1
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
2
|
Montorsi L, Pitcher MJ, Zhao Y, Dionisi C, Demonti A, Tull TJ, Dhami P, Ellis RJ, Bishop C, Sanderson JD, Jain S, D'Cruz D, Gibbons DL, Winkler TH, Bemark M, Ciccarelli FD, Spencer J. Double-negative B cells and DNASE1L3 colocalise with microbiota in gut-associated lymphoid tissue. Nat Commun 2024; 15:4051. [PMID: 38744839 PMCID: PMC11094119 DOI: 10.1038/s41467-024-48267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.
Collapse
Affiliation(s)
- Lucia Montorsi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael J Pitcher
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yuan Zhao
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alicia Demonti
- School of Immunology and Microbial Sciences, King's College London, London, UK
- École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Thomas J Tull
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Pawan Dhami
- Genomics Research Platform and Single Cell Laboratory at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard J Ellis
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Cynthia Bishop
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jeremy D Sanderson
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London, UK
| | - Sahil Jain
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David D'Cruz
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Deena L Gibbons
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
3
|
Kiwit A, Lu Y, Lenz M, Knopf J, Mohr C, Ledermann Y, Klinke-Petrowsky M, Pagerols Raluy L, Reinshagen K, Herrmann M, Boettcher M, Elrod J. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int J Mol Sci 2024; 25:3787. [PMID: 38612596 PMCID: PMC11011604 DOI: 10.3390/ijms25073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).
Collapse
Affiliation(s)
- Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Yannick Ledermann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michaela Klinke-Petrowsky
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Willemsen JF, Wenskus J, Lenz M, Rhode H, Trochimiuk M, Appl B, Pagarol-Raluy L, Börnigen D, Bang C, Reinshagen K, Herrmann M, Elrod J, Boettcher M. DNases improve effectiveness of antibiotic treatment in murine polymicrobial sepsis. Front Immunol 2024; 14:1254838. [PMID: 38259485 PMCID: PMC10801052 DOI: 10.3389/fimmu.2023.1254838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) have various beneficial and detrimental effects in the body. It has been reported that some bacteria may evade the immune system when entangled in NETs. Thus, the aim of the current study was to evaluate the effects of a combined DNase and antibiotic therapy in a murine model of abdominal sepsis. Methods C57BL/6 mice underwent a cecum-ligation-and-puncture procedure. We used wild-type and knockout mice with the same genetic background (PAD4-KO and DNase1-KO). Mice were treated with (I) antibiotics (Metronidazol/Cefuroxime), (II) DNAse1, or (III) with the combination of both; mock-treated mice served as controls. We employed a streak plate procedure and 16s-RNA analysis to evaluate bacterial translocation and quantified NETs formation by ELISA and immune fluorescence. Western blot and proteomics analysis were used to determine inflammation. Results A total of n=73 mice were used. Mice that were genetically unable to produce extended NETs or were treated with DNases displayed superior survival and bacterial clearance and reduced inflammation. DNase1 treatment significantly improved clearance of Gram-negative bacteria and survival rates. Importantly, the combination of DNase1 and antibiotics reduced tissue damage, neutrophil activation, and NETs formation in the affected intestinal tissue. Conclusion The combination of antibiotics with DNase1 ameliorates abdominal sepsis. Gram-negative bacteria are cleared better when NETs are cleaved by DNase1. Future studies on antibiotic therapy should be combined with anti-NETs therapies.
Collapse
Affiliation(s)
- Jan-Fritjof Willemsen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Wenskus
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rhode
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madgalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagarol-Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Börnigen
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitäts-klinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Engavale M, Hernandez CJ, Infante A, LeRoith T, Radovan E, Evans L, Villarreal J, Reilly CM, Sutton RB, Keyel PA. Deficiency of macrophage-derived Dnase1L3 causes lupus-like phenotypes in mice. J Leukoc Biol 2023; 114:547-556. [PMID: 37804110 PMCID: PMC10843819 DOI: 10.1093/jleuko/qiad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease caused by environmental factors and loss of key proteins, including the endonuclease Dnase1L3. Dnase1L3 absence causes pediatric-onset lupus in humans, while reduced activity occurs in adult-onset SLE. The amount of Dnase1L3 that prevents lupus remains unknown. To genetically reduce Dnase1L3 levels, we developed a mouse model lacking Dnase1L3 in macrophages (conditional knockout [cKO]). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Homogeneous and peripheral antinuclear antibodies were detected in the sera by immunofluorescence, consistent with anti-double-stranded DNA (anti-dsDNA) antibodies. Total immunoglobulin M, total immunoglobulin G, and anti-dsDNA antibody levels increased in cKO mice with age. The cKO mice developed anti-Dnase1L3 antibodies. In contrast to global Dnase1L3-/- mice, anti-dsDNA antibodies were not elevated early in life. The cKO mice had minimal kidney pathology. Therefore, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes, and macrophage-derived DnaselL3 helps limit lupus.
Collapse
Affiliation(s)
- Minal Engavale
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Colton J. Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Angelica Infante
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Tanya LeRoith
- Department of Cell Biology and Physiology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elliott Radovan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Lauryn Evans
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Johanna Villarreal
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Virginia Tech, Blacksburg, VA 24061, United States
| | - R. Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| |
Collapse
|
6
|
Frese-Schaper M, Voll RE, Frese S. Increased binding of anti-dsDNA antibodies to short oligonucleotides modified with topoisomerase I reveals a potential new enzyme function independent from DNA relaxation. BMC Res Notes 2023; 16:298. [PMID: 37898816 PMCID: PMC10612351 DOI: 10.1186/s13104-023-06592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE Topoisomerase I (topo I) is a highly conserved enzyme which is known to reduce torsional stress at double-stranded (ds) DNA. Torsional stress induced by supercoiling of dsDNA requires either very long dsDNA existing in genomic DNA or circulation as presented in plasmid DNA. To enable DNA relaxation, topo I induce a transient single-strand break followed by stress-relieving rotation of the released DNA strand. Our group found by serendipity that the topo I inhibitor irinotecan is able to suppress murine systemic lupus erythematosus (SLE), an autoimmune disease which is characterized by the existence of pathogenic anti-dsDNA antibodies (abs). As a possible mechanism we demonstrated in the absence of immunosuppression an increased binding of anti-dsDNA abs to long genomic or circulated plasmid dsDNA modified with topo I. RESULTS Here we show that this effect requires active site tyrosine of topo I which is known to facilitate DNA relaxation activity. Moreover, topo I enhanced anti-dsDNA abs binding to short linear oligonucleotides down to a size of 42 bp. Since oligonucleotides of such length are devoid of torsional stress and relaxation respectively, our results suggest a new and unknown function for the enzyme topo I.
Collapse
Affiliation(s)
- Manuela Frese-Schaper
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Steffen Frese
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany.
- Department of Thoracic Surgery, AMEOS Klinikum Schönebeck, Köthener Str. 13, D-39218, Schönebeck, Germany.
| |
Collapse
|
7
|
Li W, Nakano H, Fan W, Li Y, Sil P, Nakano K, Zhao F, Karmaus PW, Grimm SA, Shi M, Xu X, Mizuta R, Kitamura D, Wan Y, Fessler MB, Cook DN, Shats I, Li X, Li L. DNASE1L3 enhances antitumor immunity and suppresses tumor progression in colon cancer. JCI Insight 2023; 8:e168161. [PMID: 37581941 PMCID: PMC10544201 DOI: 10.1172/jci.insight.168161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
DNASE1L3, an enzyme highly expressed in DCs, is functionally important for regulating autoimmune responses to self-DNA and chromatin. Deficiency of DNASE1L3 leads to development of autoimmune diseases in both humans and mice. However, despite the well-established causal relationship between DNASE1L3 and immunity, little is known about the involvement of DNASE1L3 in regulation of antitumor immunity, the foundation of modern antitumor immunotherapy. In this study, we identify DNASE1L3 as a potentially new regulator of antitumor immunity and a tumor suppressor in colon cancer. In humans, DNASE1L3 is downregulated in tumor-infiltrating DCs, and this downregulation is associated with poor patient prognosis and reduced tumor immune cell infiltration in many cancer types. In mice, Dnase1l3 deficiency in the tumor microenvironment enhances tumor formation and growth in several colon cancer models. Notably, the increased tumor formation and growth in Dnase1l3-deficient mice are associated with impaired antitumor immunity, as evidenced by a substantial reduction of cytotoxic T cells and a unique subset of DCs. Consistently, Dnase1l3-deficient DCs directly modulate cytotoxic T cells in vitro. To our knowledge, our study unveils a previously unknown link between DNASE1L3 and antitumor immunity and further suggests that restoration of DNASE1L3 activity may represent a potential therapeutic approach for anticancer therapy.
Collapse
Affiliation(s)
- Wenling Li
- Biostatistics and Computational Biology Branch
- Signal Transduction Laboratory
| | | | - Wei Fan
- Biostatistics and Computational Biology Branch
- Signal Transduction Laboratory
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch
| | - Payel Sil
- Biostatistics and Computational Biology Branch
| | | | - Fei Zhao
- Immunity, Inflammation, and Disease Laboratory
| | | | | | - Min Shi
- Biostatistics and Computational Biology Branch
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Ryushin Mizuta
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yisong Wan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | | | | | | - Leping Li
- Biostatistics and Computational Biology Branch
| |
Collapse
|
8
|
Skaug B, Guo X, Li YJ, Charles J, Pham KT, Couturier J, Lewis DE, Bracaglia C, Caiello I, Mayes MD, Assassi S. Reduced digestion of circulating genomic DNA in systemic sclerosis patients with the DNASE1L3 R206C variant. Rheumatology (Oxford) 2023; 62:3197-3204. [PMID: 36708011 PMCID: PMC10473277 DOI: 10.1093/rheumatology/kead050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Polymorphism in a coding region of deoxyribonuclease I-like III (DNASE1L3), causing amino acid substitution of Arg-206 to Cys (R206C), is a robustly replicated heritable risk factor for SSc and other autoimmune diseases. DNASE1L3 is secreted into the circulation, where it can digest genomic DNA (gDNA) in apoptosis-derived membrane vesicles (AdMVs). We sought to determine the impact of DNASE1L3 R206C on digestion of circulating gDNA in SSc patients and healthy controls (HCs). METHODS The ability of DNASE1L3 to digest AdMV-associated gDNA was tested in vitro. The effect of R206C substitution on extracellular secretion of DNASE1L3 was determined using a transfected cell line and primary monocyte-derived dendritic cells from SSc patients. Plasma samples from SSc patients and HCs with DNASE1L3 R206C or R206 wild type were compared for their ability to digest AdMV-associated gDNA. The digestion status of endogenous gDNA in plasma samples from 123 SSc patients and 74 HCs was determined by measuring the proportion of relatively long to short gDNA fragments. RESULTS The unique ability of DNASE1L3 to digest AdMV-associated gDNA was confirmed. Extracellular secretion of DNASE1L3 R206C was impaired. Plasma from individuals with DNASE1L3 R206C had reduced ability to digest AdMV-associated gDNA. The ratio of long: short gDNA fragments was increased in plasma from SSc patients with DNASE1L3 R206C, and this ratio correlated inversely with DNase activity. CONCLUSION Our results confirm that circulating gDNA is a physiological DNASE1L3 substrate and show that its digestion is reduced in SSc patients with the DNASE1L3 R206C variant.
Collapse
Affiliation(s)
- Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Xinjian Guo
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Yuanteng Jeff Li
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Julio Charles
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Kay T Pham
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jacob Couturier
- Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Claudia Bracaglia
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
9
|
Lacey KA, Serpas L, Makita S, Wang Y, Rashidfarrokhi A, Soni C, Gonzalez S, Moreira A, Torres VJ, Reizis B. Secreted mammalian DNases protect against systemic bacterial infection by digesting biofilms. J Exp Med 2023; 220:e20221086. [PMID: 36928522 PMCID: PMC10037111 DOI: 10.1084/jem.20221086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular DNase DNASE1L3 maintains tolerance to self-DNA in humans and mice, whereas the role of its homolog DNASE1 remains controversial, and the overall function of secreted DNases in immunity is unclear. We report that deletion of murine DNASE1 neither caused autoreactivity in isolation nor exacerbated lupus-like disease in DNASE1L3-deficient mice. However, combined deficiency of DNASE1 and DNASE1L3 rendered mice susceptible to bloodstream infection with Staphylococcus aureus. DNASE1/DNASE1L3 double-deficient mice mounted a normal innate response to S. aureus and did not accumulate neutrophil extracellular traps (NETs). However, their kidneys manifested severe pathology, increased bacterial burden, and biofilm-like bacterial lesions that contained bacterial DNA and excluded neutrophils. Furthermore, systemic administration of recombinant DNASE1 protein during S. aureus infection rescued the mortality of DNase-deficient mice and ameliorated the disease in wild-type mice. Thus, DNASE1 and DNASE1L3 jointly facilitate the control of bacterial infection by digesting extracellular microbial DNA in biofilms, suggesting the original evolutionary function of secreted DNases as antimicrobial agents.
Collapse
Affiliation(s)
- Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sohei Makita
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andre Moreira
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Engavale M, Hernandez CJ, Infante A, LeRoith T, Radovan E, Evans L, Villarreal J, Reilly CM, Sutton RB, Keyel PA. Deficiency of macrophage-derived Dnase1L3 causes lupus-like phenotypes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537232. [PMID: 37131692 PMCID: PMC10153119 DOI: 10.1101/2023.04.17.537232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease caused by environmental factors and loss of key proteins. One such protein is a serum endonuclease secreted by macrophages and dendritic cells, Dnase1L3. Loss of Dnase1L3 causes pediatric-onset lupus in humans is Dnase1L3. Reduction in Dnase1L3 activity occurs in adult-onset human SLE. However, the amount of Dnase1L3 necessary to prevent lupus onset, if the impact is continuous or requires a threshold, and which phenotypes are most impacted by Dnase1L3 remain unknown. To reduce Dnase1L3 protein levels, we developed a genetic mouse model with reduced Dnase1L3 activity by deleting Dnase1L3 from macrophages (cKO). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Sera were collected weekly from cKO and littermate controls until 50 weeks of age. Homogeneous and peripheral anti-nuclear antibodies were detected by immunofluorescence, consistent with anti-dsDNA antibodies. Total IgM, total IgG, and anti-dsDNA antibody levels increased in cKO mice with increasing age. In contrast to global Dnase1L3 -/- mice, anti-dsDNA antibodies were not elevated until 30 weeks of age. The cKO mice had minimal kidney pathology, except for deposition of immune complexes and C3. Based on these findings, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes. This suggest that macrophage-derived DnaselL3 is critical to limiting lupus.
Collapse
|
11
|
Korn MA, Steffensen M, Brandl C, Royzman D, Daniel C, Winkler TH, Nitschke L. Epistatic effects of Siglec-G and DNase1 or DNase1l3 deficiencies in the development of systemic lupus erythematosus. Front Immunol 2023; 14:1095830. [PMID: 36969253 PMCID: PMC10030676 DOI: 10.3389/fimmu.2023.1095830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease that displays considerable heterogeneity not only in its symptoms, but also in its environmental and genetic causes. Studies in SLE patients have revealed that many genetic variants contribute to disease development. However, often its etiology remains unknown. Existing efforts to determine this etiology have focused on SLE in mouse models revealing not only that mutations in specific genes lead to SLE development, but also that epistatic effects of several gene mutations significantly amplify disease manifestation. Genome-wide association studies for SLE have identified loci involved in the two biological processes of immune complex clearance and lymphocyte signaling. Deficiency in an inhibitory receptor expressed on B lymphocytes, Siglec-G, has been shown to trigger SLE development in aging mice, as have mutations in DNA degrading DNase1 and DNase1l3, that are involved in clearance of DNA-containing immune complexes. Here, we analyze the development of SLE-like symptoms in mice deficient in either Siglecg and DNase1 or Siglecg and DNase1l3 to evaluate potential epistatic effects of these genes. We found that germinal center B cells and follicular helper T cells were increased in aging Siglecg -/- x Dnase1 -/- mice. In contrast, anti-dsDNA antibodies and anti-nuclear antibodies were strongly increased in aging Siglecg-/- x Dnase1l3-/- mice, when compared to single-deficient mice. Histological analysis of the kidneys revealed glomerulonephritis in both Siglecg -/- x Dnase1 -/- and Siglecg-/- x Dnase1l3-/- mice, but with a stronger glomerular damage in the latter. Collectively, these findings underscore the impact of the epistatic effects of Siglecg with DNase1 and Dnase1l3 on disease manifestation and highlight the potential combinatory effects of other gene mutations in SLE.
Collapse
Affiliation(s)
- Marina A. Korn
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Marie Steffensen
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Carolin Brandl
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
- Department of Immune Modulation, University Hospital of Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital of Erlangen, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
- *Correspondence: Lars Nitschke,
| |
Collapse
|
12
|
Acharya M, Jackson SW. Regulatory strategies limiting endosomal Toll-like receptor activation in B cells. Immunol Rev 2022; 307:66-78. [PMID: 35040152 PMCID: PMC8986562 DOI: 10.1111/imr.13065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
The recognition of pathogen-associated nucleic acid (NA) promotes effective immunity against invading pathogens. However, endosomal Toll-like receptor (TLR) activation by self-NA also underlies the pathogenesis of systemic autoimmune diseases, such as systemic lupus erythematosus (SLE). For this reason, the activation thresholds of NA-sensing TLRs must be tightly regulated to balance protective and pathogenic immune responses. In this study, we will provide an overview of the evolutionary mechanisms designed to limit the aberrant activation of endosomal TLRs by self-ligands, focusing on four broad strategies. These include the following: 1) the production of nucleases able to degrade self-DNA and RNA; 2) the cell-specific regulation of endosomal TLR expression; 3) the spatial and temporal control of TLR positioning at a sub-cellular level; and 4) the modulation of downstream TLR signaling cascades. Given the critical role of B cells in lupus pathogenesis, where possible, we will describe evidence for B cell-specific induction of these regulatory mechanisms. We will also highlight our own work showing how modulation of B cell endolysosomal flux tunes NA-sensing TLR activation signals. In the face of inevitable generation of self-NA during normal cellular turnover, these parallel mechanisms are vital to protect against pathogenic inflammation.
Collapse
Affiliation(s)
- Mridu Acharya
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| | - Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
13
|
Szumilas N, Corneth OBJ, Lehmann CHK, Schmitt H, Cunz S, Cullen JG, Chu T, Marosan A, Mócsai A, Benes V, Zehn D, Dudziak D, Hendriks RW, Nitschke L. Siglec-H-Deficient Mice Show Enhanced Type I IFN Responses, but Do Not Develop Autoimmunity After Influenza or LCMV Infections. Front Immunol 2021; 12:698420. [PMID: 34497606 PMCID: PMC8419311 DOI: 10.3389/fimmu.2021.698420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Siglec-H is a DAP12-associated receptor on plasmacytoid dendritic cells (pDCs) and microglia. Siglec-H inhibits TLR9-induced IFN-α production by pDCs. Previously, it was found that Siglec-H-deficient mice develop a lupus-like severe autoimmune disease after persistent murine cytomegalovirus (mCMV) infection. This was due to enhanced type I interferon responses, including IFN-α. Here we examined, whether other virus infections can also induce autoimmunity in Siglec-H-deficient mice. To this end we infected Siglec-H-deficient mice with influenza virus or with Lymphocytic Choriomeningitis virus (LCMV) clone 13. With both types of viruses we did not observe induction of autoimmune disease in Siglec-H-deficient mice. This can be explained by the fact that both types of viruses are ssRNA viruses that engage TLR7, rather than TLR9. Also, Influenza causes an acute infection that is rapidly cleared and the chronicity of LCMV clone 13 may not be sufficient and may rather suppress pDC functions. Siglec-H inhibited exclusively TLR-9 driven type I interferon responses, but did not affect type II or type III interferon production by pDCs. Siglec-H-deficient pDCs showed impaired Hck expression, which is a Src-family kinase expressed in myeloid cells, and downmodulation of the chemokine receptor CCR9, that has important functions for pDCs. Accordingly, Siglec-H-deficient pDCs showed impaired migration towards the CCR9 ligand CCL25. Furthermore, autoimmune-related genes such as Klk1 and DNase1l3 are downregulated in Siglec-H-deficient pDCs as well. From these findings we conclude that Siglec-H controls TLR-9-dependent, but not TLR-7 dependent inflammatory responses after virus infections and regulates chemokine responsiveness of pDCs.
Collapse
Affiliation(s)
- Nadine Szumilas
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heike Schmitt
- First Department of Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Svenia Cunz
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jolie G Cullen
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Talyn Chu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Anita Marosan
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Attila Mócsai
- Semmelweis University School of Medicine, Budapest, Hungary
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Liu J, Yi J, Zhang Z, Cao D, Li L, Yao Y. Deoxyribonuclease 1-like 3 may be a potential prognostic biomarker associated with immune infiltration in colon cancer. Aging (Albany NY) 2021; 13:16513-16526. [PMID: 34157681 PMCID: PMC8266351 DOI: 10.18632/aging.203173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Colon adenocarcinoma (COAD) is a common cancer of the digestive system. It’s high morbidity and mortality make it one of the leading causes of cancer deaths. In this study, we studied the microenvironment of colon cancer to find new diagnostic markers and immunotherapy targets for colon cancer. Tumor purity of colon cancer samples in TCGA database were obtained by ESTIMATE algorithm. Then, we analyzed the association of Immune, Stromal, and Estimate scores with tumor prognosis and clinicopathological features. By comparing the gene expression profiles between tumor and normal samples, the high and low immune score groups, 117 intersecting differentially expressed genes (DEGs) were obtained. The function, molecular pathway, and prognostic value of these 117 DEGs pointed toward the importance of deoxyribonuclease 1-like 3 (DNASE1L3). Validation results from multiple databases showed low expression of DNASE1L3 in colon cancer. A single GSEA and correlation analysis of immune cells indicated that DNASE1L3 was closely related to immunity. The low expression of DNASE1L3 in colon cancer samples was measured with qRT-PCR. The scratch and cell proliferation experiments suggested that DNASE1L3 may affect cell migration. Therefore, we concluded that DNASE1L3 might be a biomarker associated with prognosis and immune infiltration in colon cancer.
Collapse
Affiliation(s)
- Jing Liu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510317, China
| | - Jingya Yi
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhihong Zhang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510317, China
| | - Lei Li
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou 510150, China
| | - Yachao Yao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510317, China
| |
Collapse
|
15
|
Hartl J, Serpas L, Wang Y, Rashidfarrokhi A, Perez OA, Sally B, Sisirak V, Soni C, Khodadadi-Jamayran A, Tsirigos A, Caiello I, Bracaglia C, Volpi S, Ghiggeri GM, Chida AS, Sanz I, Kim MY, Belmont HM, Silverman GJ, Clancy RM, Izmirly PM, Buyon JP, Reizis B. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J Exp Med 2021; 218:e20201138. [PMID: 33783474 PMCID: PMC8020718 DOI: 10.1084/jem.20201138] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies to double-stranded DNA (dsDNA) are prevalent in systemic lupus erythematosus (SLE), particularly in patients with lupus nephritis, yet the nature and regulation of antigenic cell-free DNA (cfDNA) are poorly understood. Null mutations in the secreted DNase DNASE1L3 cause human monogenic SLE with anti-dsDNA autoreactivity. We report that >50% of sporadic SLE patients with nephritis manifested reduced DNASE1L3 activity in circulation, which was associated with neutralizing autoantibodies to DNASE1L3. These patients had normal total plasma cfDNA levels but showed accumulation of cfDNA in circulating microparticles. Microparticle-associated cfDNA contained a higher fraction of longer polynucleosomal cfDNA fragments, which bound autoantibodies with higher affinity than mononucleosomal fragments. Autoantibodies to DNASE1L3-sensitive antigens on microparticles were prevalent in SLE nephritis patients and correlated with the accumulation of cfDNA in microparticles and with disease severity. DNASE1L3-sensitive antigens included DNA-associated proteins such as HMGB1. Our results reveal autoantibody-mediated impairment of DNASE1L3 activity as a common nongenetic mechanism facilitating anti-dsDNA autoreactivity in patients with severe sporadic SLE.
Collapse
Affiliation(s)
- Johannes Hartl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Oriana A. Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Benjamin Sally
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Vanja Sisirak
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Le Centre national de la recherche scientifique - unité mixte de recherche 5164, ImmunoConcEpt, Universite ´de Bordeaux, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Ivan Caiello
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Claudia Bracaglia
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stefano Volpi
- Centro per le Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, Genoa, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
| | - Asiya Seema Chida
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Mimi Y. Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - H. Michael Belmont
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Gregg J. Silverman
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Robert M. Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Peter M. Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jill P. Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
16
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
17
|
Chan RWY, Serpas L, Ni M, Volpi S, Hiraki LT, Tam LS, Rashidfarrokhi A, Wong PCH, Tam LHP, Wang Y, Jiang P, Cheng ASH, Peng W, Han DSC, Tse PPP, Lau PK, Lee WS, Magnasco A, Buti E, Sisirak V, AlMutairi N, Chan KCA, Chiu RWK, Reizis B, Lo YMD. Plasma DNA Profile Associated with DNASE1L3 Gene Mutations: Clinical Observations, Relationships to Nuclease Substrate Preference, and In Vivo Correction. Am J Hum Genet 2020; 107:882-894. [PMID: 33022220 PMCID: PMC7674998 DOI: 10.1016/j.ajhg.2020.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/16/2020] [Indexed: 12/30/2022] Open
Abstract
Plasma DNA fragmentomics is an emerging area in cell-free DNA diagnostics and research. In murine models, it has been shown that the extracellular DNase, DNASE1L3, plays a role in the fragmentation of plasma DNA. In humans, DNASE1L3 deficiency causes familial monogenic systemic lupus erythematosus with childhood onset and anti-dsDNA reactivity. In this study, we found that human patients with DNASE1L3 disease-associated gene variations showed aberrations in size and a reduction of a "CC" end motif of plasma DNA. Furthermore, we demonstrated that DNA from DNASE1L3-digested cell nuclei showed a median length of 153 bp with CC motif frequencies resembling plasma DNA from healthy individuals. Adeno-associated virus-based transduction of Dnase1l3 into Dnase1l3-deficient mice restored the end motif profiles to those seen in the plasma DNA of wild-type mice. Our findings demonstrate that DNASE1L3 is an important player in the fragmentation of plasma DNA, which appears to act in a cell-extrinsic manner to regulate plasma DNA size and motif frequency.
Collapse
Affiliation(s)
- Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Meng Ni
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova, Italy
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON M5G 1X5, Canada
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Priscilla C H Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Lydia H P Tam
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Alice S H Cheng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wenlei Peng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Patty P P Tse
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Pik Ki Lau
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Shan Lee
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Alberto Magnasco
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Elisa Buti
- Nefrologia e Dialisi, Azienda Ospedaliero Universitaria Meyer, 50139 Firenze, Italy
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 33076 Bordeaux, France
| | - Nora AlMutairi
- Sabah Hospital, Jaber Al Ahmad Al Jaber Al Sabah Hospital, Kuwait
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
18
|
Pisetsky DS, Lipsky PE. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat Rev Rheumatol 2020; 16:565-579. [PMID: 32884126 DOI: 10.1038/s41584-020-0480-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 01/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by antinuclear antibodies (ANAs) that form immune complexes that mediate pathogenesis by tissue deposition or cytokine induction. Some ANAs bind DNA or associated nucleosome proteins, whereas other ANAs bind protein components of complexes of RNA and RNA-binding proteins (RBPs). Levels of anti-DNA antibodies can fluctuate widely, unlike those of anti-RBP antibodies, which tend to be stable. Because anti-DNA antibody levels can reflect disease activity, repeat testing is common; by contrast, a single anti-RBP antibody determination is thought to suffice for clinical purposes. Experience from clinical trials of novel therapies has provided a new perspective on ANA expression during disease, as many patients with SLE are ANA negative at screening despite previously testing positive. Because trial results suggest that patients who are ANA negative might not respond to certain agents, screening strategies now involve ANA and anti-DNA antibody testing to identify patients with so-called 'active, autoantibody-positive SLE'. Evidence suggests that ANA responses can decrease over time because of the natural history of disease or the effects of therapy. Together, these findings suggest that, during established disease, more regular serological testing could illuminate changes relevant to pathogenesis and disease status.
Collapse
Affiliation(s)
- David S Pisetsky
- Departments of Medicine and Immunology, Duke University Medical Center and Medical Research Service, Veterans Administration Medical Center, Durham, NC, USA.
| | | |
Collapse
|
19
|
Deoxyribonucleases and Their Applications in Biomedicine. Biomolecules 2020; 10:biom10071036. [PMID: 32664541 PMCID: PMC7407206 DOI: 10.3390/biom10071036] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular DNA, also called cell-free DNA, released from dying cells or activated immune cells can be recognized by the immune system as a danger signal causing or enhancing inflammation. The cleavage of extracellular DNA is crucial for limiting the inflammatory response and maintaining homeostasis. Deoxyribonucleases (DNases) as enzymes that degrade DNA are hypothesized to play a key role in this process as a determinant of the variable concentration of extracellular DNA. DNases are divided into two families-DNase I and DNase II, according to their biochemical and biological properties as well as the tissue-specific production. Studies have shown that low DNase activity is both, a biomarker and a pathogenic factor in systemic lupus erythematosus. Interventional experiments proved that administration of exogenous DNase has beneficial effects in inflammatory diseases. Recombinant human DNase reduces mucus viscosity in lungs and is used for the treatment of patients with cystic fibrosis. This review summarizes the currently available published data about DNases, their activity as a potential biomarker and methods used for their assessment. An overview of the experiments with systemic administration of DNase is also included. Whether low-plasma DNase activity is involved in the etiopathogenesis of diseases remains unknown and needs to be elucidated.
Collapse
|
20
|
Soni C, Perez OA, Voss WN, Pucella JN, Serpas L, Mehl J, Ching KL, Goike J, Georgiou G, Ippolito GC, Sisirak V, Reizis B. Plasmacytoid Dendritic Cells and Type I Interferon Promote Extrafollicular B Cell Responses to Extracellular Self-DNA. Immunity 2020; 52:1022-1038.e7. [PMID: 32454024 PMCID: PMC7306002 DOI: 10.1016/j.immuni.2020.04.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Oriana A Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - William N Voss
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Justin Mehl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Krystal L Ching
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jule Goike
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 33076 Bordeaux, France.
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
From hepatitis C virus immunoproteomics to rheumatology via cross-reactivity in one table. Curr Opin Rheumatol 2020; 31:488-492. [PMID: 31356379 DOI: 10.1097/bor.0000000000000606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW To give an overview of molecular and immunologic data that link hepatitis C virus (HCV) infection to rheumatic diseases in the human host. RECENT FINDINGS A high level of peptide sharing exists between immunopositive HCV epitopes and human proteins that, when altered, associate with rheumatic manifestations. SUMMARY The findings suggest the involvement of HCV infection in the induction of most rheumatic diseases via a mechanism of autoimmune cross-reactivity.
Collapse
|
22
|
Eis PS, Bruno CD, Richmond TA, Koralnik IJ, Hanson BA, Major EO, Chow CR, Hendel-Chavez H, Stankoff B, Gasnault J, Taoufik Y, Hatchwell E. Germline Genetic Risk Variants for Progressive Multifocal Leukoencephalopathy. Front Neurol 2020; 11:186. [PMID: 32256442 PMCID: PMC7094807 DOI: 10.3389/fneur.2020.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disorder of the brain caused by reactivation of the JC virus (JCV), a polyomavirus that infects at least 60% of the population but is asymptomatic or results in benign symptoms in most people. PML occurs as a secondary disease in a variety of disorders or as a serious adverse event from immunosuppressant agents, but is mainly found in three groups: HIV-infected patients, patients with hematological malignancies, or multiple sclerosis (MS) patients on the immunosuppressant therapy natalizumab. It is severely debilitating and is deadly in ~50% HIV cases, ~90% of hematological malignancy cases, and ~24% of MS-natalizumab cases. A PML risk prediction test would have clinical utility in all at risk patient groups but would be particularly beneficial in patients considering therapy with immunosuppressant agents known to cause PML, such as natalizumab, rituximab, and others. While a JC antibody test is currently used in the clinical decision process for natalizumab, it is suboptimal because of its low specificity and requirement to periodically retest patients for seroconversion or to assess if a patient's JCV index has increased. Whereas a high specificity genetic risk prediction test comprising host genetic risk variants (i.e., germline variants occurring at higher frequency in PML patients compared to the general population) could be administered one time to provide clinicians with additional risk prediction information that is independent of JCV serostatus. Prior PML case reports support the hypothesis that PML risk is greater in patients with a genetically caused immunodeficiency disorder. To identify germline PML risk variants, we performed exome sequencing on 185 PML cases (70 in a discovery cohort and 115 in a replication cohort) and used the gnomAD variant database for interpretation. Our study yielded 19 rare variants (maximum allele frequency of 0.02 in gnomAD ethnically matched populations) that impact 17 immune function genes (10 are known to cause inborn errors of immunity). Modeling of these variants in a PML genetic risk test for MS patients considering natalizumab treatment indicates that at least a quarter of PML cases may be preventable.
Collapse
Affiliation(s)
- Peggy S Eis
- Population Bio, Inc., New York, NY, United States
| | | | - Todd A Richmond
- Richmond Bioinformatics Consulting, Seattle, WA, United States
| | - Igor J Koralnik
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A Hanson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene O Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | | | - Houria Hendel-Chavez
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bruno Stankoff
- Department of Neurology, Hôpital Saint-Antoine, Paris, France
| | - Jacques Gasnault
- Department of Internal Medicine, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Yassine Taoufik
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Eli Hatchwell
- Population Bio UK, Inc., Oxfordshire, United Kingdom
| |
Collapse
|
23
|
Towards a pro-resolving concept in systemic lupus erythematosus. Semin Immunopathol 2019; 41:681-697. [DOI: 10.1007/s00281-019-00760-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
|
24
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
25
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
26
|
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease whose pathogenesis can be conceptualized by a model based on a central role for immune complexes (ICs) between antinuclear antibodies and nucleic acids. According to this model, ICs can promote pathogenesis by two main mechanisms: deposition in the tissue to incite local inflammation and interaction with cells of the innate immune system to stimulate the production of cytokines, most prominently type 1 interferon. The latter stimulation results from the uptake of DNA and RNA in the form of ICs into cells and subsequent signaling by internal nucleic acid sensors for DNA and RNA. These sensors are likely important for the response to intracellular infection, although they may also be triggered during cell stress or injury by DNA or RNA aberrantly present in the cytoplasm. For IC formation, a source of extracellular DNA and RNA is essential. The current model of SLE posits that cell death is the origin of the nucleic acids in the ICs and that impairment of clearance mechanisms increases the amount of nuclear material in the extracellular space. This model of SLE is important since it points to new approaches to therapy; agents targeting interferon or the interferon receptor are examples of therapeutic approaches derived from this model. Future studies will explore novel biomarkers to monitor the operation of these mechanisms and to elucidate other steps in pathogenesis that can be targeted for therapy.
Collapse
Affiliation(s)
- David S Pisetsky
- Department of Medicine and Immunology, Duke University Medical Center and Medical Research Service, VA Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
Abstract
Circulating DNA in plasma has many diagnostic applications, including noninvasive prenatal testing and cancer liquid biopsy. Plasma DNA consists of short fragments of DNA. However, there is little information about mechanisms that are involved in the fragmentation of plasma DNA. We showed that mice in which Dnase1l3 had been deleted showed aberrations in the fragmentation of plasma DNA. We also observed a change in the ranked frequencies of end motifs of plasma DNA caused by the Dnase1l3 deletion. In Dnase1l3−/− mice pregnant with Dnase1l3+/− fetuses, we observed a partial reversal of the plasma DNA aberrations. This study has thus linked the fields of nuclease biology and circulating nucleic acids and has opened up avenues for future research. Circulating DNA in plasma consists of short DNA fragments. The biological processes generating such fragments are not well understood. DNASE1L3 is a secreted DNASE1-like nuclease capable of digesting DNA in chromatin, and its absence causes anti-DNA responses and autoimmunity in humans and mice. We found that the deletion of Dnase1l3 in mice resulted in aberrations in the fragmentation of plasma DNA. Such aberrations included an increase in short DNA molecules below 120 bp, which was positively correlated with anti-DNA antibody levels. We also observed an increase in long, multinucleosomal DNA molecules and decreased frequencies of the most common end motifs found in plasma DNA. These aberrations were independent of anti-DNA response, suggesting that they represented a primary effect of DNASE1L3 loss. Pregnant Dnase1l3−/− mice carrying Dnase1l3+/− fetuses showed a partial restoration of normal frequencies of plasma DNA end motifs, suggesting that DNASE1L3 from Dnase1l3-proficient fetuses could enter maternal systemic circulation and affect both fetal and maternal DNA fragmentation in a systemic as well as local manner. However, the observed shortening of circulating fetal DNA relative to maternal DNA was not affected by the deletion of Dnase1l3. Collectively, our findings demonstrate that DNASE1L3 plays a role in circulating plasma DNA homeostasis by enhancing fragmentation and influencing end-motif frequencies. These results support a distinct role of DNASE1L3 as a regulator of the physical form and availability of cell-free DNA and may have important implications for the mechanism whereby this enzyme prevents autoimmunity.
Collapse
|
28
|
Soni C, Reizis B. DNA as a self-antigen: nature and regulation. Curr Opin Immunol 2018; 55:31-37. [PMID: 30261321 DOI: 10.1016/j.coi.2018.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
High-affinity antibodies to double-stranded DNA are a hallmark of systemic lupus erythematosus (SLE) and are thought to contribute to disease flares and tissue inflammation such as nephritis. Notwithstanding their clinical importance, major questions remain about the development and regulation of these pathogenic anti-DNA responses. These include the mechanisms that prevent anti-DNA responses in healthy subjects, despite the constant generation of self-DNA and the abundance of DNA-reactive B cells; the nature and physical form of antigenic DNA in SLE; the regulation of DNA availability as an antigen; and potential therapeutic strategies targeting the pathogenic DNA in SLE. This review summarizes current progress in these directions, focusing on the role of secreted DNases in the regulation of antigenic extracellular DNA.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|