1
|
Missiego-Beltrán J, Beltrán-Velasco AI. The Role of Microbial Metabolites in the Progression of Neurodegenerative Diseases-Therapeutic Approaches: A Comprehensive Review. Int J Mol Sci 2024; 25:10041. [PMID: 39337526 PMCID: PMC11431950 DOI: 10.3390/ijms251810041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of this review is to provide a comprehensive examination of the role of microbial metabolites in the progression of neurodegenerative diseases, as well as to investigate potential therapeutic interventions targeting the microbiota. A comprehensive literature search was conducted across the following databases: PubMed, Scopus, Web of Science, ScienceDirect, and Wiley. Key terms related to the gut microbiota, microbial metabolites, neurodegenerative diseases, and specific metabolic products were used. The review included both preclinical and clinical research articles published between 2000 and 2024. Short-chain fatty acids have been demonstrated to play a crucial role in modulating neuroinflammation, preserving the integrity of the blood-brain barrier, and influencing neuronal plasticity and protection. Furthermore, amino acids and their derivatives have been demonstrated to exert a significant influence on CNS function. These microbial metabolites impact CNS health by regulating intestinal permeability, modulating immune responses, and directly influencing neuroinflammation and oxidative stress, which are integral to neurodegenerative diseases. Therapeutic strategies, including prebiotics, probiotics, dietary modifications, and fecal microbiota transplantation have confirmed the potential to restore microbial balance and enhance the production of neuroprotective metabolites. Furthermore, novel drug developments based on microbial metabolites present promising therapeutic avenues. The gut microbiota and its metabolites represent a promising field of research with the potential to advance our understanding of and develop treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ana Isabel Beltrán-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28015 Madrid, Spain;
| |
Collapse
|
2
|
Sudol ASL, Crispin M, Tews I. The IgG-specific endoglycosidases EndoS and EndoS2 are distinguished by conformation and antibody recognition. J Biol Chem 2024; 300:107245. [PMID: 38569940 PMCID: PMC11063906 DOI: 10.1016/j.jbc.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.
Collapse
Affiliation(s)
- Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Ivo Tews
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Happonen L, Collin M. Immunomodulating Enzymes from Streptococcus pyogenes-In Pathogenesis, as Biotechnological Tools, and as Biological Drugs. Microorganisms 2024; 12:200. [PMID: 38258026 PMCID: PMC10818452 DOI: 10.3390/microorganisms12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus, is an exclusively human pathogen that causes a wide variety of diseases ranging from mild throat and skin infections to severe invasive disease. The pathogenesis of S. pyogenes infection has been extensively studied, but the pathophysiology, especially of the more severe infections, is still somewhat elusive. One key feature of S. pyogenes is the expression of secreted, surface-associated, and intracellular enzymes that directly or indirectly affect both the innate and adaptive host immune systems. Undoubtedly, S. pyogenes is one of the major bacterial sources for immunomodulating enzymes. Major targets for these enzymes are immunoglobulins that are destroyed or modified through proteolysis or glycan hydrolysis. Furthermore, several enzymes degrade components of the complement system and a group of DNAses degrade host DNA in neutrophil extracellular traps. Additional types of enzymes interfere with cellular inflammatory and innate immunity responses. In this review, we attempt to give a broad overview of the functions of these enzymes and their roles in pathogenesis. For those enzymes where experimentally determined structures exist, the structural aspects of the enzymatic activity are further discussed. Lastly, we also discuss the emerging use of some of the enzymes as biotechnological tools as well as biological drugs and vaccines.
Collapse
Affiliation(s)
- Lotta Happonen
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
4
|
Nandakumar KS, Fang Q, Wingbro Ågren I, Bejmo ZF. Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15883. [PMID: 37958864 PMCID: PMC10648236 DOI: 10.3390/ijms242115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Abnormal activation of multiple immune and non-immune cells and proinflammatory factors mediate the development of joint inflammation in genetically susceptible individuals. Although specific environmental factors like smoking and infections are associated with disease pathogenesis, until now, we did not know the autoantigens and arthritogenic factors that trigger the initiation of the clinical disease. Autoantibodies recognizing specific post-translationally modified and unmodified antigens are generated and in circulation before the onset of the joint disease, and could serve as diagnostic and prognostic markers. The characteristic features of autoantibodies change regarding sub-class, affinity, glycosylation pattern, and epitope spreading before the disease onset. Some of these antibodies were proven to be pathogenic using animal and cell-culture models. However, not all of them can induce disease in animals. This review discusses the aberrant activation of major immune and non-immune cells contributing to joint inflammation. Recent studies explored the protective effects of extracellular vesicles from mesenchymal stem cells and bacteria on joints by targeting specific cells and pathways. Current therapeutics in clinics target cells and inflammatory pathways to attenuate joint inflammation and protect the cartilage and bones from degradation, but none cure the disease. Hence, more basic research is needed to investigate the triggers and mechanisms involved in initiating the disease and relapses to prevent chronic inflammation from damaging joint architecture.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Isabella Wingbro Ågren
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Zoe Fuwen Bejmo
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| |
Collapse
|
5
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
6
|
Du JJ, Sastre D, Trastoy B, Roberts B, Deredge D, Klontz EH, Flowers MW, Sultana N, Guerin ME, Sundberg EJ. Mass Spectrometry-Based Methods to Determine the Substrate Specificities and Kinetics of N-Linked Glycan Hydrolysis by Endo-β-N-Acetylglucosaminidases. Methods Mol Biol 2023; 2674:147-167. [PMID: 37258966 PMCID: PMC10988651 DOI: 10.1007/978-1-0716-3243-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glycosylation is a common posttranslational modification of proteins and refers to the covalent addition of glycans, chains of polysaccharides, onto proteins producing glycoproteins. The glycans influence the structure, function, and stability of proteins. They also play an integral role in the immune system, and aberrantly glycosylated proteins have wide ranging effects, including leading to diseases such as autoimmune conditions and cancer. Carbohydrate-active enzymes (CAZymes) are produced in bacteria, fungi, and humans and are enzymes which modify glycans via the addition or subtraction of individual or multiple saccharides from glycans. One of the hurdles in studying these enzymes is determining the types of substrates each enzyme is specific for and the kinetics of enzymatic activity. In this chapter, we discuss methods which are currently used to study the substrate specificity and kinetics of CAZymes and introduce a novel mass spectrometry-based technique which enables the specificity and kinetics of CAZymes to be determined accurately and efficiently.
Collapse
Affiliation(s)
- Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Diego Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Beatriz Trastoy
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Blaine Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Erik H Klontz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria W Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Sudol ASL, Butler J, Ivory DP, Tews I, Crispin M. Extensive substrate recognition by the streptococcal antibody-degrading enzymes IdeS and EndoS. Nat Commun 2022; 13:7801. [PMID: 36528711 PMCID: PMC9759587 DOI: 10.1038/s41467-022-35340-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymatic cleavage of IgG antibodies is a common strategy used by pathogenic bacteria to ablate immune effector function. The Streptococcus pyogenes bacterium secretes the protease IdeS and the glycosidase EndoS, which specifically catalyse cleavage and deglycosylation of human IgG, respectively. IdeS has received clinical approval for kidney transplantation in hypersensitised individuals, while EndoS has found application in engineering antibody glycosylation. We present crystal structures of both enzymes in complex with their IgG1 Fc substrate, which was achieved using Fc engineering to disfavour preferential Fc crystallisation. The IdeS protease displays extensive Fc recognition and encases the antibody hinge. Conversely, the glycan hydrolase domain in EndoS traps the Fc glycan in a "flipped-out" conformation, while additional recognition of the Fc peptide is driven by the so-called carbohydrate binding module. In this work, we reveal the molecular basis of antibody recognition by bacterial enzymes, providing a template for the development of next-generation enzymes.
Collapse
Affiliation(s)
- Abigail S. L. Sudol
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - John Butler
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Dylan P. Ivory
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Ivo Tews
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Max Crispin
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
8
|
Romão VC, Fonseca JE. Disease mechanisms in preclinical rheumatoid arthritis: A narrative review. Front Med (Lausanne) 2022; 9:689711. [PMID: 36059838 PMCID: PMC9437632 DOI: 10.3389/fmed.2022.689711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In the last decades, the concept of preclinical rheumatoid arthritis (RA) has become established. In fact, the discovery that disease mechanisms start years before the onset of clinical RA has been one of the major recent insights in the understanding of RA pathogenesis. In accordance with the complex nature of the disease, preclinical events extend over several sequential phases. In a genetically predisposed host, environmental factors will further increase susceptibility for incident RA. In the initial steps of preclinical disease, immune disturbance mechanisms take place outside the joint compartment, namely in mucosal surfaces, such as the lung, gums or gut. Herein, the persistent immunologic response to altered antigens will lead to breach of tolerance and trigger autoimmunity. In a second phase, the immune response matures and is amplified at a systemic level, with epitope spreading and widening of the autoantibody repertoire. Finally, the synovial and bone compartment are targeted by specific autoantibodies against modified antigens, initiating a local inflammatory response that will eventually culminate in clinically evident synovitis. In this review, we discuss the elaborate disease mechanisms in place during preclinical RA, providing a broad perspective in the light of current evidence.
Collapse
Affiliation(s)
- Vasco C. Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Bai Q, Ma J, Zhang Z, Zhong X, Pan Z, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence 2021; 11:1539-1556. [PMID: 33138686 PMCID: PMC7644249 DOI: 10.1080/21505594.2020.1838740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| |
Collapse
|
10
|
Zhou X, Motta F, Selmi C, Ridgway WM, Gershwin ME, Zhang W. Antibody glycosylation in autoimmune diseases. Autoimmun Rev 2021; 20:102804. [PMID: 33727152 DOI: 10.1016/j.autrev.2021.102804] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
The glycosylation of the fragment crystallizable (Fc) region of immunoglobulins (Ig) is critical for the modulation of antibody effects on inflammation. Moreover, antibody glycosylation may induce pathologic modifications and ultimately contribute to the development of autoimmune diseases. Thanks to progress in the analysis of glycosylation, more data are available on IgG and its subclass structures in the context of autoimmune diseases. In this review, we focused on the impact of Ig glycosylation in autoimmunity, describing how it modulates the immune response and how glycome profiles can be used as biomarkers of disease activity. The analysis of antibody glycosylation demonstrated specific features in human autoimmune and chronic inflammatory conditions, including rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and autoimmune liver diseases, among others. Within the same disease, different patterns are associated with disease severity and treatment options. Future research may increase the information available on the distinct glycome profiles and expand their potential role as biomarkers and as targets for treatment, ultimately favoring an individualized approach.
Collapse
Affiliation(s)
- Xing Zhou
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Ercan A. Sex effect on the correlation of immunoglobulin G glycosylation with rheumatoid arthritis disease activity. Turk J Biol 2020; 44:406-416. [PMID: 33402867 PMCID: PMC7759195 DOI: 10.3906/biy-2005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease which affects females more than males with a presence of autoantibodies. Immunoglobulin G (IgG) produced by adaptive arm has 2 functional domains, Fc and Fab. The Fc domain binds Fc gamma receptors and C1q proteins of the innate arm. Therefore, the IgG Fc domain serves as a bridge between the innate and adaptive arms and is regulated by an evolutionarily conserved N-glycosylation with variable structures. These glycans are classified as agalactosylated G0, monogalactosylated G1, and digalactosylated G2, which are further modified by core-fucosylation (F) and bisecting N-acetylglucosamine (B) moieties such as G0F and G0FB. Interestingly, proinflammatory G0F is shown to be regulated by estrogen in vivo. Here, it is hypothesized that the regulation of G0F by estrogen contributes to sex dichotomy in RA by setting up the level of IgG-dependent inflammation and therefore, RA disease activity (Das28-CRP3). To investigate this hypothesis, IgG glycosylation was characterized in serum samples from active RA patients (n = 232) and healthy controls (n = 232) by serum N-glycan analysis using the high performance liquid chromatography. According to the results, the IgG Fc glycan phenotype originates predominantly from the structure of G0F, and both G0F and G0FB correlate with Das28-CRP3 in females, but not in males. In conclusion, IgG G0F-dependent inflammation differs in males and females, and these differences point to the differential regulation of inflammation by sex hormone estrogen via IgG glycosylation.
Collapse
Affiliation(s)
- Altan Ercan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gül University, Kayseri Turkey
| |
Collapse
|
12
|
Du JJ, Klontz EH, Guerin ME, Trastoy B, Sundberg EJ. Structural insights into the mechanisms and specificities of IgG-active endoglycosidases. Glycobiology 2020; 30:268-279. [PMID: 31172182 DOI: 10.1093/glycob/cwz042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 11/12/2022] Open
Abstract
The conserved N-glycan on Asn297 of immunoglobulin G (IgG) has significant impacts on antibody effector functions, and is a frequent target for antibody engineering. Chemoenzymatic synthesis has emerged as a strategy for producing antibodies with homogenous glycosylation and improved effector functions. Central to this strategy is the use of enzymes with activity on the Asn297 glycan. EndoS and EndoS2, produced by Streptococcus pyogenes, are endoglycosidases with remarkable specificity for Asn297 glycosylation, making them ideal tools for chemoenzymatic synthesis. Although both enzymes are specific for IgG, EndoS2 recognizes a wider range of glycans than EndoS. Recent progress has been made in understanding the structural basis for their activities on antibodies. In this review, we examine the molecular mechanism of glycosidic bond cleavage by these enzymes and how specific point mutations convert them into glycosynthases. We also discuss the structural basis for differences in the glycan repertoire that IgG-active endoglycosidases recognize, which focuses on the structure of the loops within the glycoside hydrolase (GH) domain. Finally, we discuss the important contributions of carbohydrate binding modules (CBMs) to endoglycosidase activity, and how CBMs work in concert with GH domains to produce optimal activity on IgG.
Collapse
Affiliation(s)
- Jonathan J Du
- Institute of Human Virology 725 W Lombard Street, Baltimore, MD 21201, USA
| | - Erik H Klontz
- Institute of Human Virology 725 W Lombard Street, Baltimore, MD 21201, USA.,Department of Microbiology & Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street HSF-I Suite 380, Baltimore, MD 21201, USA.,Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD 21201, USA
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz Haroko Kalea, 3, 48013 Bilbo, Bizkaia, Spain
| | - Beatriz Trastoy
- Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD 21201, USA
| | - Eric J Sundberg
- Institute of Human Virology 725 W Lombard Street, Baltimore, MD 21201, USA.,Department of Microbiology & Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street HSF-I Suite 380, Baltimore, MD 21201, USA.,Department of Medicine, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020; 9:E387. [PMID: 32443590 PMCID: PMC7281376 DOI: 10.3390/pathogens9050387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with the epidemic virulent strain of Streptococcus suis serotype 2 (SS2) can cause septicemia in swine and humans, leading to pneumonia, meningitis and even cytokine storm of Streptococcal toxic shock-like syndrome. Despite some progress concerning the contribution of bacterial adhesion, biofilm, toxicity and stress response to the SS2 systemic infection, the precise mechanism underlying bacterial survival and growth within the host bloodstream remains elusive. Here, we reported the SS2 virulent strains with a more than 20 kb endoSS-related insertion region that showed significantly higher proliferative ability in swine serum than low-virulent strains. Further study identified a complete N-glycans degradation system encoded within this insertion region, and found that both GH92 and EndoSS contribute to bacterial virulence, but that only DndoSS was required for optimal growth of SS2 in host serum. The supplement of hydrolyzed high-mannose-containing glycoprotein by GH92 and EndoSS could completely restore the growth deficiency of endoSS deletion mutant in swine serum. EndoSS only hydrolyzed a part of the model glycoprotein RNase B with high-mannose N-linked glycoforms into a low molecular weight form, and the solo activity of GH92 could not show any changes comparing with the blank control in SDS-PAGE gel. However, complete hydrolyzation was observed under the co-incubation of EndoSS and GH92, suggesting GH92 may degrade the high-mannose arms of N-glycans to generate a substrate for EndoSS. In summary, these findings provide compelling evidences that EndoSS-related N-glycans degradation system may enable SS2 to adapt to host serum-specific availability of carbon sources from glycoforms, and be required for optimal colonization and full virulence during systemic infection.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
14
|
Autoantibodies as Diagnostic Markers and Mediator of Joint Inflammation in Arthritis. Mediators Inflamm 2019; 2019:6363086. [PMID: 31772505 PMCID: PMC6854956 DOI: 10.1155/2019/6363086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is a systemic, polygenic, and multifactorial syndrome characterized by erosive polyarthritis, damage to joint architecture, and presence of autoantibodies against several self-structures in the serum and synovial fluid. These autoantibodies (anticitrullinated protein/peptide antibodies (ACPAs), rheumatoid factors (RF), anticollagen type II antibodies, antiglucose-6 phosphate isomerase antibodies, anticarbamylated protein antibodies, and antiacetylated protein antibodies) have different characteristics, diagnostic/prognostic value, and pathological significance in RA patients. Some of these antibodies are present in the patients' serum several years before the onset of clinical disease. Various genetic and environmental factors are associated with autoantibody production against different autoantigenic targets. Both the activating and inhibitory FcγRs and the activation of different complement cascades contribute to the downstream effector functions in the antibody-mediated disease pathology. Interplay between several molecules (cytokines, chemokines, proteases, and inflammatory mediators) culminates in causing damage to the articular cartilage and bones. In addition, autoantibodies are proven to be useful disease markers for RA, and different diagnostic tools are being developed for early diagnosis of the clinical disease. Recently, a direct link was proposed between the presence of autoantibodies and bone erosion as well as in the induction of pain. In this review, the diagnostic value of autoantibodies, their synthesis and function as a mediator of joint inflammation, and the significance of IgG-Fc glycosylation are discussed.
Collapse
|
15
|
Bersellini Farinotti A, Wigerblad G, Nascimento D, Bas DB, Morado Urbina C, Nandakumar KS, Sandor K, Xu B, Abdelmoaty S, Hunt MA, Ängeby Möller K, Baharpoor A, Sinclair J, Jardemark K, Lanner JT, Khmaladze I, Borm LE, Zhang L, Wermeling F, Cragg MS, Lengqvist J, Chabot-Doré AJ, Diatchenko L, Belfer I, Collin M, Kultima K, Heyman B, Jimenez-Andrade JM, Codeluppi S, Holmdahl R, Svensson CI. Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons. J Exp Med 2019; 216:1904-1924. [PMID: 31196979 PMCID: PMC6683987 DOI: 10.1084/jem.20181657] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/metabolism
- Arthralgia/drug therapy
- Arthralgia/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Autoantibodies/immunology
- Autoantibodies/therapeutic use
- Behavior, Animal/drug effects
- Cartilage/immunology
- Cartilage Oligomeric Matrix Protein/immunology
- Collagen Type II/immunology
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Neurons/metabolism
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
Collapse
Affiliation(s)
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Diana Nascimento
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Duygu B Bas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sally Abdelmoaty
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Azar Baharpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon Sinclair
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ia Khmaladze
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars E Borm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wermeling
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Johan Lengqvist
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Quebec, Canada
| | - Inna Belfer
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kim Kultima
- Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Juan Miguel Jimenez-Andrade
- Department of Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Simone Codeluppi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
The structure, specificity and function of anti-citrullinated protein antibodies. Nat Rev Rheumatol 2019; 15:503-508. [PMID: 31253945 DOI: 10.1038/s41584-019-0244-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 01/14/2023]
Abstract
In this Perspectives article, we outline a proposed model for understanding the specificity and function of anti-citrullinated protein antibodies (ACPAs). We suggest that ACPAs vary in specificity between two extremes: some are 'promiscuous' in that they are highly specific for the citrulline side chain, but cross-react with a range of citrullinated peptides, whereas others are 'private' in that their recognition of citrulline as well as proximal amino acid side chains enables protein-specific interactions. Promiscuous ACPAs tend to dominate in the sera both before and after the onset of rheumatoid arthritis, but their functional role has not been clarified. No firm evidence exists that these ACPAs are pathogenic. By contrast, private ACPAs encompass antibodies that specifically recognize citrullinated epitopes on joint proteins or that cross-react with joint proteins, thereby opening up the possibility that these private ACPAs are arthritogenic. These joint-reactive antibodies are more likely to target joints by binding to joint tissues and to promote the formation of local immune complexes leading to bone erosions, pain and arthritis.
Collapse
|
17
|
Klontz EH, Trastoy B, Deredge D, Fields JK, Li C, Orwenyo J, Marina A, Beadenkopf R, Günther S, Flores J, Wintrode PL, Wang LX, Guerin ME, Sundberg EJ. Molecular Basis of Broad Spectrum N-Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2. ACS CENTRAL SCIENCE 2019; 5:524-538. [PMID: 30937380 PMCID: PMC6439443 DOI: 10.1021/acscentsci.8b00917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 06/02/2023]
Abstract
Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen-deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.
Collapse
Affiliation(s)
- Erik H. Klontz
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Beatriz Trastoy
- Structural
Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Daniel Deredge
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - James K. Fields
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Chao Li
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Jared Orwenyo
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Alberto Marina
- Structural
Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Robert Beadenkopf
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Sebastian Günther
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Photon
Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
| | - Jair Flores
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Patrick L. Wintrode
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Marcelo E. Guerin
- Structural
Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Eric J. Sundberg
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department
of Medicine, University of Maryland School
of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|