV4 channels via PLA2/CYP450 and PLC/PKC pathways, promoting a Ca2+ -dependent M1 macrophage polarization. Modulation of this coupling and downstream pathways may become a potential strategy for the prevention/treatment of immune-related disease.
Collapse
Affiliation(s)
- Xiongying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
16
|
TRPC absence induces pro-inflammatory macrophages and gut microbe disorder, sensitizing mice to colitis. Int Immunopharmacol 2023; 115:109655. [PMID: 36592529 DOI: 10.1016/j.intimp.2022.109655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
The transient receptor potential canonical (TRPC) channels, encoded in seven non-allelic genes, are important contributors to calcium fluxes, are strongly associated with various diseases. Here we explored the consequences of ablating all seven TRPCs in mice focusing on colitis. We discovered that absence of all seven TRPC proteins in mice (TRPC HeptaKO mice) promotes the development of dextran sulfate sodium (DSS)-induced colitis. RNA-sequence analysis highlighted an extremely pro-inflammatory profile in colons of DSS-treated TRPC HeptaKO mice, with an amount of increased pro-inflammatory cytokines and chemokines. Flow cytometry analysis showed that the infiltration of Ly6Chi monocytes and neutrophils in colonic lamina propria was significantly increased in DSS-treated TRPC HeptaKO mice. Results also revealed that macrophages from TRPC HeptaKO mice exhibited M1 polarization and enhanced secretion of pro-inflammatory factors. In addition, the composition of gut microbiota was markedly disturbed in DSS-treated TRPC HeptaKO mice. However, upon antibiotic cocktail (Abx)-treatment, TRPC HeptaKO mice showed no significant differences with WT mice in disease severity. Collectively, these data suggest that ablation of all TRPCs promotes the development of DSS-induced colitis by inducing pro-inflammatory macrophages and gut microbiota disorder.
Collapse
|
17
|
Expression and functions of transient receptor potential channels in liver diseases. Acta Pharm Sin B 2023; 13:445-459. [PMID: 36873177 PMCID: PMC9978971 DOI: 10.1016/j.apsb.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Liver diseases constitute a major healthcare burden globally, including acute hepatic injury resulted from acetaminophen overdose, ischemia-reperfusion or hepatotropic viral infection and chronic hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Attainable treatment strategies for most liver diseases remain inadequate, highlighting the importance of substantial pathogenesis. The transient receptor potential (TRP) channels represent a versatile signalling mechanism regulating fundamental physiological processes in the liver. It is not surprising that liver diseases become a newly explored field to enrich our knowledge of TRP channels. Here, we discuss recent findings revealing TRP functions across the fundamental pathological course from early hepatocellular injury caused by various insults, to inflammation, subsequent fibrosis and hepatoma. We also explore expression levels of TRPs in liver tissues of ALD, NAFLD and HCC patients from Gene Expression Omnibus (GEO) or The Cancer Genome Atlas (TCGA) database and survival analysis estimated by Kaplan-Meier Plotter. At last, we address the therapeutical potential and challenges by pharmacologically targeting TRPs to treat liver diseases. The aim is to provide a better understanding of the implications of TRP channels in liver diseases, contributing to the discovery of novel therapeutic targets and efficient drugs.
Collapse
|
18
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
19
|
Wang L, Chen X, Zhang H, Hong L, Wang J, Shao L, Chen G, Wu J. Comprehensive analysis of transient receptor potential channels-related signature for prognosis, tumor immune microenvironment, and treatment response of colorectal cancer. Front Immunol 2022; 13:1014834. [PMID: 36389750 PMCID: PMC9642045 DOI: 10.3389/fimmu.2022.1014834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Transient receptor potential channels (TRPC) play critical regulatory functions in cancer occurrence and progression. However, knowledge on its role in colorectal cancer (CRC) is limited. In addition, neoadjuvant treatment and immune checkpoint inhibitors (ICIs) have increasing roles in CRC management, but not all patients benefit from them. In this study, a TRPC related signature (TRPCRS) was constructed for prognosis, tumor immune microenvironment (TIME), and treatment response of CRC. METHODS Data on CRC gene expression and clinical features were retrospectively collected from TCGA and GEO databases. Twenty-eight TRPC regulators (TRPCR) were retrieved using gene set enrichment analysis. Different TRPCR expression patterns were identified using non-negative matrix factorization for consensus clustering, and a TRPCRS was established using LASSO. The potential value of TRPCRS was assessed using functional enrichment analysis, tumor immune analysis, tumor somatic mutation analysis, and response to preoperative chemoradiotherapy or ICIs. Moreover, an external validation was conducted using rectal cancer samples that received preoperative chemoradiotherapy at Fujian Cancer Hospital (FJCH) via qRT-PCR. RESULTS Among 834 CRC samples in the TCGA and meta-GEO cohorts, two TRPCR expression patterns were identified, which were associated with various immune infiltrations. In addition, 266 intersected genes from 5564 differentially expressed genes (DEGs) between two TRPC subtypes, 4605 DEGs between tumor tissue and adjacent non-tumor tissue (all FDR< 0.05, adjusted P< 0.001), and 1329 prognostic related genes (P< 0.05) were identified to establish the TRPCRS, which was confirmed in the TCGA cohort, two cohorts from GEO, and one qRT-PCR cohort from FJCH. According to the current signature, the high-TRPC score group had higher expressions of PD-1, PD-L1, and CTLA4, lower TIDE score, and improved response to anti-PD-1 treatment with better predictive ability. Compared to the high-TRPC score group, the low-TRPC score group comprised an immunosuppressive phenotype with increased infiltration of neutrophils and activated MAPK signaling pathway, but was more sensitive to preoperative chemoradiotherapy and associated with improved prognosis. CONCLUSIONS The current TRPCRS predicted the prognosis of CRC, evaluated the TIME in CRC, and anticipated the response to immune therapy and neoadjuvant treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xingte Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hejun Zhang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Liang Hong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianchao Wang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lingdong Shao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
20
|
Zhao DW, Fan XC, Zhao YX, Zhao W, Zhang YQ, Zhang RH, Cheng L. Biocompatible Nano-Hydroxyapatites Regulate Macrophage Polarization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196986. [PMID: 36234325 PMCID: PMC9573195 DOI: 10.3390/ma15196986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 10/05/2022] [Indexed: 05/27/2023]
Abstract
Research on regulation of the immune microenvironment based on bioactive materials is important to osteogenic regeneration. Hydroxyapatite (HAP) is believed to be a promising scaffold material for dental and orthopedic implantation due to its ideal biocompatibility and high osteoconductivity. However, any severe inflammation response can lead to loosening and fall of implantation, which cause implant failures in the clinic. Morphology modification has been widely studied to regulate the host immune environment and to further promote bone regeneration. Here, we report the preparation of nHAPs, which have uniform rod-like shape and different size (200 nm and 400 nm in length). The morphology, biocompatibility, and anti-inflammatory properties were evaluated. The results showed that the 400 nm nHAPs exhibited excellent biocompatibility and osteoimmunomodulation, which can not only induce M2-phenotype macrophages (M2) polarization to decrease the production of inflammatory cytokines, but also promote the production of osteogenic factor. The reported 400 nm nHAPs are promising for osteoimmunomodulation in bone regeneration, which is beneficial for clinical application of bone defects.
Collapse
Affiliation(s)
- Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Xin-Cheng Fan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Orthopaedics, Taian City Central Hospital, Tai’an 271000, China
| | - Yi-Xiang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Wei Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Yuan-Qiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ren-Hua Zhang
- Outpatient Department, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
21
|
Selezneva A, Gibb AJ, Willis D. The contribution of ion channels to shaping macrophage behaviour. Front Pharmacol 2022; 13:970234. [PMID: 36160429 PMCID: PMC9490177 DOI: 10.3389/fphar.2022.970234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The expanding roles of macrophages in physiological and pathophysiological mechanisms now include normal tissue homeostasis, tissue repair and regeneration, including neuronal tissue; initiation, progression, and resolution of the inflammatory response and a diverse array of anti-microbial activities. Two hallmarks of macrophage activity which appear to be fundamental to their diverse cellular functionalities are cellular plasticity and phenotypic heterogeneity. Macrophage plasticity allows these cells to take on a broad spectrum of differing cellular phenotypes in response to local and possibly previous encountered environmental signals. Cellular plasticity also contributes to tissue- and stimulus-dependent macrophage heterogeneity, which manifests itself as different macrophage phenotypes being found at different tissue locations and/or after different cell stimuli. Together, plasticity and heterogeneity align macrophage phenotypes to their required local cellular functions and prevent inappropriate activation of the cell, which could lead to pathology. To execute the appropriate function, which must be regulated at the qualitative, quantitative, spatial and temporal levels, macrophages constantly monitor intracellular and extracellular parameters to initiate and control the appropriate cell signaling cascades. The sensors and signaling mechanisms which control macrophages are the focus of a considerable amount of research. Ion channels regulate the flow of ions between cellular membranes and are critical to cell signaling mechanisms in a variety of cellular functions. It is therefore surprising that the role of ion channels in the macrophage biology has been relatively overlooked. In this review we provide a summary of ion channel research in macrophages. We begin by giving a narrative-based explanation of the membrane potential and its importance in cell biology. We then report on research implicating different ion channel families in macrophage functions. Finally, we highlight some areas of ion channel research in macrophages which need to be addressed, future possible developments in this field and therapeutic potential.
Collapse
|
22
|
Unveiling the Molecular Mechanisms Driving the Capsaicin-Induced Immunomodulatory Effects on PD-L1 Expression in Bladder and Renal Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14112644. [PMID: 35681623 PMCID: PMC9179445 DOI: 10.3390/cancers14112644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Over time, capsaicin (CPS) has been considered both a potential anti-cancer and pro-cancer molecule. Hence, the diversity of CPS functioning has already been established. Now, exploration of its application with immunotherapies might open up a new avenue in cancer therapy. Herein, the application of CPS as an immunoadjuvant to overcome the tumor’s immune-escaping mechanisms or to increase immune checkpoint therapy has been approached. In bladder cancer, the interaction of CPS with its receptor TRPV1 increases PD-L1 expression, promoting a tumorigenic effect and also providing a target for anti-PD-1/PD-L1 immunotherapy. On the contrary, in renal cell carcinoma, CPS downregulates PD-L1 expression in a TRPV1-independent manner, suggesting a potential application of CPS as an immune-adjuvant in this type of cancer. Abstract The blockade of the PD-L1/PD-1 immune checkpoint has promising efficacy in cancer treatment. However, few patients with bladder cancer (BC) or renal cell carcinoma (RCC) respond to this approach. Thus, it is important to implement a strategy to stimulate the immune anti-tumor response. In this scenario, our study evaluated the effects of a low capsaicin (CPS) dose in BC and RCC cell lines. Western blot, qRT-PCR and confocal microscopy were used to assess PD-L1 mRNA and protein expression. Alterations to the cellular oxidative status and changes to the antioxidant NME4 levels, mRNA modulation of cytokines, growth factors, transcriptional factors and oncogene, and the activation of Stat1/Stat3 pathways were examined using Western blot, cytofluorimetry and qRT-PCR profiling assays. In BC, CPS triggers an altered stress oxidative-mediated DNA double-strand break response and increases the PD-L1 expression. On the contrary, in RCC, CPS, by stimulating an efficient DNA damage repair response, thus triggering protein carbonylation, reduces the PD-L1 expression. Overall, our results show that CPS mediates a multi-faceted approach. In modulating PD-L1 expression, there is a rationale for CPS exploitation as a stimulus that increases BC cells’ response to immunotherapy or as an immune adjuvant to improve the efficacy of the conventional therapy in RCC patients.
Collapse
|
23
|
Interfaces Based on Laser-Structured Arrays of Carbon Nanotubes with Albumin for Electrical Stimulation of Heart Cell Growth. Polymers (Basel) 2022; 14:polym14091866. [PMID: 35567036 PMCID: PMC9102927 DOI: 10.3390/polym14091866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Successful formation of electronic interfaces between living cells and electronic components requires both good cell viability and performance level. This paper presents a technology for the formation of nanostructured arrays of multi-walled carbon nanotubes (MWCNT) in biopolymer (albumin) layer for higher biocompatibility. The layer of liquid albumin dispersion was sprayed on synthesized MWCNT arrays by deposition system. These nanostructures were engineered using the nanosecond pulsed laser radiation mapping in the near-IR spectral range (λ = 1064 nm). It was determined that the energy density of 0.015 J/cm2 provided a sufficient structuring of MWCNT. The structuring effect occurred during the formation of C–C bonds simultaneously with the formation of a cellular structure of nanotubes in the albumin matrix. It led to a decrease in the nanotube defectiveness, which was observed during the Raman spectroscopy. In addition, laser structuring led to a more than twofold increase in the electrical conductivity of MWCNT arrays with albumin (215.8 ± 10 S/m). Successful electric stimulation of cells on the interfaces with the system based on a culture plate was performed, resulting in the enhanced cell proliferation. Overall, the MWCNT laser-structured arrays with biopolymers might be a promising material for extended biomedical applications.
Collapse
|
24
|
Yang L, Pierce S, Gould TW, Craviso GL, Leblanc N. Ultrashort nanosecond electric pulses activate a conductance in bovine adrenal chromaffin cells that involves cation entry through TRPC and NALCN channels. Arch Biochem Biophys 2022; 723:109252. [DOI: 10.1016/j.abb.2022.109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
|
25
|
Chen CC, Krogsaeter E, Kuo CY, Huang MC, Chang SY, Biel M. Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomed Pharmacother 2022; 148:112751. [PMID: 35240524 DOI: 10.1016/j.biopha.2022.112751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022] Open
Abstract
Infectious diseases and cancer are among the key medical challenges that humankind is facing today. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of both groups of diseases. The development of advanced patch-clamp technologies has allowed us to directly characterize ion fluxes through endolysosomal ion channels in their native environments. Endolysosomes are essential organelles for intracellular transport, digestion and metabolism, and maintenance of homeostasis. The endolysosomal ion channels regulate the function of the endolysosomal system through four basic mechanisms: calcium release, control of membrane potential, pH change, and osmolarity regulation. In this review, we put particular emphasis on the endolysosomal cation channels, including TPC2 and TRPML2, which are particularly important in monocyte function. We discuss existing endogenous and synthetic ligands of these channels and summarize current knowledge of their impact on channel activity and function in different cell types. Moreover, we summarize recent findings on the importance of TPC2 and TRPML2 channels as potential drug targets for the prevention and treatment of the emerging infectious diseases and cancer.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
26
|
Nguyen TN, Siddiqui G, Veldhuis NA, Poole DP. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front Immunol 2022; 12:828115. [PMID: 35126384 PMCID: PMC8811046 DOI: 10.3389/fimmu.2021.828115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| | - Daniel P. Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| |
Collapse
|
27
|
Bryniarski P, Nazimek K, Marcinkiewicz J. Captopril Combined with Furosemide or Hydrochlorothiazide Affects Macrophage Functions in Mouse Contact Hypersensitivity Response. Int J Mol Sci 2021; 23:ijms23010074. [PMID: 35008498 PMCID: PMC8744850 DOI: 10.3390/ijms23010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Hypertension is a chronic disease associated with chronic inflammation involving activated macrophages. Antihypertensive drugs (for example, angiotensin-converting enzyme inhibitors—ACEIs) used in the treatment of hypertension have immunomodulatory properties. On the other hand, the immunological effect of diuretics and combined drugs (diuretics + ACEI) is unclear. Therefore, we examined the influence of diuretics and combination drugs (ACEI + diuretic) on cellular response (contact hypersensitivity), production of reactive oxygen intermediates (ROIs), and nitric oxide (NO), and the secretion of interleukin-12 (IL-12). CBA mice were administered i.p. captopril (5 mg/kg) with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) for 8 days. On the third day, the mice were administered i.p. mineral oil, and macrophages were collected 5 days later. In the presented results, we show that diuretics administered alone or with captopril increase the generation of ROIs and reduce the formation of NO by macrophages. Moreover, tested drugs inhibit the secretion of IL-12. Diuretics and combined drugs reduce the activity of contact hypersensitivity (both activation and induction phases). Our research shows that the tested drugs modulate the cellular response by influencing the function of macrophages, which is important in assessing the safety of antihypertensive therapy.
Collapse
Affiliation(s)
- Paweł Bryniarski
- Correspondence: (P.B.); (K.N.); Tel.: +48-12-632-58-65 (P.B. & K.N.); Fax: +48-12-633-94-31 (P.B. & K.N.)
| | - Katarzyna Nazimek
- Correspondence: (P.B.); (K.N.); Tel.: +48-12-632-58-65 (P.B. & K.N.); Fax: +48-12-633-94-31 (P.B. & K.N.)
| | | |
Collapse
|
28
|
Jiang X, Wang C, Ke Z, Duo L, Wu T, Wang W, Yang Y, Dai Y. The ion channel TRPV1 gain-of-function reprograms the immune microenvironment to facilitate colorectal tumorigenesis. Cancer Lett 2021; 527:95-106. [PMID: 34920021 DOI: 10.1016/j.canlet.2021.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a Ca2+-permeable ion channel that acts as cellular sensor and is implicated in the tumor microenvironment cross talk. However, the functional role of TRPV1 in colorectal cancer (CRC) is still controversial. By using a TRPV1 gain-of-function model, we previously reported that hyperfunctional TRPV1 exacerbated experimental colitis by modulating mucosal immunity. Here, we found that TRPV1 gain-of-function significantly promoted tumor initiation and progression in colitis-associated cancer, as evidenced by the increase in the number and size of tumor. Systemic TRPV1 hyperactivation fostered a tumor permissive microenvironment through altering macrophage activation status and shifting the Th1/Th2 balance towards Th2 phenotype. Mechanistically, TRPV1 gain-of-function directly potentiated M1 cytokine production in macrophage and enhanced Th2 immune response by promoting Calcineurin/nuclear factor of activated T cells (NFATc2) signaling activation. In patients with CRC, TRPV1 expression was increased in tumor immune infiltrating cells. TRPV1 level was associated with CRC progression and could impact clinical outcome. Our study reveals an important role for TRPV1 in regulating the immune microenvironment during colorectal tumorigenesis. TRPV1 might be a potential target for CRC immunotherapy.
Collapse
Affiliation(s)
- Xuehui Jiang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Chaohui Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Lina Duo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; Department of Dermatology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, Sichuan, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yong Yang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
29
|
Kuppusamy M, Ottolini M, Sonkusare SK. Role of TRP ion channels in cerebral circulation and neurovascular communication. Neurosci Lett 2021; 765:136258. [PMID: 34560190 PMCID: PMC8572163 DOI: 10.1016/j.neulet.2021.136258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
The dynamic regulation of blood flow is essential for meeting the high metabolic demands of the brain and maintaining brain function. Cerebral blood flow is regulated primarily by 1) the intrinsic mechanisms that determine vascular contractility and 2) signals from neurons and astrocytes that alter vascular contractility. Stimuli from neurons and astrocytes can also initiate a signaling cascade in the brain capillary endothelium to increase regional blood flow. Recent studies provide evidence that TRP channels in endothelial cells, smooth muscle cells, neurons, astrocytes, and perivascular nerves control cerebrovascular contractility and cerebral blood flow. TRP channels exert their functional effects either through cell membrane depolarization or by serving as a Ca2+ influx pathway. Endothelial cells and astrocytes also maintain the integrity of the blood-brain barrier. Both endothelial cells and astrocytes express TRP channels, and an increase in endothelial TRP channel activity has been linked with a disrupted endothelial barrier function. Therefore, TRP channels can play a potentially important role in regulating blood-brain barrier integrity. Here, we review the regulation of cerebrovascular contractility by TRP channels under healthy and disease conditions and their potential roles in maintaining blood-brain barrier function.
Collapse
Affiliation(s)
- Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA; Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
30
|
Sermet S, Li J, Bach A, Crawford RB, Kaminski NE. Cannabidiol selectively modulates interleukin (IL)-1β and IL-6 production in toll-like receptor activated human peripheral blood monocytes. Toxicology 2021; 464:153016. [PMID: 34740670 DOI: 10.1016/j.tox.2021.153016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Cannabidiol (CBD) is a major non-euphoric cannabis-derived compound that has become popular in its over-the-counter use. CBD possesses low affinity for cannabinoid receptors, while the primary molecular target(s) by which it mediates biological activity remain poorly defined. Individuals commonly self-medicate using CBD products with little knowledge of its specific immunopharmacological effects on the human immune system; however, research has established primarily in rodent models that CBD possesses immune modulating properties. The objective of this study was to evaluate whether CBD modulates the innate immune response by human primary monocytes activated through toll-like receptors (TLR) 1-9. Monocytes were activated through each TLR and treated with CBD (0.5-10 μM) for 22 h. Monocyte secretion profiles for 13 immune mediators were quantified including: IL-4, IL-2, IP-10, IL-1β, TNFα, MCP-1, IL-17a, IL-6, IL-10, IFNγ, IL-12p70, IL-8, and TGF-β1. CBD treatment significantly suppressed secretion of proinflammatory cytokine IL-1β by monocytes activated through most TLRs, apart from TLRs 3 and 8. Additionally, CBD treatment induced significant modulation of IL-6 production by monocytes activated through most TLRs, except for TLRs 1 and 3. Most other monocyte-derived factors assayed were refractory to CBD modulation. Overall, CBD selectively altered monocyte-derived IL-1β and IL-6 when activated through most TLRs. This study is of particular importance as it provides a direct and comprehensive assessment of the effects of CBD on TLR-activated primary human monocytes at a time when CBD containing products are being widely used by the public.
Collapse
Affiliation(s)
- Sera Sermet
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Jinpeng Li
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, United States
| | - Anthony Bach
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, United States
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
31
|
Li S, Feng Y, Zhang T, Wang S, Sun J. Identification and characterization of Trpm4 gene involved in regulating Japanese flounder (Paralichthys olivaceus) inflammatory response. JOURNAL OF FISH DISEASES 2021; 44:1765-1776. [PMID: 34252211 DOI: 10.1111/jfd.13493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed Ca2+ -impermeable cation channel involved in modulating inflammatory and immune responses in mammals. However, the role of TRPM4 channel in fish immunity remains unclear. In this report, from a comparative immunological point of view, we identified and characterized a Trpm4 gene from Japanese flounder (Paralichthys olivaceus) and analysed its potential role in regulating the fish inflammatory response. The Japanese flounder Trpm4 gene is expressed in a wide range of tissues and encodes a 1264-amino acid protein which expresses on the cell surface and shares several conserved domains with its mammalian counterparts. In vitro inflammatory challenge and in vivo bacterial infection experiments revealed that Japanese flounder Trpm4 expression was significantly modulated following different immune challenges, indicating the implication of Trpm4 in the fish immune response. Overexpression of TRPM4 significantly attenuated LPS- and poly(I:C)-induced pro-inflammatory cytokine expression in Japanese flounder FG-9307 cells. In contrast, pharmacological inhibition of the endogenous TRPM4 channel activity in Japanese flounder head kidney macrophages resulted in increased pro-inflammatory cytokine expression following LPS and poly(I:C) stimulations. Taken together, these findings indicate that TRPM4 channels may play a conserved role in regulating inflammatory response(s) in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Tongtong Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Shan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
32
|
Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based physical regulation of macrophage behaviour. J Mater Chem B 2021; 9:3608-3621. [PMID: 33908577 DOI: 10.1039/d1tb00107h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages play a critical role in regulating immune reactions induced by implanted biomaterials. They are highly plastic and in response to diverse stimuli in the microenvironment can exhibit a spectrum of phenotypes and functions. In addition to biochemical signals, the physical properties of biomaterials are becoming increasingly appreciated for their significant impact on macrophage behaviour, and the underlying mechanisms deserve more in-depth investigations. This review first summarises the effects of key physical cues - including stiffness, topography, physical confinement and applied force - on macrophage behaviour. Then, it reviews the current knowledge of cellular sensing and transduction of physical cues into intracellular signals. Finally, it discusses the major challenges in understanding mechanical regulation that could provide insights for biomaterial design.
Collapse
Affiliation(s)
- Huiqun Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yizebang Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
33
|
Flotillin-Dependent Membrane Microdomains Are Required for Functional Phagolysosomes against Fungal Infections. Cell Rep 2021; 32:108017. [PMID: 32814035 PMCID: PMC10054021 DOI: 10.1016/j.celrep.2020.108017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/03/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
Abstract
Lipid rafts form signaling platforms on biological membranes with incompletely characterized role in immune response to infection. Here we report that lipid-raft microdomains are essential components of phagolysosomal membranes of macrophages and depend on flotillins. Genetic deletion of flotillins demonstrates that the assembly of both major defense complexes vATPase and NADPH oxidase requires membrane microdomains. Furthermore, we describe a virulence mechanism leading to dysregulation of membrane microdomains by melanized wild-type conidia of the important human-pathogenic fungus Aspergillus fumigatus resulting in reduced phagolysosomal acidification. We show that phagolysosomes with ingested melanized conidia contain a reduced amount of free Ca2+ ions and that inhibition of Ca2+-dependent calmodulin activity led to reduced lipid-raft formation. We identify a single-nucleotide polymorphism in the human FLOT1 gene resulting in heightened susceptibility for invasive aspergillosis in hematopoietic stem cell transplant recipients. Collectively, flotillin-dependent microdomains on the phagolysosomal membrane play an essential role in protective antifungal immunity.
Collapse
|
34
|
Alharbi AF, Parrington J. Deciphering the Role of Endolysosomal Ca 2+ Channels in Immunity. Front Immunol 2021; 12:656965. [PMID: 33986747 PMCID: PMC8111081 DOI: 10.3389/fimmu.2021.656965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
The role of endolysosomal Ca2+ signalling in immunity has been a subject of increasing interest in recent years. Here, we discuss evolving knowledge relating to the contribution of endolysosomal Ca2+ channels that include TPCs, TRPMLs, and P2X4R in physiological processes related to innate and adaptive immunity-including phagocytosis, inflammation, cytokine/chemokine release, dendritic, natural killer, and T cell activation and migration-and we underscore the paucity of clinical studies in this field. Emerging biomedical and translational data have led to important new insights into the critical roles of these channels in immune cell function and the regulation of innate and adaptive immune responses. The evolving immunological significance of endolysosomal Ca2+ signalling warrants further investigations to better characterize the roles of these channels in immunity in order to expand our knowledge about the pathology of inflammatory and autoimmune diseases and develop endolysosomal Ca2+ channels as viable biomarkers and therapeutic and preventive targets for remodelling the immune response.
Collapse
Affiliation(s)
- Abeer F. Alharbi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Alharbi MO, Dutta B, Goswami R, Sharma S, Lei KY, Rahaman SO. Identification and functional analysis of a biflavone as a novel inhibitor of transient receptor potential vanilloid 4-dependent atherogenic processes. Sci Rep 2021; 11:8173. [PMID: 33854174 PMCID: PMC8047007 DOI: 10.1038/s41598-021-87696-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of large arteries, is the major contributor to the growing burden of cardiovascular disease-related mortality and morbidity. During early atherogenesis, as a result of inflammation and endothelial dysfunction, monocytes transmigrate into the aortic intimal areas, and differentiate into lipid-laden foam cells, a critical process in atherosclerosis. Numerous natural compounds such as flavonoids and polyphenols are known to have anti-inflammatory and anti-atherogenic properties. Herein, using a fluorometric imaging plate reader-supported Ca2+ influx assay, we report semi high-throughput screening-based identification of ginkgetin, a biflavone, as a novel inhibitor of transient receptor potential vanilloid 4 (TRPV4)-dependent proatherogenic and inflammatory processes in macrophages. We found that ginkgetin (1) blocks TRPV4-elicited Ca2+ influx into macrophages, (2) inhibits oxidized low-density lipoprotein (oxLDL)-induced foam cell formation by suppressing the uptake but not the binding of oxLDL in macrophages, and (3) attenuates oxLDL-induced phosphorylation of JNK2, expression of TRPV4 proteins, and induction of inflammatory mRNAs. Considered all together, the results of this study show that ginkgetin inhibits proatherogenic/inflammatory macrophage function in a TRPV4-dependent manner, thus strengthening the rationale for the use of natural compounds for developing therapeutic and/or chemopreventive molecules.
Collapse
Affiliation(s)
- Mazen O Alharbi
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Kai Y Lei
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
36
|
Beesetty P, Rockwood J, Kaitsuka T, Zhelay T, Hourani S, Matsushita M, Kozak JA. Phagocytic activity of splenic macrophages is enhanced and accompanied by cytosolic alkalinization in TRPM7 kinase-dead mice. FEBS J 2021; 288:3585-3601. [PMID: 33354894 DOI: 10.1111/febs.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique protein functioning as a cation channel as well as a serine/threonine kinase and is highly expressed in immune cells such as lymphocytes and macrophages. TRPM7 kinase-dead (KD) mouse model has been used to investigate the role of this protein in immune cells; these animals display moderate splenomegaly and ectopic hemopoiesis. The basal TRPM7 current magnitudes in peritoneal macrophages isolated from KD mice were higher; however, the maximum currents, achieved after cytoplasmic Mg2+ washout, were not different. In the present study, we investigated the consequences of TRPM7 kinase inactivation in splenic and peritoneal macrophages. We measured the basal phagocytic activity of splenic macrophages using fluorescent latex beads, pHrodo zymosan bioparticles, and opsonized red blood cells. KD macrophages phagocytized more efficiently and had slightly higher baseline calcium levels compared to WT cells. We found no obvious differences in store-operated Ca2+ entry between WT and KD macrophages. By contrast, the resting cytosolic pH in KD macrophages was significantly more alkaline than in WT. Pharmacological blockade of sodium hydrogen exchanger 1 (NHE1) reversed the cytosolic alkalinization and reduced phagocytosis in KD macrophages. Basal TRPM7 channel activity in KD macrophages was also reduced after NHE1 blockade. Cytosolic Mg2+ sensitivity of TRPM7 channels measured in peritoneal macrophages was similar in WT and KD mice. The higher basal TRPM7 channel activity in KD macrophages is likely due to alkalinization. Our results identify a novel role for TRPM7 kinase as a suppressor of basal phagocytosis and a regulator of cellular pH.
Collapse
Affiliation(s)
- Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Siham Hourani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| |
Collapse
|
37
|
Dutta B, Goswami R, Rahaman SO. TRPV4 Plays a Role in Matrix Stiffness-Induced Macrophage Polarization. Front Immunol 2020; 11:570195. [PMID: 33381111 PMCID: PMC7767862 DOI: 10.3389/fimmu.2020.570195] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Phenotypic polarization of macrophages is deemed essential in innate immunity and various pathophysiological conditions. We have now determined key aspects of the molecular mechanism by which mechanical cues regulate macrophage polarization. We show that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel, mediates substrate stiffness-induced macrophage polarization. Using atomic force microscopy, we showed that genetic ablation of TRPV4 function abrogated fibrosis-induced matrix stiffness generation in skin tissues. We have determined that stiffer skin tissue promotes the M1 macrophage subtype in a TRPV4-dependent manner; soft tissue does not. These findings were further validated by our in vitro results which showed that stiff matrix (50 kPa) alone increased expression of macrophage M1 markers in a TRPV4-dependent manner, and this response was further augmented by the addition of soluble factors; neither of which occurred with soft matrix (1 kPa). A direct requirement for TRPV4 in M1 macrophage polarization spectrum in response to increased stiffness was evident from results of gain-of-function assays, where reintroduction of TRPV4 significantly upregulated the expression of M1 markers in TRPV4 KO macrophages. Together, these data provide new insights regarding the role of TRPV4 in matrix stiffness-induced macrophage polarization spectrum that may be explored in tissue engineering and regenerative medicine and targeted therapeutics.
Collapse
Affiliation(s)
- Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
38
|
TRPM7 modulates macrophage polarization by STAT1/STAT6 pathways in RAW264.7 cells. Biochem Biophys Res Commun 2020; 533:692-697. [PMID: 33153718 DOI: 10.1016/j.bbrc.2020.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
Abstract
Macrophages, diversity and plasticity immune cells, participate in immune response and maintain homeostasis through M1/M2 phenotype transformation. Transient receptor potential melastatin 7 (TRPM7) is a widely expressed divalent cation channel with protein serine/threonine kinase activity, which has recently been found to affect macrophage proliferation and function. This study aimed to identify the role of TRPM7 in macrophage polarization. Our results suggested that TRPM7 was highly expressed in M1-type macrophages rather than M2-type macrophages. Interestingly, we detected that M1-type macrophages decreased while M2-type macrophages enhanced through blockade of TRPM7, which manifest as decreased TNF-α, iNOS and elevated Arg-1, CD206. Furthermore, blockade of TRPM7 could inhibit STAT1 phosphorylation and promote STAT6 phosphorylation. In conclusion, TRPM7 could regulate macrophage polarization via STAT1/STAT6 pathways. Taken together, it is suggested that TRPM7 might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases.
Collapse
|
39
|
Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub Cardiff School of Biosciences Cardiff University Cardiff Wales CF10 3AX UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney Royal North Shore Hospital St. Leonards NSW 2065 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
40
|
Verma S, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine activates TRP channels including TRP-2 in filaria, Brugia malayi. Commun Biol 2020; 3:398. [PMID: 32724078 PMCID: PMC7387335 DOI: 10.1038/s42003-020-01128-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Diethylcarbamazine is an important classic drug used for prevention and treatment of lymphatic filariasis and loiasis, diseases caused by filarial nematodes. Despite many studies, its site of action has not been established. Until now, the consensus has been that diethylcarbamazine works by activating host immune systems, not by a direct action on the parasites. Here we show that low concentrations of diethylcarbamazine have direct and rapid (<30 s) temporary spastic paralyzing effects on the parasites that lasts around 4 h, which is produced by diethylcarbamazine opening TRP channels in muscle of Brugia malayi involving TRP-2 (TRPC-like channel subunits). GON-2 and CED-11, TRPM-like channel subunits, also contributed to diethylcarbamazine responses. Opening of these TRP channels produces contraction and subsequent activation of calcium-dependent SLO-1K channels. Recovery from the temporary paralysis is consistent with inactivation of TRP channels. Our observations elucidate mechanisms for the rapid onset and short-lasting therapeutic actions of diethylcarbamazine.
Collapse
Affiliation(s)
- Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
41
|
Rios FJ, Zou ZG, Harvey AP, Harvey KY, Nosalski R, Anyfanti P, Camargo LL, Lacchini S, Ryazanov AG, Ryazanova L, McGrath S, Guzik TJ, Goodyear CS, Montezano AC, Touyz RM. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc Res 2020; 116:721-735. [PMID: 31250885 PMCID: PMC7252442 DOI: 10.1093/cvr/cvz164] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Transient Receptor Potential Melastatin 7 (TRPM7) cation channel is a chanzyme (channel + kinase) that influences cellular Mg2+ homeostasis and vascular signalling. However, the pathophysiological significance of TRPM7 in the cardiovascular system is unclear. The aim of this study was to investigate the role of this chanzyme in the cardiovascular system focusing on inflammation and fibrosis. METHODS AND RESULTS TRPM7-deficient mice with deletion of the kinase domain (TRPM7+/Δkinase) were studied and molecular mechanisms investigated in TRPM7+/Δkinase bone marrow-derived macrophages (BMDM) and co-culture systems with cardiac fibroblasts. TRPM7-deficient mice had significant cardiac hypertrophy, fibrosis, and inflammation. Cardiac collagen and fibronectin content, expression of pro-inflammatory mediators (SMAD3, TGFβ) and cytokines [interleukin (IL)-6, IL-10, IL-12, tumour necrosis factor-α] and phosphorylation of the pro-inflammatory signalling molecule Stat1, were increased in TRPM7+/Δkinase mice. These processes were associated with infiltration of inflammatory cells (F4/80+CD206+ cardiac macrophages) and increased galectin-3 expression. Cardiac [Mg2+]i, but not [Ca2+]i, was reduced in TRPM7+/Δkinase mice. Calpain, a downstream TRPM7 target, was upregulated (increased expression and activation) in TRPM7+/Δkinase hearts. Vascular functional and inflammatory responses, assessed in vivo by intra-vital microscopy, demonstrated impaired neutrophil rolling, increased neutrophil: endothelial attachment and transmigration of leucocytes in TRPM7+/Δkinase mice. TRPM7+/Δkinase BMDMs had increased levels of galectin-3, IL-10, and IL-6. In co-culture systems, TRPM7+/Δkinase macrophages increased expression of fibronectin, proliferating cell nuclear antigen, and TGFβ in cardiac fibroblasts from wild-type mice, effects ameliorated by MgCl2 treatment. CONCLUSIONS We identify a novel anti-inflammatory and anti-fibrotic role for TRPM7 and suggest that its protective effects are mediated, in part, through Mg2+-sensitive processes.
Collapse
Affiliation(s)
- Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Katie Y Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Panagiota Anyfanti
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Silvia Lacchini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lillia Ryazanova
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sarah McGrath
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Carl S Goodyear
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
42
|
Mahtani T, Treanor B. Beyond the CRAC: Diversification of ion signaling in B cells. Immunol Rev 2020; 291:104-122. [PMID: 31402507 PMCID: PMC6851625 DOI: 10.1111/imr.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Although calcium signaling and the important role of calcium release–activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B‐cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bebhinn Treanor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Robledo-Avila FH, Ruiz-Rosado JDD, Brockman KL, Partida-Sánchez S. The TRPM2 Ion Channel Regulates Inflammatory Functions of Neutrophils During Listeria monocytogenes Infection. Front Immunol 2020; 11:97. [PMID: 32117251 PMCID: PMC7010865 DOI: 10.3389/fimmu.2020.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
During infection, phagocytic cells pursue homeostasis in the host via multiple mechanisms that control microbial invasion. Neutrophils respond to infection by exerting a variety of cellular processes, including chemotaxis, activation, phagocytosis, degranulation and the generation of reactive oxygen species (ROS). Calcium (Ca2+) signaling and the activation of specific Ca2+ channels are required for most antimicrobial effector functions of neutrophils. The transient receptor potential melastatin-2 (TRPM2) cation channel has been proposed to play important roles in modulating Ca2+ mobilization and oxidative stress in neutrophils. In the present study, we use a mouse model of Listeria monocytogenes infection to define the role of TRPM2 in the regulation of neutrophils' functions during infection. We show that the susceptibility of Trpm2-/- mice to L. monocytogenes infection is characterized by increased migration rates of neutrophils and monocytes to the liver and spleen in the first 24 h. During the acute phase of L. monocytogenes infection, Trpm2-/- mice developed septic shock, characterized by increased serum levels of TNF-α, IL-6, and IL-10. Furthermore, in vivo depletion of neutrophils demonstrated a critical role of these immune cells in regulating acute inflammation in Trpm2-/- infected mice. Gene expression and inflammatory cytokine analyses of infected tissues further confirmed the hyperinflammatory profile of Trpm2-/- neutrophils. Finally, the increased inflammatory properties of Trpm2-/- neutrophils correlated with the dysregulated cytoplasmic concentration of Ca2+ and potentiated membrane depolarization, in response to L. monocytogenes. In conclusion, our findings suggest that the TRPM2 channel plays critical functional roles in regulating the inflammatory properties of neutrophils and preventing tissue damage during Listeria infection.
Collapse
Affiliation(s)
- Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan de Dios Ruiz-Rosado
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Kenneth L. Brockman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Santiago Partida-Sánchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
44
|
TRPV2 channel as a possible drug target for the treatment of heart failure. J Transl Med 2020; 100:207-217. [PMID: 31857697 DOI: 10.1038/s41374-019-0349-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Heart transplantation is currently the only viable option available for the treatment of severe heart failure conditions such as dilated cardiomyopathy. Hence, novel drugs for treating such conditions need to be developed urgently. Recent studies suggest that Ca2+ overload is involved in the onset and progression of dilated cardiomyopathy, and thus heart failure. The expression and activation of the Ca2+ permeable channel, transient receptor potential vanilloid 2 (TRPV2) channel have been found to play an essential role in sustained intracellular Ca2+ concentration increase, leading to heart failure. However, since there have been no TRPV2-specific inhibitors available until recently, the effect of TRPV2 inhibition on the pathology has not been clearly elucidated. Recent reports show that inhibiting TRPV2 activity effectively improves cardiac function, suppressing myocardial fibrosis and ameliorating the prognosis in animal models of cardiomyopathy with heart failure. In addition to that, inflammation is reported to be involved in the development of heart failure. Here, we review the recent findings on TRPV2 in cardiomyocytes and immune cells involved in the development of heart failure and discuss the current progress of drug development for the treatment of heart failure via targeting TRPV2.
Collapse
|
45
|
Zheng L, Ling W, Zhu D, Li Z, Kong L. Roquin-1 Regulates Macrophage Immune Response and Participates in Hepatic Ischemia-Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2020; 204:1322-1333. [PMID: 31996460 DOI: 10.4049/jimmunol.1900053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
With the development of liver surgery, ischemia-reperfusion (IR) injury has received increasing attention. Roquin-1 has been shown to play an important role in innate immune and immune balance. We demonstrate that Roquin-1 expression increased at 1 h after IR and then decreased in C57B/L mice. The immunofluorescence double-label showed that Roquin-1 was mainly expressed in macrophages (mø). Furthermore, we used clodronate liposomes to remove mø, and injected the bone marrow-derived mø (BMDM) through the tail vein in 1 h before IR. We found that liver IR injury was aggravated by Roquin-1 interference. The results of PCR and ELISA suggested that after interference with Roquin-1, mø increased toward M1 and decreased toward M2. Then, interference with Roquin-1 promoted the polarization of mø to M1 and inhibited the polarization of M2. By Western blot technology and AMPKα and mTOR inhibitors, we found that Roquin-1 promotes the phosphorylation of mTOR and STAT3 by inhibiting the phosphorylation of AMPKα. We used AICAR to activate AMPKα in mø and found that the level of ubiquitination of AMPKα was decreased after activation of AMPKα. Furthermore, by bioinformatics methods, we identified potential ubiquitination sites on AMPKα. By the point mutation experiments in vitro, we confirmed that the ubiquitination of these sites is regulated by Roquin-1. Meanwhile, Roquin-1 interference inhibited the activation and function of AMPKα. This topic describes the protection of liver IR injury by Roquin-1 and discusses its main mechanism for regulating AMPKα activity through ubiquitination and affecting the polarization of mø.
Collapse
Affiliation(s)
- Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200011 Shanghai, People's Republic of China; and
| | - Wei Ling
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| | - Deming Zhu
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| | - Zhi Li
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| | - Lianbao Kong
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| |
Collapse
|
46
|
Molecular Mechanisms of Calcium Signaling During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:103-128. [PMID: 32399828 DOI: 10.1007/978-3-030-40406-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of numerous cellular functions including vesicular trafficking, cytoskeletal rearrangements and gene transcription. Both global as well as localized Ca2+ signals occur during phagocytosis, although their functional impact on the phagocytic process has been debated. After nearly 40 years of research, a consensus may now be reached that although not strictly required, Ca2+ signals render phagocytic ingestion and phagosome maturation more efficient, and their manipulation make an attractive avenue for therapeutic interventions. In the last decade many efforts have been made to identify the channels and regulators involved in generating and shaping phagocytic Ca2+ signals. While molecules involved in store-operated calcium entry (SOCE) of the STIM and ORAI family have taken center stage, members of the canonical, melastatin, mucolipin and vanilloid transient receptor potential (TRP), as well as purinergic P2X receptor families are now recognized to play significant roles. In this chapter, we review the recent literature on research that has linked specific Ca2+-permeable channels and regulators to phagocytic function. We highlight the fact that lipid mediators are emerging as important regulators of channel gating and that phagosomal ionic homeostasis and Ca2+ release also play essential parts. We predict that improved methodologies for measuring these factors will be critical for future advances in dissecting the intricate biology of this fascinating immune process.
Collapse
|
47
|
Nascimento Da Conceicao V, Sun Y, Zboril EK, De la Chapa JJ, Singh BB. Loss of Ca 2+ entry via Orai-TRPC1 induces ER stress, initiating immune activation in macrophages. J Cell Sci 2019; 133:jcs237610. [PMID: 31722977 PMCID: PMC10682644 DOI: 10.1242/jcs.237610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Activation of cellular stresses is associated with inflammation; however, the mechanisms are not well identified. Here, we provide evidence that loss of Ca2+ influx induces endoplasmic reticulum (ER) stress in primary macrophages and in murine macrophage cell line Raw 264.7, in which the unfolded protein response is initiated to modulate cytokine production, thereby activating the immune response. Stressors that initiate the ER stress response block store-dependent Ca2+ entry in macrophages prior to the activation of the unfolded protein response. The endogenous Ca2+ entry channel is dependent on the Orai1-TRPC1-STIM1 complex, and the presence of ER stressors decreased expression of TRPC1, Orai1 and STIM1. Additionally, blocking Ca2+ entry with SKF96365 also induced ER stress, promoted cytokine production, activation of autophagy, increased caspase activation and induced apoptosis. Furthermore, ER stress inducers inhibited cell cycle progression, promoted the inflammatory M1 phenotype, and increased phagocytosis. Mechanistically, restoration of Orai1-STIM1 expression inhibited the ER stress-mediated loss of Ca2+ entry that prevents ER stress and inhibits cytokine production, and thus induced cell survival. These results suggest an unequivocal role of Ca2+ entry in modulating ER stress and in the induction of inflammation.
Collapse
Affiliation(s)
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Emily K Zboril
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jorge J De la Chapa
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
48
|
Hu Y, Cheng L, Zhong W, Chen M, Zhang Q. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock. Med Sci Monit 2019; 25:9563-9571. [PMID: 31838482 PMCID: PMC6929537 DOI: 10.12659/msm.918491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Septic shock occurs when sepsis is associated with critically low blood pressure, and has a high mortality rate. This study aimed to undertake a bioinformatics analysis of gene expression profiles for risk prediction in septic shock. Material/Methods Two good quality datasets associated with septic shock were downloaded from the Gene Expression Omnibus (GEO) database, GSE64457 and GSE57065. Patients with septic shock had both sepsis and hypotension, and a normal control group was included. The differentially expressed genes (DEGs) were identified using OmicShare tools based on R. Functional enrichment of DEGs was analyzed using DAVID. The protein-protein interaction (PPI) network was established using STRING. Survival curves of key genes were constructed using GraphPad Prism version 7.0. Each putative central gene was analyzed by receiver operating characteristic (ROC) curves using MedCalc statistical software. Results GSE64457 and GSE57065 included 130 RNA samples derived from whole blood from 97 patients with septic shock and 33 healthy volunteers to obtain 975 DEGs, 455 of which were significantly down-regulated and 520 were significantly upregulated (P<0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified significantly enriched DEGs in four signaling pathways, MAPK, TNF, HIF-1, and insulin. Six genes, WDR82, ASH1L, NCOA1, TPR, SF1, and CREBBP in the center of the PPI network were associated with septic shock, according to survival curve and ROC analysis. Conclusions Bioinformatics analysis of gene expression profiles identified four signaling pathways and six genes, potentially representing molecular mechanisms for the occurrence, progression, and risk prediction in septic shock.
Collapse
Affiliation(s)
- Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Lingxia Cheng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
49
|
Entin-Meer M, Keren G. Potential roles in cardiac physiology and pathology of the cation channel TRPV2 expressed in cardiac cells and cardiac macrophages: a mini-review. Am J Physiol Heart Circ Physiol 2019; 318:H181-H188. [PMID: 31809212 DOI: 10.1152/ajpheart.00491.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TRPV2 is a well-conserved channel protein expressed in almost all tissues. Cardiomyocyte TRPV2 is expressed in the intercalated disks of the cardiac sarcomeres, where it is involved in maintaining the proper mechanoelectric coupling and structure. It is also abundantly expressed in the intracellular pools, mainly the endoplasmic reticulum. Under pathological conditions, TRPV2 is translocated to the sarcolemma, where it mediates an abnormal [Ca]2+ entry that may contribute to disease progression. In addition, an intracellularly diffused TRPV2 expression is present in resident cardiac macrophages. Upon infection or inflammation, TRPV2 is engaged in early phagosomes and is, therefore, potentially involved in protecting the cardiac tissue. Following acute myocardial infarction, a profound elevated expression of TRPV2 is observed on the cell membrane of the peri-infarct macrophages. The macrophage TRPV2 may harbor a detrimental effect in cardiac recovery by increasing unfavorable migration and phagocytosis processes in the injured heart. Most reports suggest that while cardiac TRPV2 activation may be beneficial under specific physiological conditions, both cardiac- and macrophage-related TRPV2 blocking can significantly ameliorate disease progression in various pathological states. To verify this possibility, the time frame of TRPV2 overexpression and its mediated signaling need to be fully characterized in both cardiomyocyte and cardiac macrophage populations.
Collapse
Affiliation(s)
- Michal Entin-Meer
- Cardiovascular Research Laboratory, Tel Aviv Sourasky Medical Center, affiliated with the Sackler School of Medicine, Tel-Aviv, Israel
| | - Gad Keren
- Cardiovascular Research Laboratory, Tel Aviv Sourasky Medical Center, affiliated with the Sackler School of Medicine, Tel-Aviv, Israel
| |
Collapse
|
50
|
Cowie AM, Menzel AD, O’Hara C, Lawlor MW, Stucky CL. NOD-like receptor protein 3 inflammasome drives postoperative mechanical pain in a sex-dependent manner. Pain 2019; 160:1794-1816. [PMID: 31335648 PMCID: PMC6662742 DOI: 10.1097/j.pain.0000000000001555] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postoperative pain management continues to be suboptimal because of the lack of effective nonopioid therapies and absence of understanding of sex-driven differences. Here, we asked how the NLRP3 inflammasome contributes to postoperative pain. Inflammasomes are mediators of the innate immune system that are responsible for activation and secretion of IL-1β upon stimulation by specific molecular signals. Peripheral IL-1β is known to contribute to the mechanical sensitization induced by surgical incision. However, it is not known which inflammasome mediates the IL-1β release after surgical incision. Among the 9 known inflammasomes, the NLRP3 inflammasome is ideally positioned to drive postoperative pain through IL-1β production because NLRP3 can be activated by factors that are released by incision. Here, we show that male mice that lack NLRP3 (NLRP3) recover from surgery-induced behavioral and neuronal mechanical sensitization faster and display less surgical site inflammation than mice expressing NLRP3 (wild-type). By contrast, female NLRP3 mice exhibit minimal attenuation of the postoperative mechanical hypersensitivity and no change in postoperative inflammation compared with wild-type controls. Sensory neuron-specific deletion of NLRP3 revealed that in males, NLRP3 expressed in non-neuronal cells and potentially sensory neurons drives postoperative pain. However, in females, only the NLRP3 that may be expressed in sensory neurons contributes to postoperative pain where the non-neuronal cell contribution is NLRP3 independent. This is the first evidence of a key role for NLRP3 in postoperative pain and reveals immune-mediated sex differences in postoperative pain.
Collapse
Affiliation(s)
- Ashley M. Cowie
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Anthony D. Menzel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Crystal O’Hara
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael W. Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|