1
|
Afeyan AB, Wu CJ, Oliveira G. Rapid parallel reconstruction and specificity screening of hundreds of T cell receptors. Nat Protoc 2024:10.1038/s41596-024-01061-4. [PMID: 39516267 DOI: 10.1038/s41596-024-01061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
The ability to screen the reactivity of T cell receptors (TCRs) is essential to understanding how antigen-specific T cells drive productive or dysfunctional immune responses during infections, cancer and autoimmune diseases. Methods to profile large numbers of TCRs are critical for characterizing immune responses sustained by diverse T cell clones. Here we provide a medium-throughput approach to reconstruct dozens to hundreds of TCRs in parallel, which can be simultaneously screened against primary human tissues and broad curated panels of antigenic targets. Using Gibson assembly and miniaturized lentiviral transduction, individual TCRs are rapidly cloned and expressed in T cells; before screening, TCR cell lines undergo combinatorial labeling with dilutions of three fluorescent dyes, which allows retrieval of the identity of individual T cell effectors when they are organized and tested in pools using flow cytometry. Upon incubation with target cells, we measure the upregulation of CD137 on T cells as a readout of TCR activation. This approach is scalable and simultaneously captures the reactivity of pooled TCR cell lines, whose activation can be deconvoluted in real time, thus providing a path for screening the reactivity of dozens of TCRs against broad panels of synthetic antigens or against cellular targets, such as human tumor cells. We applied this pipeline to systematically deconvolute the antitumoral and antiviral reactivity and antigenic specificity of TCRs from human tumor-infiltrating lymphocytes. This protocol takes ~2 months, from experimental design to data analysis, and requires standard expertise in cloning, cell culture and flow cytometry.
Collapse
Affiliation(s)
- Alexander B Afeyan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Zou Y, Luo J, Chen L, Wang X, Liu W, Wang RH, Li SC. Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. Mol Syst Biol 2024:10.1038/s44320-024-00070-5. [PMID: 39496799 DOI: 10.1038/s44320-024-00070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
T cell receptors (TCR) and gene expression provide two complementary and essential aspects in T cell understanding, yet their diversity presents challenges in integrative analysis. We introduce TCRclub, a novel method integrating single-cell RNA sequencing data and single-cell TCR sequencing data using local harmony to identify functionally similar T cell groups, termed 'clubs'. We applied TCRclub to 298,106 T cells across seven datasets encompassing various diseases. First, TCRclub outperforms the state-of-the-art methods in clustering T cells on a dataset with over 400 verified peptide-major histocompatibility complex categories. Second, TCRclub reveals a transition from activated to exhausted T cells in cholangiocarcinoma patients. Third, TCRclub discovered the pathways that could intervene in response to anti-PD-1 therapy for patients with basal cell carcinoma by analyzing the pre-treatment and post-treatment samples. Furthermore, TCRclub unveiled different T-cell responses and gene patterns at different severity levels in patients with COVID-19. Hence, TCRclub aids in developing more effective immunotherapeutic strategies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Yiping Zou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong (Dongguan), Dongguan, China
| | - Wei Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Ruo Han Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Zeng Y, Ma Q, Chen J, Kong X, Chen Z, Liu H, Liu L, Qian Y, Wang X, Lu S. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Prolif 2024; 57:e13698. [PMID: 38956399 PMCID: PMC11533074 DOI: 10.1111/cpr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Collapse
Affiliation(s)
- Yuqin Zeng
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Quan Ma
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Jinyun Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xingxing Kong
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Zhanpeng Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Huazhen Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Lanlan Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Yan Qian
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xiaomin Wang
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
4
|
Yang L, Kim J, Chen L, Wei W, Wang J. Detection of >400 Cluster of Differentiation Biomarkers and Pathway Proteins in Single Immune Cells by Cyclic Multiplex In Situ Tagging for Single-Cell Proteomic Studies. Anal Chem 2024; 96:17387-17395. [PMID: 39422499 DOI: 10.1021/acs.analchem.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The identification and characterization of immune cell subpopulations are critical to reveal cell development throughout life and immune responses to environmental factors. Next-generation sequencing technologies have dramatically advanced single-cell genomics and transcriptomics for immune cell classification. However, gene expression is often not correlated with protein expression, and immunotyping is mostly accepted in protein format. Current single-cell proteomic technologies are either limited in multiplex capacity or not sensitive enough to detect the critical functional proteins. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology to simultaneously measure >400 proteins, a scale of >10 times than similar technologies. Such an ultrahigh multiplexity is achieved by reiterative staining of the single cells coupled with a MIST array for detection. This technology has been thoroughly validated through comparison with flow cytometry and fluorescence immunostaining techniques. Both peripheral blood mononuclear cells (PBMCs) and T cells are analyzed by the CycMIST technology, and almost the entire spectrum of cluster of differentiation (CD) surface markers has been measured. The landscape of fluctuation of CD protein expression in single cells has been uncovered by our technology. Further study found T cell activation signatures and protein-protein networks. This study represents the highest multiplexity of single immune cell marker measurement targeting functional proteins. With additional information from intracellular proteins of the same single cells, our technology can potentially facilitate mechanistic studies of immune responses under various disease conditions.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Juho Kim
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Long Chen
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Wei Wei
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
5
|
Schoenfeld K, Habermann J, Wendel P, Harwardt J, Ullrich E, Kolmar H. T cell receptor-directed antibody-drug conjugates for the treatment of T cell-derived cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200850. [PMID: 39176070 PMCID: PMC11338945 DOI: 10.1016/j.omton.2024.200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
T cell-derived cancers are hallmarked by heterogeneity, aggressiveness, and poor clinical outcomes. Available targeted therapies are severely limited due to a lack of target antigens that allow discrimination of malignant from healthy T cells. Here, we report a novel approach for the treatment of T cell diseases based on targeting the clonally rearranged T cell receptor displayed by the cancerous T cell population. As a proof of concept, we identified an antibody with unique specificity toward a distinct T cell receptor (TCR) and developed antibody-drug conjugates, precisely recognizing and eliminating target T cells while preserving overall T cell repertoire integrity and cellular immunity. Our anti-TCR antibody-drug conjugates demonstrated effective receptor-mediated cell internalization, associated with induction of cancer cell death with strong signs of apoptosis. Furthermore, cell proliferation-inhibiting bystander effects observed on target-negative cells may contribute to the molecules' anti-tumor properties precluding potential tumor escape mechanisms. To our knowledge, this represents the first anti-TCR antibody-drug conjugate designed as custom-tailored immunotherapy for T cell-driven pathologies.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Goethe University, Department of Pediatrics, Experimental Immunology and Cell Therapy, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Philipp Wendel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Goethe University, Department of Pediatrics, Experimental Immunology and Cell Therapy, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Evelyn Ullrich
- Goethe University, Department of Pediatrics, Experimental Immunology and Cell Therapy, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
6
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Nie M, Sun Z, Li N, Zhou L, Wang S, Yuan M, Chen R, Zhao L, Li J, Bai C. Genomic and T cell repertoire biomarkers associated with malignant mesothelioma survival. Thorac Cancer 2024; 15:1502-1512. [PMID: 38798202 PMCID: PMC11219294 DOI: 10.1111/1759-7714.15326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is an exceedingly rare tumor with poor prognosis due to the limited availability of effective treatment. Immunotherapy has emerged as a novel treatment approach for MM, but less than 40% of the patients benefit from it. Thus, it is necessary to identify accurate and effective biomarkers that can predict the overall survival (OS) and immunotherapy efficacy for MM. METHODS DNA sequencing was used to identify the genomic landscape based on the data from 86 Chinese patients. T cell receptor (TCR) sequencing was used to characterize MM TCR repertoires of 28 patients between October 2016 and April 2023. RESULTS Patients with TP53, NF2, or CDKN2A variants at the genomic level, as well as those exhibiting lower Shannon index (<6.637), lower evenness (<0.028), or higher clonality (≥0.194) according to baseline tumor tissue TCR indexes, demonstrated poorer OS. Furthermore, patients with TP53, CDKN2A, or CDKN2B variants and those with a lower evenness (<0.030) in baseline tumor tissue showed worse immunotherapy efficacy. The present study is the first to identify five special TCR Vβ-Jβ rearrangements associated with MM immunotherapy efficacy. CONCLUSIONS The present study reported the largest-scale genomic landscape and TCR repertoire of MM in Chinese patients and identified genomic and TCR biomarkers for the prognosis and immunotherapy efficacy in MM. The study results might provide new insights for prospective MM trials using specific genes, TCR indexes, and TCR clones as biomarkers and offer a reference for future antitumor drugs based on TCR-specific clones.
Collapse
Affiliation(s)
- Muwen Nie
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ningning Li
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | | | | | | | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ji Li
- Department of Pathology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Lin J, Wu X, Liu Z, Yang H, Chen Y, Li H, Yu Y, Tu Q, Chen Y. Identification, expression and molecular polymorphism of T-cell receptors α and β from the glacial relict Hucho bleekeri. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109475. [PMID: 38447781 DOI: 10.1016/j.fsi.2024.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The T-cell receptor (TCR) is a specific molecule on the surface of all T cells that mediates cellular adaptive immune responses to antigens. Hucho bleekeri is a critically endangered species and is regarded as a glacial relict that has the lowest-latitude distribution compared with any Eurasian salmonid. In the present study, two TCR genes, namely, TCR α and β, were identified and characterized in H. bleekeri. Both TCR α and TCR β have typical TCR structures, including the IgV domain, IgC domain, connecting peptide, transmembrane and cytoplasmic domains. The two TCR genes were constitutionally expressed in various tissues, with the highest expression found in the spleen for TCR α and in the trunk kidney for TCR β. Challenge of H. bleekeri with LPS or poly(I:C) resulted in significant upregulation of both TCR α and β expression in headkidney and spleen primary cells, indicating their potential roles in the immune response. Molecular polymorphism analysis of the whole ORF regions of TCR α and β in different individuals revealed high diversity of IgV domains of these two genes, especially in complementarity-determining region (CDR) 3. The ratio of nonsynonymous substitution occurred at a significantly higher frequency than synonymous substitution in the CDR of TCR α and β, demonstrating the existence of positive selection. The results obtained in the present study enhance our understanding of TCR roles in regulating immune mechanisms and provide new information for the study of TCR lineage diversity in fish.
Collapse
Affiliation(s)
- Jue Lin
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Zhao Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Huanchao Yang
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yanling Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Hua Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yi Yu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Quanyu Tu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China.
| |
Collapse
|
9
|
Ham SD, Abraham MN, Deutschman CS, Taylor MD. Single-cell RNA sequencing reveals Immune Education promotes T cell survival in mice subjected to the cecal ligation and puncture sepsis model. Front Immunol 2024; 15:1366955. [PMID: 38562928 PMCID: PMC10982361 DOI: 10.3389/fimmu.2024.1366955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Individual T cell responses vary significantly based on the microenvironment present at the time of immune response and on prior induced T cell memory. While the cecal ligation and puncture (CLP) model is the most commonly used murine sepsis model, the contribution of diverse T cell responses has not been explored. We defined T cell subset responses to CLP using single-cell RNA sequencing and examined the effects of prior induced T cell memory (Immune Education) on these responses. We hypothesized that Immune Education prior to CLP would alter T cell responses at the single cell level at a single, early post-CLP time point. Methods Splenic T cells were isolated from C57BL/6 mice. Four cohorts were studied: Control, Immune-Educated, CLP, and Immune-Educated CLP. At age 8 weeks, Immune-Educated and Immune-Educated CLP mice received anti-CD3ϵ antibody; Control and CLP mice were administered an isotype control. CLP (two punctures with a 22-gauge needle) was performed at 12-13 weeks of life. Mice were sacrificed at baseline or 24-hours post-CLP. Unsupervised clustering of the transcriptome library identified six distinct T cell subsets: quiescent naïve CD4+, primed naïve CD4+, memory CD4+, naïve CD8+, activated CD8+, and CD8+ cytotoxic T cell subsets. T cell subset specific gene set enrichment analysis and Hurdle analysis for differentially expressed genes (DEGs) were performed. Results T cell responses to CLP were not uniform - subsets of activated and suppressed T cells were identified. Immune Education augmented specific T cell subsets and led to genomic signatures favoring T cell survival in unoperated and CLP mice. Additionally, the combination of Immune Education and CLP effected the expression of genes related to T cell activity in ways that differed from CLP alone. Validating our finding that IL7R pathway markers were upregulated in Immune-Educated CLP mice, we found that Immune Education increased T cell surface IL7R expression in post-CLP mice. Conclusion Immune Education enhanced the expression of genes associated with T cell survival in unoperated and CLP mice. Induction of memory T cell compartments via Immune Education combined with CLP may increase the model's concordance to human sepsis.
Collapse
Affiliation(s)
- Steven D. Ham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Mabel N. Abraham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Clifford S. Deutschman
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew D. Taylor
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
10
|
Tayebi Z, Ali S, Murad T, Khan I, Patterson M. PseAAC2Vec protein encoding for TCR protein sequence classification. Comput Biol Med 2024; 170:107956. [PMID: 38217977 DOI: 10.1016/j.compbiomed.2024.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
The classification and prediction of T-cell receptors (TCRs) protein sequences are of significant interest in understanding the immune system and developing personalized immunotherapies. In this study, we propose a novel approach using Pseudo Amino Acid Composition (PseAAC) protein encoding for accurate TCR protein sequence classification. The PseAAC2Vec encoding method captures the physicochemical properties of amino acids and their local sequence information, enabling the representation of protein sequences as fixed-length feature vectors. By incorporating physicochemical properties such as hydrophobicity, polarity, charge, molecular weight, and solvent accessibility, PseAAC2Vec provides a comprehensive and informative characterization of TCR protein sequences. To evaluate the effectiveness of the proposed PseAAC2Vec encoding approach, we assembled a large dataset of TCR protein sequences with annotated classes. We applied the PseAAC2Vec encoding scheme to each sequence and generated feature vectors based on a specified window size. Subsequently, we employed state-of-the-art machine learning algorithms, such as support vector machines (SVM) and random forests (RF), to classify the TCR protein sequences. Experimental results on the benchmark dataset demonstrated the superior performance of the PseAAC2Vec-based approach compared to existing methods. The PseAAC2Vec encoding effectively captures the discriminative patterns in TCR protein sequences, leading to improved classification accuracy and robustness. Furthermore, the encoding scheme showed promising results across different window sizes, indicating its adaptability to varying sequence contexts.
Collapse
Affiliation(s)
- Zahra Tayebi
- Department of Computer Science, Georgia State University, Atlanta, 30303, GA, USA.
| | - Sarwan Ali
- Department of Computer Science, Georgia State University, Atlanta, 30303, GA, USA.
| | - Taslim Murad
- Department of Computer Science, Georgia State University, Atlanta, 30303, GA, USA.
| | - Imdadullah Khan
- Department of Computer Science, Lahore University of Management Sciences, Lahore, Punjab, Pakistan.
| | - Murray Patterson
- Department of Computer Science, Georgia State University, Atlanta, 30303, GA, USA.
| |
Collapse
|
11
|
Ghaffari S, Saleh M, Akbari B, Ramezani F, Mirzaei HR. Applications of single-cell omics for chimeric antigen receptor T cell therapy. Immunology 2024; 171:339-364. [PMID: 38009707 DOI: 10.1111/imm.13720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment modality. The breakthroughs in CAR T cell therapy were, in part, possible with the help of cell analysis methods, such as single-cell analysis. Bulk analyses have provided invaluable information regarding the complex molecular dynamics of CAR T cells, but their results are an average of thousands of signals in CAR T or tumour cells. Since cancer is a heterogeneous disease where each minute detail of a subclone could change the outcome of the treatment, single-cell analysis could prove to be a powerful instrument in deciphering the secrets of tumour microenvironment for cancer immunotherapy. With the recent studies in all aspects of adoptive cell therapy making use of single-cell analysis, a comprehensive review of the recent preclinical and clinical findings in CAR T cell therapy was needed. Here, we categorized and summarized the key points of the studies in which single-cell analysis provided insights into the genomics, epigenomics, transcriptomics and proteomics as well as their respective multi-omics of CAR T cell therapy.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, Wisconsin, USA
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ramezani
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
12
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
13
|
Kim D, Song J, Mancuso N, Mangul S, Jung J, Jang W. Large-scale integrative analysis of juvenile idiopathic arthritis for new insight into its pathogenesis. Arthritis Res Ther 2024; 26:47. [PMID: 38336809 PMCID: PMC10858498 DOI: 10.1186/s13075-024-03280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is one of the most prevalent rheumatic disorders in children and is classified as an autoimmune disease (AID). While a robust genetic contribution to JIA etiology has been established, the exact pathogenesis remains unclear. METHODS To prioritize biologically interpretable susceptibility genes and proteins for JIA, we conducted transcriptome-wide and proteome-wide association studies (TWAS/PWAS). Then, to understand the genetic architecture of JIA, we systematically analyzed single-nucleotide polymorphism (SNP)-based heritability, a signature of natural selection, and polygenicity. Next, we conducted HLA typing using multi-ethnicity RNA sequencing data. Additionally, we examined the T cell receptor (TCR) repertoire at a single-cell level to explore the potential links between immunity and JIA risk. RESULTS We have identified 19 TWAS genes and two PWAS proteins associated with JIA risks. Furthermore, we observe that the heritability and cell type enrichment analysis of JIA are enriched in T lymphocytes and HLA regions and that JIA shows higher polygenicity compared to other AIDs. In multi-ancestry HLA typing, B*45:01 is more prevalent in African JIA patients than in European JIA patients, whereas DQA1*01:01, DQA1*03:01, and DRB1*04:01 exhibit a higher frequency in European JIA patients. Using single-cell immune repertoire analysis, we identify clonally expanded T cell subpopulations in JIA patients, including CXCL13+BHLHE40+ TH cells which are significantly associated with JIA risks. CONCLUSION Our findings shed new light on the pathogenesis of JIA and provide a strong foundation for future mechanistic studies aimed at uncovering the molecular drivers of JIA.
Collapse
Affiliation(s)
- Daeun Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Serghei Mangul
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Junghyun Jung
- Department of Life Sciences, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Hollywood, CA, USA.
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
14
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
15
|
Zhu B, Wang Y, Ku LT, van Dijk D, Zhang L, Hafler DA, Zhao H. scNAT: a deep learning method for integrating paired single-cell RNA and T cell receptor sequencing profiles. Genome Biol 2023; 24:292. [PMID: 38111007 PMCID: PMC10726524 DOI: 10.1186/s13059-023-03129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Many deep learning-based methods have been proposed to handle complex single-cell data. Deep learning approaches may also prove useful to jointly analyze single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq) data for novel discoveries. We developed scNAT, a deep learning method that integrates paired scRNA-seq and scTCR-seq data to represent data in a unified latent space for downstream analysis. We demonstrate that scNAT is capable of removing batch effects, and identifying cell clusters and a T cell migration trajectory from blood to cerebrospinal fluid in multiple sclerosis.
Collapse
Affiliation(s)
- Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, USA, MD , 20815
| | - Yuge Wang
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06511, USA
| | - Li-Ting Ku
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06511, USA
| | - David van Dijk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Computer Science, Yale University, New Haven, CT, 06511, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, USA, MD , 20815
| | - Le Zhang
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, 06511, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06511, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, USA, MD , 20815
| | - David A Hafler
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, 06511, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06511, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, USA, MD , 20815
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA.
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
16
|
Sun B, Xun Z, Zhang N, Liu K, Chen X, Zhao H. Single-cell RNA sequencing in cancer research: discovering novel biomarkers and therapeutic targets for immune checkpoint blockade. Cancer Cell Int 2023; 23:313. [PMID: 38066642 PMCID: PMC10704754 DOI: 10.1186/s12935-023-03158-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/22/2023] [Indexed: 10/30/2024] Open
Abstract
Immune checkpoint blockade (ICB) has become a promising strategy in treating advanced cancers, providing significant survival benefits for patients with various cancer types. However, among the vast population of cancer patients, only a small fraction are able to respond to and derive benefits from ICB therapy. Numerous factors contribute to the diminished efficacy of ICB, with the complex tumor microenvironment (TME) playing an important role. Therefore, comprehensively understanding the intricate composition of the TME is critical for elucidating the mechanisms that underlie distinct responses to ICB in patients. Single-cell RNA sequencing (scRNA-seq) is a novel technique that reveals gene expression profiles of individual cells, facilitating the investigation of TME heterogeneity at a high resolution and the identification of key cell subsets participating in the response to ICB. This review emphasizes the importance of scRNA-seq in studying ICB and summarizes recent findings in the discovery of biomarkers that predict ICB response and novel potential therapeutic targets for immunotherapy. These findings suggest future directions for the clinical implementation of cancer immunotherapy, facilitating further advancements in precision medicine.
Collapse
Affiliation(s)
- Boyu Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Kai Liu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiangqi Chen
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
17
|
Nedwed AS, Helbich SS, Braband KL, Volkmar M, Delacher M, Marini F. Using combined single-cell gene expression, TCR sequencing and cell surface protein barcoding to characterize and track CD4+ T cell clones from murine tissues. Front Immunol 2023; 14:1241283. [PMID: 37901204 PMCID: PMC10602882 DOI: 10.3389/fimmu.2023.1241283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Single-cell gene expression analysis using sequencing (scRNA-seq) has gained increased attention in the past decades for studying cellular transcriptional programs and their heterogeneity in an unbiased manner, and novel protocols allow the simultaneous measurement of gene expression, T-cell receptor clonality and cell surface protein expression. In this article, we describe the methods to isolate scRNA/TCR-seq-compatible CD4+ T cells from murine tissues, such as skin, spleen, and lymph nodes. We describe the processing of cells and quality control parameters during library preparation, protocols for multiplexing of samples, and strategies for sequencing. Moreover, we describe a step-by-step bioinformatic analysis pipeline from sequencing data generated using these protocols. This includes quality control, preprocessing of sequencing data and demultiplexing of individual samples. We perform quantification of gene expression and extraction of T-cell receptor alpha and beta chain sequences, followed by quality control and doublet detection, and methods for harmonization and integration of datasets. Next, we describe the identification of highly variable genes and dimensionality reduction, clustering and pseudotemporal ordering of data, and we demonstrate how to visualize the results with interactive and reproducible dashboards. We will combine different analytic R-based frameworks such as Bioconductor and Seurat, illustrating how these can be interoperable to optimally analyze scRNA/TCR-seq data of CD4+ T cells from murine tissues.
Collapse
Affiliation(s)
- Annekathrin Silvia Nedwed
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Sara Salome Helbich
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Luise Braband
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Michael Volkmar
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
18
|
Chen S, Jiang W, Du Y, Yang M, Pan Y, Li H, Cui M. Single-cell analysis technologies for cancer research: from tumor-specific single cell discovery to cancer therapy. Front Genet 2023; 14:1276959. [PMID: 37900181 PMCID: PMC10602688 DOI: 10.3389/fgene.2023.1276959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Single-cell sequencing (SCS) technology is changing our understanding of cellular components, functions, and interactions across organisms, because of its inherent advantage of avoiding noise resulting from genotypic and phenotypic heterogeneity across numerous samples. By directly and individually measuring multiple molecular characteristics of thousands to millions of single cells, SCS technology can characterize multiple cell types and uncover the mechanisms of gene regulatory networks, the dynamics of transcription, and the functional state of proteomic profiling. In this context, we conducted systematic research on SCS techniques, including the fundamental concepts, procedural steps, and applications of scDNA, scRNA, scATAC, scCITE, and scSNARE methods, focusing on the unique clinical advantages of SCS, particularly in cancer therapy. We have explored challenging but critical areas such as circulating tumor cells (CTCs), lineage tracing, tumor heterogeneity, drug resistance, and tumor immunotherapy. Despite challenges in managing and analyzing the large amounts of data that result from SCS, this technique is expected to reveal new horizons in cancer research. This review aims to emphasize the key role of SCS in cancer research and promote the application of single-cell technologies to cancer therapy.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, China
| | - Yanhui Du
- Department of Orthopaedics, Jilin Province People’s Hospital, Changchun, China
| | - Manshi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yihan Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huan Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
van der List ACJ, Litjens NHR, Brouwer RWW, Klepper M, den Dekker AT, van Ijcken WFJ, Betjes MGH. Single-Cell RNA Sequencing of Donor-Reactive T Cells Reveals Role of Apoptosis in Donor-Specific Hyporesponsiveness of Kidney Transplant Recipients. Int J Mol Sci 2023; 24:14463. [PMID: 37833911 PMCID: PMC10572284 DOI: 10.3390/ijms241914463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3-5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.
Collapse
Affiliation(s)
- Amy C. J. van der List
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Nicolle H. R. Litjens
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Rutger W. W. Brouwer
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Mariska Klepper
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Alexander T. den Dekker
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Wilfred F. J. van Ijcken
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Michiel G. H. Betjes
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| |
Collapse
|
21
|
Weng NP. Numbers and odds: TCR repertoire size and its age changes impacting on T cell functions. Semin Immunol 2023; 69:101810. [PMID: 37515916 PMCID: PMC10530048 DOI: 10.1016/j.smim.2023.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
A vast array of αβ T cell receptors (TCRs) is generated during T cell development in the thymus through V(D)J recombination, which involves the rearrangement of multiple V, D, and J genes and the pairing of α and β chains. These diverse TCRs provide protection to the human body against a multitude of foreign pathogens and internal cancer cells. The entirety of TCRs present in an individual's T cells is referred to as the TCR repertoire. Despite an estimated 4 × 1011 T cells in the adult human body, the lower bound estimate for the TCR repertoire is 3.8 × 108. While the number of circulating T cells may slightly decrease with age, the changes in the diversity of the TCR repertoire is more apparent. Here, I review recent advancements in TCR repertoire studies, the methods used to measure it, how richness and diversity change as humans age, and some of the known consequences associated with these changes.
Collapse
MESH Headings
- Adult
- Humans
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
22
|
An Z, Liu W, Li W, Wei M, An C. Application of single-cell RNA sequencing in head and neck squamous cell carcinoma. Chin J Cancer Res 2023; 35:331-342. [PMID: 37691894 PMCID: PMC10485914 DOI: 10.21147/j.issn.1000-9604.2023.04.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma (HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells' expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancer-associated fibroblasts (CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-to-mesenchymal transition (EMT) model and the mechanism of drug resistance, as well as its clinical value.
Collapse
Affiliation(s)
- Zhaohong An
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Liu
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen 518000, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Minghui Wei
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen 518000, China
| | - Changming An
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
23
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
24
|
Sanromán ÁF, Joshi K, Au L, Chain B, Turajlic S. TCR sequencing: applications in immuno-oncology research. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 17:100373. [PMID: 36908996 PMCID: PMC9996383 DOI: 10.1016/j.iotech.2023.100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
•T-cell receptor (TCR) interaction with major histocompatibility complex-antigen complexes leads to antitumour responses.•TCR sequencing analysis allows characterisation of T cells that recognise tumour neoantigens.•T-cell clonal revival and clonal replacement potentially underpin immunotherapy responses.
Collapse
Affiliation(s)
- Á F Sanromán
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - K Joshi
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK.,Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - L Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia
| | - B Chain
- Division of Infection and Immunity, University College London, London, UK.,Department of Computer Science, University College London, London, UK
| | - S Turajlic
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK.,Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| |
Collapse
|
25
|
Liu Q, Li J, Zheng H, Yang S, Hua Y, Huang N, Kleeff J, Liao Q, Wu W. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol Cancer 2023; 22:28. [PMID: 36750830 PMCID: PMC9903509 DOI: 10.1186/s12943-023-01735-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
In recent decades, immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T) therapy are two milestone achievements in clinical immunotherapy. However, both show limited efficacies in most solid neoplasms, which necessitates the exploration of new immunotherapeutic modalities. The failure of CAR-T and immune checkpoint blockade in several solid neoplasms is attributed to multiple factors, including low antigenicity of tumor cells, low infiltration of effector T cells, and diverse mechanisms of immunosuppression in the tumor microenvironment. New adoptive cell therapies have been attempted for solid neoplasms, including TCR-T, CAR-natural killer cells (CAR-NK), and CAR-macrophages (CAR-M). Compared to CAR-T, these new adoptive cell therapies have certain advantages in treating solid neoplasms. In this review, we summarized the 40-year evolution of adoptive cell therapies, then focused on the advances of TCR-T, CAR-NK, and CAR-M in solid neoplasms and discussed their potential clinical applications.
Collapse
Affiliation(s)
- Qiaofei Liu
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jiayi Li
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Huaijin Zheng
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Sen Yang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Yuze Hua
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Nan Huang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jorg Kleeff
- grid.9018.00000 0001 0679 2801Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
26
|
Park JJ, Lee KAV, Lam SZ, Moon KS, Fang Z, Chen S. Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity. Commun Biol 2023; 6:76. [PMID: 36670287 PMCID: PMC9853487 DOI: 10.1038/s42003-023-04447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoire composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of host responses to viruses such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we perform a large-scale analysis of over 4.7 billion sequences across 2130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identify and characterize convergent COVID-19-associated CDR3 gene usages, specificity groups, and sequence patterns. Here we show that T cell clonal expansion is associated with the upregulation of T cell effector function, TCR signaling, NF-kB signaling, and interferon-gamma signaling pathways. We also demonstrate that machine learning approaches accurately predict COVID-19 infection based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores. These analyses provide a systems immunology view of T cell adaptive immune responses to COVID-19.
Collapse
Affiliation(s)
- Jonathan J. Park
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA ,grid.47100.320000000419368710MD-PhD Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT USA
| | - Kyoung A V. Lee
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Department of Biostatistics, Yale School of Public Health, New Haven, CT USA
| | - Stanley Z. Lam
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA
| | - Katherine S. Moon
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA
| | - Zhenhao Fang
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA
| | - Sidi Chen
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA ,grid.47100.320000000419368710MD-PhD Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Immunobiology Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Yale Stem Cell Center, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Yale Center for Biomedical Data Science, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
27
|
Prinz JC. Immunogenic self-peptides - the great unknowns in autoimmunity: Identifying T-cell epitopes driving the autoimmune response in autoimmune diseases. Front Immunol 2023; 13:1097871. [PMID: 36700227 PMCID: PMC9868241 DOI: 10.3389/fimmu.2022.1097871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
HLA-associated autoimmune diseases likely arise from T-cell-mediated autoimmune responses against certain self-peptides from the broad HLA-presented immunopeptidomes. The limited knowledge of the autoimmune target peptides has so far compromised the basic understanding of autoimmune pathogenesis. This is due to the complexity of antigen processing and presentation as well as the polyspecificity of T-cell receptors (TCRs), which pose high methodological challenges on the discovery of immunogenic self-peptides. HLA-class I molecules present peptides to CD8+ T cells primarily derived from cytoplasmic proteins. Therefore, HLA-class I-restricted autoimmune responses should be directed against target cells expressing the corresponding parental protein. In HLA-class II-associated diseases, the origin of immunogenic peptides is not pre-specified, because peptides presented by HLA-class II molecules to CD4+ T cells may originate from both extracellular and cellular self-proteins. The different origins of HLA-class I and class II presented peptides determine the respective strategy for the discovery of immunogenic self-peptides in approaches based on the TCRs isolated from clonally expanded pathogenic T cells. Both involve identifying the respective restricting HLA allele as well as determining the recognition motif of the TCR under investigation by peptide library screening, which is required to search for homologous immunogenic self-peptides. In HLA-class I-associated autoimmune diseases, identification of the target cells allows for defining the restricting HLA allotype from the 6 different HLA-class I alleles of the individual HLA haplotype. It furthermore limits the search for immunogenic self-peptides to the transcriptome or immunopeptidome of the target cells, although neoepitopes generated by peptide splicing or translational errors may complicate identification. In HLA class II-associated autoimmune diseases, the lack of a defined target cell and differential antigen processing in different antigen-presenting cells complicate identification of the HLA restriction of autoreactive TCRs from CD4+ T cells. To avoid that all corresponding HLA-class II allotypes have to be included in the peptide discovery, autoantigens defined by autoantibodies can guide the search for immunogenic self-peptides presented by the respective HLA-class II risk allele. The objective of this article is to highlight important aspects to be considered in the discovery of immunogenic self-peptides in autoimmune diseases.
Collapse
|
28
|
Cordes M, Pike-Overzet K, Van Den Akker EB, Staal FJT, Canté-Barrett K. Multi-omic analyses in immune cell development with lessons learned from T cell development. Front Cell Dev Biol 2023; 11:1163529. [PMID: 37091971 PMCID: PMC10118026 DOI: 10.3389/fcell.2023.1163529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Traditionally, flow cytometry has been the preferred method to characterize immune cells at the single-cell level. Flow cytometry is used in immunology mostly to measure the expression of identifying markers on the cell surface, but-with good antibodies-can also be used to assess the expression of intracellular proteins. The advent of single-cell RNA-sequencing has paved the road to study immune development at an unprecedented resolution. Single-cell RNA-sequencing studies have not only allowed us to efficiently chart the make-up of heterogeneous tissues, including their most rare cell populations, it also increasingly contributes to our understanding how different omics modalities interplay at a single cell resolution. Particularly for investigating the immune system, this means that these single-cell techniques can be integrated to combine and correlate RNA and protein data at the single-cell level. While RNA data usually reveals a large heterogeneity of a given population identified solely by a combination of surface protein markers, the integration of different omics modalities at a single cell resolution is expected to greatly contribute to our understanding of the immune system.
Collapse
Affiliation(s)
- Martijn Cordes
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik B. Van Den Akker
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Frank J. T. Staal,
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Jiang L, Cao D, Yeung WSB, Lee KF. Single-Cell RNA-Sequencing Reveals Interactions between Endometrial Stromal Cells, Epithelial Cells, and Lymphocytes during Mouse Embryo Implantation. Int J Mol Sci 2022; 24:ijms24010213. [PMID: 36613656 PMCID: PMC9820401 DOI: 10.3390/ijms24010213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The decidualization of endometrial stromal cells (ESCs) is an essential process facilitating embryo implantation. However, the roles of non-decidualized and decidualized ESCs in regulating the microenvironment of a receptive endometrium remain unclear. We investigated single-cell transcriptomic changes in the uterus of a CD-1 mouse model at the post-implantation stage. The implantation and inter-implantation sites of the uteruses of pregnant mice at 4.5 and 5.5 days post-coitum were dissected for single-cell RNA sequencing. We identified eight cell types: epithelial cells, stromal cells, endothelial cells, mesothelial cells, lymphocytes, myocytes, myeloids, and pericytes. The ESC transcriptome suggests that the four ESC subtypes are involved in the extracellular remodeling during implantation. The trajectory plot of ESC subtypes indicates embryo implantation that involves a differentiation pathway from undifferentiated ESCs (ESC 1) to decidualized ESCs (DEC ESCs), with distinct signaling pathways between the ESC subtypes. Furthermore, the ligand-receptor analysis suggests that ESCs communicate with epithelial cells and immune cells through nectin and ICAM signaling. Collectively, both decidualized and non-decidualized ESCs may regulate the endometrial microenvironment for optimal endometrial receptivity and immune tolerance. This study provides insights on the molecular and cellular characteristics of mouse ESCs in modulating the epithelial and lymphocyte functions during early embryo implantation.
Collapse
Affiliation(s)
- Luhan Jiang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
- Correspondence: ; Fax: +852-2816-1947
| |
Collapse
|
30
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
31
|
Mahajan S, Kortleve D, Debets R, Hammerl D. Detection of Low-Frequency Epitope-Specific T Cells in Blood of Healthy Individuals according to an Optimized In Vitro Amplification System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2239-2247. [PMID: 36426971 DOI: 10.4049/jimmunol.2101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Detection and amplification of epitope-specific T cells hold great promise for diagnosis and therapy of cancer patients. Currently, measurement and retrieval of epitope-specific T cells is hampered by limited availability of patients' biomaterials and lack of sensitive and easy-to-implement T cell priming and expansion. We have developed an in vitro T cell amplification system starting from healthy donor blood and tested different subsets and ratios of autologous T cells and APCs as well as the resting period between amplification cycles. We demonstrated in 10 different donors significantly enhanced frequency of T cells specific for MelanA/HLA-A2, which relied on coculturing of naive T cells and CD11c+ dendritic cells in a 1:1 ratio followed by three weekly amplification cycles using the effluent of the naive T cell sort as APCs, a 24-h rest period prior to every reamplification cycle, and IFN-γ production as a readout for epitope-specific T cells. Using this system, MelanA/HLA-A2-specific T cells were enriched by 200-fold, measuring up to 20-60% of all T cells. We extended this system to enrich NY-ESO-1/HLA-A2- and BMLF-1/HLA-A2-specific T cells, examples of a cancer germline Ag and an oncoviral Ag differing in their ability to bind to HLA-A2 and the presence of specific T cells in the naive and, in case of BMLF-1, also the Ag-experienced repertoire. Collectively, we have developed a sensitive and easy-to-implement in vitro T cell amplification method to enrich epitope-specific T cells that is expected to facilitate research and clinical utility regarding T cell diagnosis and treatments.
Collapse
Affiliation(s)
- Shweta Mahajan
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Dian Kortleve
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Dora Hammerl
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Hong CH, Pyo HS, Baek IC, Kim TG. Rapid identification of CMV-specific TCRs via reverse TCR cloning system based on bulk TCR repertoire data. Front Immunol 2022; 13:1021067. [PMID: 36466875 PMCID: PMC9716090 DOI: 10.3389/fimmu.2022.1021067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Advances in next-generation sequencing (NGS) have improved the resolution of T-cell receptor (TCR) repertoire analysis, and recent single-cell sequencing has made it possible to obtain information about TCR pairs. In our previous study, cytomegalovirus (CMV) pp65-specific T-cell response restricted by a single human leukocyte antigen (HLA) class I allotype was observed in an individual. Therefore, to effectively clone an antigen-specific TCR from these T cells, we developed a TCR cloning system that does not require a single cell level. First, we established the improved Jurkat reporter cell line, which was TCRαβ double knock-out and expressed CD8αβ molecules. Furthermore, functional TCRs were directly obtained by reverse TCR cloning using unique CDR3-specific PCR primers after bulk TCR sequencing of activation marker-positive CD8 T cells by NGS. A total of 15 TCRα and 14 TCRβ strands were successfully amplified by PCR from cDNA of 4-1BB-positive CD8 T cells restricted by HLA-A*02:01, HLA-A*02:06, HLA-B*07:02, and HLA-B*40:06. The panels with combinations of TCRα and TCRβ genes were investigated using Jurkat reporter cell line and artificial antigen-presenting cells (APCs). In two TCR pairs restricted by HLA-A*02:01, one TCR pair by HLA-A*02:06, four TCR pairs by HLA-B*07:02, and one TCR pair by HLA-B*40:06, their specificity and affinity were confirmed. The TCR pair of A*02:01/1-1 showed alloreactivity to HLA-A*02:06. The one TCR pair showed a higher response to the naturally processed antigen than that of the peptide pool. This reverse TCR cloning system will not only provide functional information to TCR repertoire analysis by NGS but also help in the development of TCR-T therapy.
Collapse
Affiliation(s)
- Cheol-Hwa Hong
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong-Seon Pyo
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
33
|
Abstract
The immune system is highly complex and distributed throughout an organism, with hundreds to thousands of cell states existing in parallel with diverse molecular pathways interacting in a highly dynamic and coordinated fashion. Although the characterization of individual genes and molecules is of the utmost importance for understanding immune-system function, high-throughput, high-resolution omics technologies combined with sophisticated computational modeling and machine-learning approaches are creating opportunities to complement standard immunological methods with new insights into immune-system dynamics. Like systems immunology itself, immunology researchers must take advantage of these technologies and form their own diverse networks, connecting with researchers from other disciplines. This Review is an introduction and 'how-to guide' for immunologists with no particular experience in the field of omics but with the intention to learn about and apply these systems-level approaches, and for immunologists who want to make the most of interdisciplinary networks.
Collapse
|
34
|
Iida K, Kondo J, Wibisana JN, Inoue M, Okada M. ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes. Bioinformatics 2022; 38:4330-4336. [PMID: 35924984 PMCID: PMC9477531 DOI: 10.1093/bioinformatics/btac541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating individual cells remains warranted. RESULTS We present ASURAT, a computational tool for simultaneously performing unsupervised clustering and functional annotation of disease, cell type, biological process and signaling pathway activity for single-cell transcriptomic data, using a correlation graph decomposition for genes in database-derived functional terms. We validated the usability and clustering performance of ASURAT using scRNA-seq datasets for human peripheral blood mononuclear cells, which required fewer manual curations than existing methods. Moreover, we applied ASURAT to scRNA-seq and spatial transcriptome datasets for human small cell lung cancer and pancreatic ductal adenocarcinoma, respectively, identifying previously overlooked subpopulations and differentially expressed genes. ASURAT is a powerful tool for dissecting cell subpopulations and improving biological interpretability of complex and noisy transcriptomic data. AVAILABILITY AND IMPLEMENTATION ASURAT is published on Bioconductor (https://doi.org/10.18129/B9.bioc.ASURAT). The codes for analyzing data in this article are available at Github (https://github.com/keita-iida/ASURATBI) and figshare (https://doi.org/10.6084/m9.figshare.19200254.v4). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Keita Iida
- To whom correspondence should be addressed.
| | - Jumpei Kondo
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan,Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto 606-8501, Japan
| | | | - Masahiro Inoue
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto 606-8501, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
35
|
T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer. Int J Mol Sci 2022; 23:ijms23158590. [PMID: 35955721 PMCID: PMC9369427 DOI: 10.3390/ijms23158590] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The immune system is a dynamic feature of each individual and a footprint of our unique internal and external exposures. Indeed, the type and level of exposure to physical and biological agents shape the development and behavior of this complex and diffuse system. Many pathological conditions depend on how our immune system responds or does not respond to a pathogen or a disease or on how the regulation of immunity is altered by the disease itself. T-cells are important players in adaptive immunity and, together with B-cells, define specificity and monitor the internal and external signals that our organism perceives through its specific receptors, TCRs and BCRs, respectively. Today, high-throughput sequencing (HTS) applied to the TCR repertoire has opened a window of opportunity to disclose T-cell repertoire development and behavior down to the clonal level. Although TCR repertoire sequencing is easily accessible today, it is important to deeply understand the available technologies for choosing the best fit for the specific experimental needs and questions. Here, we provide an updated overview of TCR repertoire sequencing strategies, providers and applications to infectious diseases and cancer to guide researchers’ choice through the multitude of available options. The possibility of extending the TCR repertoire to HLA characterization will be of pivotal importance in the near future to understand how specific HLA genes shape T-cell responses in different pathological contexts and will add a level of comprehension that was unthinkable just a few years ago.
Collapse
|
36
|
Trofimov A, Brouillard P, Larouche JD, Séguin J, Laverdure JP, Brasey A, Ehx G, Roy DC, Busque L, Lachance S, Lemieux S, Perreault C. Two types of human TCR differentially regulate reactivity to self and non-self antigens. iScience 2022; 25:104968. [PMID: 36111255 PMCID: PMC9468382 DOI: 10.1016/j.isci.2022.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%–30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes. Over 108 TCR CDR3 sequences from ∼103 individuals and 7 cohorts were analyzed The TCR repertoire is composed of two layers: neonatal and TDT-dependent layer ∼70% of frequent cord blood TCRs are associated with common pathogens Acute graft-vs-host disease correlates with a high proportion of TDT-dependent TCRs
Collapse
Affiliation(s)
- Assya Trofimov
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
- Currently Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Currently Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
| | - Philippe Brouillard
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jonathan Séguin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ann Brasey
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Currently Interdisciplinary Cluster for Applied Geno-Proteomics (GIGA-I3), University of Liege, Liege 4000, Belgium
| | | | - Lambert Busque
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry at University of Montreal, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
- Corresponding author
| |
Collapse
|
37
|
Katayama Y, Yokota R, Akiyama T, Kobayashi TJ. Machine Learning Approaches to TCR Repertoire Analysis. Front Immunol 2022; 13:858057. [PMID: 35911778 PMCID: PMC9334875 DOI: 10.3389/fimmu.2022.858057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sparked by the development of genome sequencing technology, the quantity and quality of data handled in immunological research have been changing dramatically. Various data and database platforms are now driving the rapid progress of machine learning for immunological data analysis. Of various topics in immunology, T cell receptor repertoire analysis is one of the most important targets of machine learning for assessing the state and abnormalities of immune systems. In this paper, we review recent repertoire analysis methods based on machine learning and deep learning and discuss their prospects.
Collapse
Affiliation(s)
- Yotaro Katayama
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Yokota
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tetsuya J. Kobayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Gupta N, Lindeman I, Reinhardt S, Mariotti-Ferrandiz E, Mujangi-Ebeka K, Martins-Taylor K, Eugster A. Single-Cell Analysis and Tracking of Antigen-Specific T Cells: Integrating Paired Chain AIRR-Seq and Transcriptome Sequencing: A Method by the AIRR Community. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:379-421. [PMID: 35622336 DOI: 10.1007/978-1-0716-2115-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Single-cell adaptive immune receptor repertoire sequencing (scAIRR-seq) offers the possibility to access the nucleotide sequences of paired receptor chains from T-cell receptors (TCR) or B-cell receptors (BCR ). Here we describe two protocols and the downstream bioinformatic approaches that facilitate the integrated analysis of paired T-cell receptor (TR ) alpha/beta (TRA /TRB ) AIRR-seq, RNA sequencing (RNAseq), immunophenotyping, and antigen-binding information. To illustrate the methodologies with a use case, we describe how to identify, characterize, and track SARS-CoV-2-specific T cells over multiple time points following infection with the virus. The first method allows the analysis of pools of memory CD8+ cells, identifying expansions and contractions of clones of interest. The second method allows the study of rare or antigen-specific cells and allows studying their changes over time.
Collapse
Affiliation(s)
| | - Ida Lindeman
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | | | - Kevin Mujangi-Ebeka
- INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | | | - Anne Eugster
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.
| |
Collapse
|
39
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
40
|
Boggy GJ, McElfresh GW, Mahyari E, Ventura AB, Hansen SG, Picker LJ, Bimber BN. BFF and cellhashR: analysis tools for accurate demultiplexing of cell hashing data. Bioinformatics 2022; 38:2791-2801. [PMID: 35561167 PMCID: PMC9113275 DOI: 10.1093/bioinformatics/btac213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Single-cell sequencing methods provide previously impossible resolution into the transcriptome of individual cells. Cell hashing reduces single-cell sequencing costs by increasing capacity on droplet-based platforms. Cell hashing methods rely on demultiplexing algorithms to accurately classify droplets; however, assumptions underlying these algorithms limit accuracy of demultiplexing, ultimately impacting the quality of single-cell sequencing analyses. RESULTS We present Bimodal Flexible Fitting (BFF) demultiplexing algorithms BFFcluster and BFFraw, a novel class of algorithms that rely on the single inviolable assumption that barcode count distributions are bimodal. We integrated these and other algorithms into cellhashR, a new R package that provides integrated QC and a single command to execute and compare multiple demultiplexing algorithms. We demonstrate that BFFcluster demultiplexing is both tunable and insensitive to issues with poorly behaved data that can confound other algorithms. Using two well-characterized reference datasets, we demonstrate that demultiplexing with BFF algorithms is accurate and consistent for both well-behaved and poorly behaved input data. AVAILABILITY AND IMPLEMENTATION cellhashR is available as an R package at https://github.com/BimberLab/cellhashR. cellhashR version 1.0.3 was used for the analyses in this manuscript and is archived on Zenodo at https://www.doi.org/10.5281/zenodo.6402477. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gregory J Boggy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - G W McElfresh
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Eisa Mahyari
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
41
|
Abondio P, De Intinis C, da Silva Gonçalves Vianez Júnior JL, Pace L. SINGLE CELL MULTIOMIC APPROACHES TO DISENTANGLE T CELL HETEROGENEITY. Immunol Lett 2022; 246:37-51. [DOI: 10.1016/j.imlet.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
|
42
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Liu M, Goo J, Liu Y, Sun W, Wu MC, Hsu L, He Q. TCR-L: an analysis tool for evaluating the association between the T-cell receptor repertoire and clinical phenotypes. BMC Bioinformatics 2022; 23:152. [PMID: 35484495 PMCID: PMC9052542 DOI: 10.1186/s12859-022-04690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background T cell receptors (TCRs) play critical roles in adaptive immune responses, and recent advances in genome technology have made it possible to examine the T cell receptor (TCR) repertoire at the individual sequence level. The analysis of the TCR repertoire with respect to clinical phenotypes can yield novel insights into the etiology and progression of immune-mediated diseases. However, methods for association analysis of the TCR repertoire have not been well developed. Methods We introduce an analysis tool, TCR-L, for evaluating the association between the TCR repertoire and disease outcomes. Our approach is developed under a mixed effect modeling, where the fixed effect represents features that can be explicitly extracted from TCR sequences while the random effect represents features that are hidden in TCR sequences and are difficult to be extracted. Statistical tests are developed to examine the two types of effects independently, and then the p values are combined. Results Simulation studies demonstrate that (1) the proposed approach can control the type I error well; and (2) the power of the proposed approach is greater than approaches that consider fixed effect only or random effect only. The analysis of real data from a skin cutaneous melanoma study identifies an association between the TCR repertoire and the short/long-term survival of patients. Conclusion The TCR-L can accommodate features that can be extracted as well as features that are hidden in TCR sequences. TCR-L provides a powerful approach for identifying association between TCR repertoire and disease outcomes.
Collapse
Affiliation(s)
- Meiling Liu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Juna Goo
- Department of Mathematics, Boise State University, Boise, USA
| | - Yang Liu
- Department of Mathematics and Statistics, Wright State University, Dayton, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Michael C Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA.
| |
Collapse
|
44
|
Rapid identification of tumor-reactive T-cell receptors by RNA preamplification-based single-cell sequencing. J Immunol Methods 2022; 504:113260. [PMID: 35331733 DOI: 10.1016/j.jim.2022.113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
T-cell receptor (TCR)-transduced T (TCR-T) cell therapy has shown promising efficacy in the clinical treatment of malignant cancers. However, the populations covered by reported TCRs are still limited. Tumor infiltrating lymphocytes (TILs) are natural reservoirs of tumor-reactive T cells and TCRs. Approaches are required for the fast and cost-effective identification of tumor-reactive TCRs from TILs. The widely employed TCR identification approaches by the clonal expansion of TILs involve a TCR singularization process for the direct pairing of TCR Vα and the Vβ chain. However, the clonal expansion of T cells is well known to require extensive time and effort due to the involvement of T cell cultures. Several single-cell multiplexing PCR methods followed by Sanger sequencing have been developed, representing a cost-effective and fast approach for single-cell TCR identification. In this study, an RNA-based preamplification step was included in the single-cell TCR sequencing, which can reduce the multiplexing PCR amplification to one round. Moreover, the cDNA product of RNA preamplification is derived from the whole genome mRNA, instead of TCR mRNA only by multiplexing primers-based DNA preamplification, which is valuable for many other analyses (e.g., phenotypic analysis) of the tumor-reactive T cells that can be correlated with the identified TCRs. The feasibility for both single α chain and dual α chain TILs of this approach highlights its potential value as a rapid and cost-effective sequencing strategy for the development of TCR-T therapies for solid cancers.
Collapse
|
45
|
Aoki H, Shichino S, Matsushima K, Ueha S. Revealing Clonal Responses of Tumor-Reactive T-Cells Through T Cell Receptor Repertoire Analysis. Front Immunol 2022; 13:807696. [PMID: 35154125 PMCID: PMC8829044 DOI: 10.3389/fimmu.2022.807696] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
CD8+ T cells are the key effector cells that contribute to the antitumor immune response. They comprise various T-cell clones with diverse antigen-specific T-cell receptors (TCRs). Thus, elucidating the overall antitumor responses of diverse T-cell clones is an emerging challenge in tumor immunology. With the recent advancement in next-generation DNA sequencers, comprehensive analysis of the collection of TCR genes (TCR repertoire analysis) is feasible and has been used to investigate the clonal responses of antitumor T cells. However, the immunopathological significance of TCR repertoire indices is still undefined. In this review, we introduce two approaches that facilitate an immunological interpretation of the TCR repertoire data: inter-organ clone tracking analysis and single-cell TCR sequencing. These approaches for TCR repertoire analysis will provide a more accurate understanding of the response of tumor-specific T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Hygiene, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
46
|
Goral A, Firczuk M, Fidyt K, Sledz M, Simoncello F, Siudakowska K, Pagano G, Moussay E, Paggetti J, Nowakowska P, Gobessi S, Barankiewicz J, Salomon-Perzynski A, Benvenuti F, Efremov DG, Juszczynski P, Lech-Maranda E, Muchowicz A. A Specific CD44lo CD25lo Subpopulation of Regulatory T Cells Inhibits Anti-Leukemic Immune Response and Promotes the Progression in a Mouse Model of Chronic Lymphocytic Leukemia. Front Immunol 2022; 13:781364. [PMID: 35296093 PMCID: PMC8918500 DOI: 10.3389/fimmu.2022.781364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) are capable of inhibiting the proliferation, activation and function of T cells and play an important role in impeding the immune response to cancer. In chronic lymphocytic leukemia (CLL) a dysfunctional immune response and elevated percentage of effector-like phenotype Tregs have been described. In this study, using the Eµ-TCL1 mouse model of CLL, we evaluated the changes in the Tregs phenotype and their expansion at different stages of leukemia progression. Importantly, we show that Tregs depletion in DEREG mice triggered the expansion of new anti-leukemic cytotoxic T cell clones leading to leukemia eradication. In TCL1 leukemia-bearing mice we identified and characterized a specific Tregs subpopulation, the phenotype of which suggests its role in the formation of an immunosuppressive microenvironment, supportive for leukemia survival and proliferation. This observation was also confirmed by the gene expression profile analysis of these TCL1-specific Tregs. The obtained data on Tregs are consistent with those described so far, however, above all show that the changes in the Tregs phenotype described in CLL result from the formation of a specific, described in this study Tregs subpopulation. In addition, functional tests revealed the ability of Tregs to inhibit T cells that recognize model antigens expressed by leukemic cells. Moreover, inhibition of Tregs with a MALT1 inhibitor provided a therapeutic benefit, both as monotherapy and also when combined with an immune checkpoint inhibitor. Altogether, activation of Tregs appears to be crucial for CLL progression.
Collapse
Affiliation(s)
- Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Sledz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Francesca Simoncello
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Giulia Pagano
- Tumor-Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Stefania Gobessi
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Joanna Barankiewicz
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Lech-Maranda
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Angelika Muchowicz,
| |
Collapse
|
47
|
Gerdemann U, Fleming RA, Kaminski J, McGuckin C, Rui X, Lane JF, Keskula P, Cagnin L, Shalek AK, Tkachev V, Kean LS. Identification and Tracking of Alloreactive T Cell Clones in Rhesus Macaques Through the RM-scTCR-Seq Platform. Front Immunol 2022; 12:804932. [PMID: 35154078 PMCID: PMC8825351 DOI: 10.3389/fimmu.2021.804932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
T cell receptor (TCR) clonotype tracking is a powerful tool for interrogating T cell mediated immune processes. New methods to pair a single cell's transcriptional program with its TCR identity allow monitoring of T cell clonotype-specific transcriptional dynamics. While these technologies have been available for human and mouse T cells studies, they have not been developed for Rhesus Macaques (RM), a critical translational organism for autoimmune diseases, vaccine development and transplantation. We describe a new pipeline, 'RM-scTCR-Seq', which, for the first time, enables RM specific single cell TCR amplification, reconstruction and pairing of RM TCR's with their transcriptional profiles. We apply this method to a RM model of GVHD, and identify and track in vitro detected alloreactive clonotypes in GVHD target organs and explore their GVHD driven cytotoxic T cell signature. This novel, state-of-the-art platform fundamentally advances the utility of RM to study protective and pathogenic T cell responses.
Collapse
Affiliation(s)
- Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ryan A Fleming
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Connor McGuckin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Xianliang Rui
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Jennifer F Lane
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Paula Keskula
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Lorenzo Cagnin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Theocharidis G, Tekkela S, Veves A, McGrath JA, Onoufriadis A. Single-cell transcriptomics in human skin research: available technologies, technical considerations, and disease applications. Exp Dermatol 2022; 31:655-673. [PMID: 35196402 PMCID: PMC9311140 DOI: 10.1111/exd.14547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
Single‐cell technologies have revolutionized research in the last decade, including for skin biology. Single‐cell RNA sequencing has emerged as a powerful tool allowing the dissection of human disease pathophysiology at unprecedented resolution by assessing cell‐to‐cell variation, facilitating identification of rare cell populations and elucidating cellular heterogeneity. In dermatology, this technology has been widely applied to inflammatory skin disorders, fibrotic skin diseases, wound healing complications and cutaneous neoplasms. Here, we discuss the available technologies and technical considerations of single‐cell RNA sequencing and describe its applications to a broad spectrum of dermatological diseases.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stavroula Tekkela
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
49
|
Walsh ES, Tollison TS, Brochu HN, Shaw BI, Diveley KR, Chou H, Law L, Kirk AD, Gale M, Peng X. Single-Cell-Based High-Throughput Ig and TCR Repertoire Sequencing Analysis in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:762-771. [PMID: 34987112 PMCID: PMC8820446 DOI: 10.4049/jimmunol.2100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 02/03/2023]
Abstract
Recent advancements in microfluidics and high-throughput sequencing technologies have enabled recovery of paired H and L chains of Igs and VDJ and VJ chains of TCRs from thousands of single cells simultaneously in humans and mice. Despite rhesus macaques being one of the most well-studied model organisms for the human adaptive immune response, high-throughput single-cell immune repertoire sequencing assays are not yet available due to the complexity of these polyclonal receptors. We used custom primers that capture all known rhesus macaque Ig and TCR isotypes and chains that are fully compatible with a commercial solution for single-cell immune repertoire profiling. Using these rhesus-specific assays, we sequenced Ig and TCR repertoires in >60,000 cells from cryopreserved rhesus PBMCs, splenocytes, and FACS-sorted B and T cells. We were able to recover every Ig isotype and TCR chain, measure clonal expansion in proliferating T cells, and pair Ig and TCR repertoires with gene expression profiles of the same single cells. Our results establish the ability to perform high-throughput immune repertoire analysis in rhesus macaques at the single-cell level.
Collapse
Affiliation(s)
- Evan S. Walsh
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Tammy S. Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
| | - Hayden N. Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Brian I. Shaw
- Department of Surgery, Duke University, Durham, NC 27710
| | - Kayleigh R. Diveley
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Genetics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Hsuan Chou
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Allan D. Kirk
- Department of Surgery, Duke University, Durham, NC 27710
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109,Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109,Washington National Primate Research Center, University of Washington, Seattle, WA 98121
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695,Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
50
|
Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. Front Immunol 2022; 12:778559. [PMID: 35095851 PMCID: PMC8790170 DOI: 10.3389/fimmu.2021.778559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.
Collapse
Affiliation(s)
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|