1
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
2
|
Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024; 21:184-197. [PMID: 38110547 DOI: 10.1038/s41575-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that results from dysfunction in innate and/or adaptive immune responses. Impaired innate immunity, which leads to lack of control of an altered intestinal microbiota and to activation of the adaptive immune system, promotes a secondary inflammatory response that is responsible for tissue damage. Neutrophils are key players in innate immunity in IBD, but their roles have been neglected compared with those of other immune cells. The latest studies on neutrophils in IBD have revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host. In parallel, interconnections between disease development, intestinal microbiota and neutrophils have been highlighted. Numerous IBD susceptibility genes (such as NOD2, NCF4, LRRK2, CARD9) are involved in neutrophil functions related to defence against microorganisms. Moreover, severe monogenic diseases involving dysfunctional neutrophils, including chronic granulomatous disease, are characterized by intestinal inflammation that mimics IBD and by alterations in the intestinal microbiota. This observation demonstrates the dialogue between neutrophils, gut inflammation and the microbiota. Neutrophils affect microbiota composition and function in several ways. In return, microbial factors, including metabolites, regulate neutrophil production and function directly and indirectly. It is crucial to further investigate the diverse roles played by neutrophils in host-microbiota interactions, both at steady state and in inflammatory conditions, to develop new IBD therapies. In this Review, we discuss the roles of neutrophils in IBD, in light of emerging evidence proving strong interconnections between neutrophils and the gut microbiota, especially in an inflammatory context.
Collapse
Affiliation(s)
- Camille Danne
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France.
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
3
|
Dong S, Chen C, Di C, Wang S, Dong Q, Lin W, Liu D. The Association between NADPH Oxidase 2 (NOX2) and Drug Resistance in Cancer. Curr Cancer Drug Targets 2024; 24:1195-1212. [PMID: 38362697 DOI: 10.2174/0115680096277328240110062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
NADPH oxidase, as a major source of intracellular reactive oxygen species (ROS), assumes an important role in the immune response and oxidative stress response of the body. NADPH oxidase 2 (NOX2) is the first and most representative member of the NADPH oxidase family, and its effects on the development of tumor cells are gaining more and more attention. Our previous study suggested that NCF4 polymorphism in p40phox, a key subunit of NOX2, affected the outcome of diffuse large B-cell lymphoma patients treated with rituximab. It hypothesized that NOX2-mediated ROS could enhance the cytotoxic effects of some anti-tumor drugs in favor of patients with tumors. Several reviews have summarized the role of NOX2 and its congeners-mediated ROS in anti-tumor therapy, but few studies focused on the relationship between the expression of NOX2 and anti-tumor drug resistance. In this article, we systematically introduced the NOX family, represented by NOX2, and a classification of the latest inhibitors and agonists of NOX2. It will help researchers to have a more rational and objective understanding of the dual role of NOX2 in tumor drug resistance and is expected to provide new ideas for oncology treatment and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Shiqi Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chao Chen
- Department of laboratory, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chang Di
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shufan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Quan Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Wenxin Lin
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| |
Collapse
|
4
|
Gal Y, Marcus H, Mamroud E, Aloni-Grinstein R. Mind the Gap-A Perspective on Strategies for Protecting against Bacterial Infections during the Period from Infection to Eradication. Microorganisms 2023; 11:1701. [PMID: 37512874 PMCID: PMC10386665 DOI: 10.3390/microorganisms11071701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria is a pressing public health concern, highlighting the need for alternative approaches to control bacterial infections. Promising approaches include the development of therapeutic vaccines and the utilization of innate immune activation techniques, which may prove useful in conjunction with antibiotics, as well as other antibacterial modalities. However, innate activation should be fast and self- or actively- contained to prevent detrimental consequences. TLR ligand adjuvants are effective at rapidly activating, within minutes to hours, the innate immune system by inducing cytokine production and other signaling molecules that bolster the host's immune response. Neutrophils serve as the first line of defense against invading pathogens by capturing and destroying them through various mechanisms, such as phagocytosis, intracellular degradation, and the formation of NETs. Nutritional immunity is another host defense mechanism that limits the availability of essential metals, such as iron, from invading bacterial pathogens. Thus, iron starvation has been proposed as a potential antibacterial strategy. In this review, we focus on approaches that have the potential to enhance rapid and precise antibacterial responses, bridging the gap between the onset of infection and the elimination of bacteria, hence limiting the infection by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadar Marcus
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
5
|
Effects of Magnetic Nanoparticles on the Functional Activity of Human Monocytes and Dendritic Cells. Int J Mol Sci 2023; 24:ijms24021358. [PMID: 36674876 PMCID: PMC9864373 DOI: 10.3390/ijms24021358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
The use of nanoparticles in medicine is sometimes hampered by their potential to activate immune cells, eliciting inflammation or allergy. We investigated whether magnetic nanoparticles (MNPs) or biomimetic magnetic nanoparticles (BMNPs) affect relevant activities of human monocytes. We found that the nanoparticles neither elicited the production of pro-inflammatory mediators IL-6 and TNFα by resting monocytes (when BMNP dose < 300 μg/mL) nor enhanced their secretion induced by R848, a molecule engaging virus-recognizing receptors, or bacterial lipopolysaccharide (LPS). MNPs and BMNPs neither induced the generation of reactive oxygen species (ROS), nor affected the ROS production elicited by the NADPH oxidase activator phorbol myristate acetate (PMA) or the fungal derivative β-glucan. BMNPs, but not MNPs, caused an up-regulation of the maturation markers CD80, CD83, and CD86 in immature monocyte-derived dendritic cells (DCs), whereas both nanoparticles did not affect the LPS-induced expression of these markers. Moreover, the nanoparticles were greedily ingested by monocytes and DCs without altering their viability. Therefore, these nanoparticles are candidates for medical applications because they do not activate pro-inflammatory activities of monocytes. Furthermore, their ability to stimulate DC maturation could be used for the design of vaccines. Moreover, harmlessly engulfed nanoparticles could be vehicles to carry molecules inside the immune cells to regulate the immune response.
Collapse
|
6
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Intratumoral pro-oxidants promote cancer immunotherapy by recruiting and reprogramming neutrophils to eliminate tumors. Cancer Immunol Immunother 2023; 72:527-542. [PMID: 36066649 PMCID: PMC9446783 DOI: 10.1007/s00262-022-03248-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Abstract
Neutrophils have recently gained recognition for their potential in the fight against cancer. Neutrophil plasticity between the N1 anti-tumor and N2 pro-tumor subtypes is now apparent, as is the ability to polarize these individual subtypes by interventions such as intratumoral injection of various agents including bacterial products or pro-oxidants. Metabolic responses and the production of reactive oxygen species (ROS) such as hydrogen peroxide act as potent chemoattractants and activators of N1 neutrophils that facilitates their recruitment and ensuing activation of a toxic respiratory burst in tumors. Greater understanding of the precise mechanism of N1 neutrophil activation, recruitment and regulation is now needed to fully exploit their anti-tumor potential against cancers both locally and at distant sites. This systematic review critically analyzes these new developments in cancer immunotherapy.
Collapse
|
8
|
Cardoso RDR, Chambo SD, Zaninelli TH, Bianchini BHS, da Silva MDV, Bertozzi MM, Saraiva-Santos T, Franciosi A, Martelossi-Cebinelli G, Garcia-Miguel PE, Borghi SM, Casagrande R, Verri WA. Resolvin D5 (RvD5) Reduces Renal Damage Caused by LPS Endotoxemia in Female Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010121. [PMID: 36615318 PMCID: PMC9821966 DOI: 10.3390/molecules28010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1β, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.
Collapse
Affiliation(s)
- Renato D. R. Cardoso
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sandmary D. Chambo
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Beatriz H. S. Bianchini
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Pamela E. Garcia-Miguel
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
9
|
Xiao S, Kuang C. Identification of crucial genes that induce coronary atherosclerosis through endothelial cell dysfunction in AMI-identifying hub genes by WGCNA. Am J Transl Res 2022; 14:8166-8174. [PMID: 36505315 PMCID: PMC9730117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To identify the most relevant genes of cardiovascular disease in acute myocardial infarction patients using weighted gene co-expression network analysis (WGCNA). METHODS The microarray dataset of GSE66360 was downloaded from the Gene Expression Omnibus (GEO) website. The differential genes with adjusted P < 0.05 and |log2 fold change (FC)| > 0.5 were included in the analysis. The weighed gene co-expression network analysis (WGCNA) was used to build a gene co-expression network and identify the most significant module. Cytoscape was used to filter the hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the hub genes. The key genes were defined as having high statistical and biological significance. RESULTS A total of 4751 differentially expressed genes (DEGs) were screened from the dataset. The purple module had the highest significance in AMI. There were 47 hub genes identified from the module. The GO terms "amyloid beta protein metabolism" and "carbohydrate metabolism" and the KEGG terms "phagosome-related pathways" and "Staphylococcus aureus-associated pathways" were the pathways strongly enriched in AMI. Fatty acid translocase cluster of differentiation (CD36), formyl peptide receptor type 2 (FPR2), integrin subunit alpha M (ITGAM), and oxidized low density lipoprotein receptor 1 (OLR1) were considered key genes in AMI. CONCLUSION Our research suggested that the underlying mechanism was related to inflammation and lipid formation. The hub genes identified were CD36, FPR2, ITGAM, and OLR1.
Collapse
|
10
|
Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022; 51:7944-7970. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunotherapy is recognised as an attractive method for the treatment of cancer, and numerous treatment strategies have emerged over recent years. Investigations of the tumour microenvironment (TME) have led to the identification of many potential therapeutic targets and methods. However, many recently applied immunotherapies are based on previously identified strategies, such as boosting the immune response by combining commonly used stimulators, and the release of drugs through changes in pH. Although methodological improvements such as structural optimisation and combining strategies can be undertaken, applying those novel targets and methods in immunotherapy remains an important goal. In this review, we summarise the latest research on the TME, and discuss how small molecules, immune cells, and their interactions with tumour cells can be regulated in the TME. Additionally, the techniques currently employed for delivery of these agents to the TME are also mentioned. Strategies to modulate cell phenotypes and interactions between immune cells and tumours are mainly discussed. We consider both modulatory and targeting methods aiming to bridge the gap between the TME and chemical modulation thereof.
Collapse
Affiliation(s)
- Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
11
|
Saadat S, Beigoli S, Khazdair MR, Amin F, Boskabady MH. Experimental and Clinical Studies on the Effects of Natural Products on Noxious Agents-Induced Lung Disorders, a Review. Front Nutr 2022; 9:867914. [PMID: 35662950 PMCID: PMC9158561 DOI: 10.3389/fnut.2022.867914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
The harmful effects of various noxious agents (NA) are well-known and there are reports regarding the induction of various lung disorders due to exposure to these agents both in animal and human studies. In addition, various studies have shown the effects of natural products (NP) on NA-induced lung disorders. The effects of various NP, including medicinal plants and their derivatives, on lung injury induced by NA, were reviewed in this study. The improving effects of various NP including medicinal plants, such as Aloe vera, Anemarrhena asphodeloides, Avena sativa, Crocus sativus, Curcuma longa, Dioscorea batatas, Glycyrrhiza glabra, Gentiana veitchiorum, Gentiopicroside, Houttuynia cordata, Hibiscus sabdariffa, Hochu-ekki-to, Hippophae rhamnoides, Juglans regia, Melanocarpa fruit juice, Mikania glomerata, Mikania laevigata, Moringa oleifera, Myrtus communis L., Lamiaceae, Myrtle, Mosla scabra leaves, Nectandra leucantha, Nigella sativa, Origanum vulgare L, Pulicaria petiolaris, Paulownia tomentosa, Pomegranate seed oil, Raphanus sativus L. var niger, Rosa canina, Schizonepeta tenuifolia, Thymus vulgaris, Taraxacum mongolicum, Tribulus Terrestris, Telfairia occidentalis, Taraxacum officinale, TADIOS, Xuebijing, Viola yedoensis, Zataria multiflora, Zingiber officinale, Yin-Chiao-San, and their derivatives, on lung injury induced by NA were shown by their effects on lung inflammatory cells and mediators, oxidative stress markers, immune responses, and pathological changes in the experimental studies. Some clinical studies also showed the therapeutic effects of NP on respiratory symptoms, pulmonary function tests (PFT), and inflammatory markers. Therefore, the results of this study showed the possible therapeutic effects of various NP on NA-induced lung disorders by the amelioration of various features of lung injury. However, further clinical studies are needed to support the therapeutic effects of NP on NA-induced lung disorders for clinical practice purposes.
Collapse
Affiliation(s)
- Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Mohammad Hossein Boskabady ;
| |
Collapse
|
12
|
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50:6013-6041. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH), the main redox buffer, has long been recognized as a pivotal modulator of tumor initiation, progression and metastasis. It is also implicated in the resistance of platinum-based chemotherapy and radiation therapy. Therefore, depleting intracellular GSH was considered a potent solution to combating cancer. However, reducing GSH within cancer cells alone always failed to yield desirable therapeutic effects. In this regard, the convergence of GSH-scavenging agents with therapeutic drugs has thus been pursued in clinical practice. Unfortunately, the therapeutic outcomes are still unsatisfactory due to untargeted drug delivery. Advanced nanomedicine of synergistic GSH depletion and cancer treatment has attracted tremendous interest because they promise to deliver superior therapeutic benefits while alleviating life-threatening side effects. In the past five years, the authors and others have demonstrated that numerous nanomedicines, by simultaneously delivering GSH-depleting agents and therapeutic components, boost not only traditional chemotherapy and radiotherapy but also multifarious emerging treatment modalities, including photodynamic therapy, sonodynamic therapy, chemodynamic therapy, ferroptosis, and immunotherapy, to name a few, and achieved decent treatment outcomes in a large number of rodent tumor models. In this review, we summarize the most recent progress in engineering nanomedicine for GSH depletion-enhanced cancer therapies. Biosynthesis of GSH and various types of GSH-consuming strategies will be briefly introduced. The challenges and perspectives of leveraging nanomedicine for GSH consumption-augmented cancer therapies will be discussed at the end.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
13
|
Chemical Composition and Immunomodulatory Activity of Essential Oils from Rhododendron albiflorum. Molecules 2021; 26:molecules26123652. [PMID: 34203809 PMCID: PMC8232766 DOI: 10.3390/molecules26123652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 01/20/2023] Open
Abstract
Rhododendron (Ericaceae) extracts contain flavonoids, chromones, terpenoids, steroids, and essential oils and are used in traditional ethnobotanical medicine. However, little is known about the immunomodulatory activity of essential oils isolated from these plants. Thus, we isolated essential oils from the flowers and leaves of R. albiflorum (cascade azalea) and analyzed their chemical composition and innate immunomodulatory activity. Compositional analysis of flower (REOFl) versus leaf (REOLv) essential oils revealed significant differences. REOFl was comprised mainly of monoterpenes (92%), whereas sesquiterpenes were found in relatively low amounts. In contrast, REOLv was primarily composed of sesquiterpenes (90.9%), with a small number of monoterpenes. REOLv and its primary sesquiterpenes (viridiflorol, spathulenol, curzerene, and germacrone) induced intracellular Ca2+ mobilization in human neutrophils, C20 microglial cells, and HL60 cells transfected with N-formyl peptide receptor 1 (FPR1) or FPR2. On the other hand, pretreatment with these essential oils or component compounds inhibited agonist-induced Ca2+ mobilization and chemotaxis in human neutrophils and agonist-induced Ca2+ mobilization in microglial cells and FPR-transfected HL60 cells, indicating that the direct effect of these compounds on [Ca2+]i desensitized the cells to subsequent agonist activation. Reverse pharmacophore mapping suggested several potential kinase targets for these compounds; however, these targets were not supported by kinase binding assays. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the R. albiflorum essential oils and suggest that essential oils from leaves of this plant may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration.
Collapse
|
14
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Żyła E, Dziendzikowska K, Kamola D, Wilczak J, Sapierzyński R, Harasym J, Gromadzka-Ostrowska J. Anti-Inflammatory Activity of Oat Beta-Glucans in a Crohn's Disease Model: Time- and Molar Mass-Dependent Effects. Int J Mol Sci 2021; 22:4485. [PMID: 33923129 PMCID: PMC8123447 DOI: 10.3390/ijms22094485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The incidence of Crohn's disease (CD) is increasing worldwide, and it has currently become a serious public health issue in society. The treatment of CD continues throughout a patient's lifetime, and therefore, it is necessary to develop new, effective treatment methods, including dietotherapy. The present study aimed to determine the effects of consumption of oat beta-glucans with different molar mass on colon inflammation (colitis) in the early stages of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD in an animal model. METHODS Sprague-Dawley rats (control and TNBS-induced CD) were divided into three dietary groups and fed for 3 days (reflecting acute inflammation) or 7 days (reflecting remission) with a feed containing 1% low (βGl) or high (βGh) molar mass oat beta-glucan or a feed without this polysaccharide. The level of colon inflammatory markers and the expression of cytokines and their receptor genes were measured by ELISA and RT-PCR methods, respectively. RESULTS Acute inflammation or remission (3 or 7 days after TNBS administration, respectively) stages of experimentally induced CD were characterized by an increase in the level of inflammatory markers (IL-1, IL-6, IL-10, IL-12, TNF-α, CRP, MPO, COX, and PGE2) and the disruption of some cytokine signaling pathways as well as macro- and microscopic changes of colon tissue. The consumption of oat beta-glucans reduced the level of inflammatory markers and recovered the signaling pathways and histological changes, with stronger effects of βGl after 7 days of colitis. CONCLUSIONS Dietary oat beta-glucans can reduce colitis at the molecular and organ level and accelerate CD remission.
Collapse
Affiliation(s)
- Ewa Żyła
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (E.Ż.); (J.G.-O.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (E.Ż.); (J.G.-O.)
| | - Dariusz Kamola
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (D.K.); (J.W.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (D.K.); (J.W.)
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Joanna Harasym
- Adaptive Food Systems Accelerator—Research Centre, Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland;
- Department of Biotechnology and Food Analysis, Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (E.Ż.); (J.G.-O.)
| |
Collapse
|
16
|
Cai J, Zang X, Wu Z, Liu J, Wang D. Altered protein S-glutathionylation depicts redox imbalance triggered by transition metal oxide nanoparticles in a breastfeeding system. NANOIMPACT 2021; 22:100305. [PMID: 35559962 DOI: 10.1016/j.impact.2021.100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 06/15/2023]
Abstract
Nanosafety has become a public concern following nanotechnology development. By now, attention has seldom been paid to breastfeeding system, which is constructed by mammary physiological structure and derived substances (endogenous or exogenous), cells, tissues, organs, and individuals (mother and child), connecting environment and organism, and spans across mother-child dyad. Thus, breastfeeding system is a center of nutrients transport and a unique window of toxic susceptibility in the mother-child dyad. We applied metabolomics combined with redox proteomics to depict how nanoparticles cause metabolic burden via their spontaneous redox cycling in lactating mammary glands. Two widely used nanoparticles [titanium dioxide (nTiO2) and zinc oxide (nZnO)] were exposed to lactating mice via intranasal administration. Biodistribution and biopersistence of nTiO2 and nZnO in mammary glands destroyed its structure, reflective of significantly reduced claudin-3 protein level by 32.1% (P < 0.01) and 47.8% (P < 0.01), and significantly increased apoptosis index by 85.7 (P < 0.01) and 100.3 (P < 0.01) fold change, respectively. Airway exposure of nTiO2 trended to reduced milk production by 22.7% (P = 0.06), while nZnO significantly reduced milk production by 33.0% (P < 0.01). Metabolomics analysis revealed a metabolic shift by nTiO2 or nZnO, such as increased glycolysis (nTiO2: fold enrichment = 3.31, P < 0.05; nZnO: fold enrichment = 3.68, P < 0.05), glutathione metabolism (nTiO2: fold enrichment = 5.57, P < 0.01; nZnO: fold enrichment = 4.43, P < 0.05), and fatty acid biosynthesis (nTiO2: fold enrichment = 3.52, P < 0.05; nZnO: fold enrichment = 3.51, P < 0.05) for tissue repair at expense of lower milk fat synthesis (35.7% reduction by nTiO2; 51.8% reduction by nZnO), and finally led to oxidative stress of mammary glands. The increased GSSG/GSH ratio (57.5% increase by nTiO2; 105% increase by nZnO) with nanoparticle exposure confirmed an alteration in the redox state and a metabolic shift in mammary glands. Redox proteomics showed that nanoparticles induced S-glutathionylation (SSG) modification at Cys sites of proteins in a nanoparticle type-dependent manner. The nTiO2 induced more protein SSG modification sites (nTiO2: 21; nZnO:16), whereas nZnO induced fewer protein SSG modification sites but at deeper SSG levels (26.6% higher in average of nZnO than that of nTiO2). In detail, SSG modification by nTiO2 was characterized by Ltf at Cys423 (25.3% increase), and Trf at Cys386;395;583 (42.3%, 42.3%, 22.8% increase) compared with control group. While, SSG modification by nZnO was characterized by Trfc at Cys365 (71.3% increase) and Fasn at Cys1010 (41.0% increase). The discovery of SSG-modified proteins under airway nanoparticle exposure further supplemented the oxidative stress index and mammary injury index, and deciphered precise mechanisms of nanotoxicity into a molecular level. The unique quantitative site-specific redox proteomics and metabolomics can serve as a new technique to identify nanotoxicity and provide deep insights into nanoparticle-triggered oxidative stress, contributing to a healthy breastfeeding environment.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Zezhong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
17
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Taguchi K. Pharmaceutical Technology Innovation Strategy Based on the Function of Blood Transport Proteins as DDS Carriers for the Treatment of Intractable Disorders and Cancer. Biol Pharm Bull 2020; 43:1815-1822. [PMID: 33268699 DOI: 10.1248/bpb.b20-00668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blood transport proteins are biogenic molecules with unique and interesting inherent characteristics that make up living organisms. As the utilization of their inherent characteristics can be a groundbreaking strategy to resolve and improve several clinical problems, attempts have been made to develop pharmaceutical and biomedical preparations based on blood transport proteins for the treatment and diagnosis of disorders. Among various blood transport proteins, we focus on the immense potential of hemoglobin and albumin to serve as carriers of biomedical gases (oxygen and carbon monoxide) and anticancer agents (low-molecular compounds and antisense oligodeoxynucleotides), respectively, for the development of innovative drug delivery systems (DDS) to treat intractable disorders and solid cancers. In this review, I introduce the pharmaceutical technology, strategies, and application of DDS carriers that have been designed on the basis of the structure and function of hemoglobin and albumin. In addition, the prospect of using hemoglobin and albumin as materials for DDS carriers is discussed.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| |
Collapse
|
19
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
20
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Quinn MT. Chemical Composition and Immunomodulatory Activity of Hypericum perforatum Essential Oils. Biomolecules 2020; 10:biom10060916. [PMID: 32560389 PMCID: PMC7357012 DOI: 10.3390/biom10060916] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Hypericum L. (Hypericaceae) extracts have been used for their therapeutic effects; however, not much is known about the immunomodulatory activity of essential oils extracted from this plant. We isolated essential oils from the flowers and leaves of H. perforatum and analyzed their chemical composition and innate immunomodulatory activity. Analysis of flower (HEOFl) versus leaf (HEOLv) essential oils using gas chromatography–mass spectrometry revealed that HEOFl was comprised mainly of monoterpenes (52.8%), with an abundance of oxygenated monoterpenes, including cis-p-menth-3-en-1,2-diol (9.1%), α-terpineol (6.1%), terpinen-4-ol (7.4%), and limonen-4-ol (3.2%), whereas the sesquiterpenes were found in trace amounts. In contrast, HEOLv was primarily composed of sesquiterpenes (63.2%), including germacrene D (25.7%) and β-caryophyllene (9.5%). HEOLv also contained oxygenated monoterpenes, including terpinen-4-ol (2.6%), while monoterpene hydrocarbons were found in trace amounts. Both HEOFl and HEOLv inhibited neutrophil Ca2+ mobilization, chemotaxis, and reactive oxygen species (ROS) production, with HEOLv being much more active than HEOFl. Furthermore, the pure sesquiterpenes germacrene D, β-caryophyllene, and α-humulene also inhibited these neutrophil responses, suggesting that these compounds represented the active components of HEOLv. Although reverse pharmacophore mapping suggested that potential protein targets of germacrene D, β-caryophyllene, bicyclogermacrene, and α-humulene could be PIM1 and mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAK2), a kinase binding affinity assay did not support this finding, implying that other biological targets are involved. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the H. perforatum essential oils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; (G.Ö.); (T.Ö.)
- Medicinal Plant, Drug and Scientific Research and Application Center (AUBIBAM), Anadolu University, Eskişehir 26470, Turkey
| | - Liliya N. Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, Barnaul 656049, Russia
| | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
21
|
Gao H, Kang N, Hu C, Zhang Z, Xu Q, Liu Y, Yang S. Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153197. [PMID: 32146298 DOI: 10.1016/j.phymed.2020.153197] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/10/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGOUND Ginsenoside Rb1, the main active constituent of Panax ginseng, displays significant anti-inflammatory activity, although the mechanism has not been clearly unraveled. In this study, Rb1's mechanism of anti-inflammatory effects were investigated. METHODS The flow cytometry and enzyme-linked immunosorbent assay (ELISA) were empolyed to detect pro-inflammatory cytokines release. The related protein and gene expression was investigated by western blotting and qRT-PCR. The dimerization of TLR4 was measured by co-immunoprecipitation and molecular docking assays. Cellular thermal shift assay was used for the determination of the binding of Rb1 and TLR4. For animal moldels, LPS- or cantharidin-induced acute kidney injury, LPS-induced septic death, and dimethyl benzene-induced ear edema were employed to investigate Rb1's anti-inflammatory activity in vivo. RESULTS Rb1 significantly decreased inflammatory cytokines release in LPS-stimulated RAW264.7 cells and BMDMs, as well as COX-2 and iNOS amounts. Rb1 reduced LPS-associated calcium influx, ROS production, and NO generation. The NF-κB and MAPK axes participated in Rb1's anti-inflammatory effects. Molecular docking simulation indicated Rb1 bound to TLR4 to prevent TLR4 dimerization, as confirmed by co-immunoprecipitation and cellular thermal shift assay. Furthermore, MyD88 recruitment and TAK1 expression were altered by reduced TLR4 dimerization, indicating the TLR4-MyD88-NF-κB/MAPK pathways contributed to Rb1's anti-inflammatory process. In animal models, Rb1 markedly alleviated LPS- or cantharidin-induced acute kidney injury, rescued LPS-induced septic mice from death, and inhibited dimethyl benzene-induced mouse ear edema. CONCLUSION Overall, these findings demonstrate Rb1 exhibits marked anti-inflammatory effects, suggesting Rb1 represents an optimal molecule for treating inflammatory diseases.
Collapse
Affiliation(s)
- Hongwei Gao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Naixin Kang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Chao Hu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Ziyu Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Yanli Liu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Shilin Yang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
22
|
The double-edged role of neutrophil extracellular traps in inflammation. Biochem Soc Trans 2020; 47:1921-1930. [PMID: 31754705 DOI: 10.1042/bst20190629] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
While there are numerous studies showing that neutrophil extracellular traps (NETs) contribute to autoimmune inflammation and cause bystander tissue injury, human individuals with genetic impairments in NET formation curiously often suffer from exacerbated autoimmune diseases and/or chronic inflammatory conditions. These findings are confirmed in some mouse models of systemic lupus erythematosus (SLE) and gouty arthritis, where an absence of neutrophils or impairment of NET formation leads to exacerbation of autoimmunity and chronic inflammation. Thus, aside from their role as archetypical pro-inflammatory cells, neutrophils in general, and NETs in particular, can also interrupt the self-amplifying loop of cell activation and cell recruitment that characterizes neutrophilic inflammation. Here, we review the current state-of-the-science regarding anti-inflammatory and immune-regulatory action of NETs. We give an overview about the mechanistic involvement of NET-associated neutrophil serine proteases and suggest how tailored induction of NET formation could be exploited for the treatment of chronic autoinflammatory disorders.
Collapse
|
23
|
Therapeutic benefits of apocynin in mice with lipopolysaccharide/D-galactosamine-induced acute liver injury via suppression of the late stage pro-apoptotic AMPK/JNK pathway. Biomed Pharmacother 2020; 125:110020. [PMID: 32106375 DOI: 10.1016/j.biopha.2020.110020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The excessive generation of reactive oxygen species (ROS) plays crucial roles in the development of acute liver injury. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is responsible for the robust production of ROS under inflammatory circumstance, but the pathological roles of NOX and the pharmacological significance of NOX inhibitor in acute liver injury remains unclear. In the present study, the potential roles of NOX in acute liver injury were investigated in a mouse model with lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury. The results indicated that LPS/D-Gal exposure time-dependently increased the level of ROS in liver tissue. Pretreatment with the NOX inhibitor apocynin suppressed LPS/D-Gal induced upregulation of ROS, 8-hydroxy-2-deoxyguanosine (8-OH-dG), protein carbonyl content and thiobarbituric acid reactive substances (TBARS). Pretreatment with apocynin also suppressed LPS/D-Gal-induced elevation of aminotransferase, alleviated histological abnormalities, inhibited the production of pro-inflammatory cytokine tumor necrosis factor α (TNF-α), blocked the activation of caspase cascade, reduced the count of TUNEL-positive cells and prevented LPS/D-Gal-induced mortality. Interestingly, post insult treatment with apocynin also suppressed LPS/D-Gal-induced oxidative stress, hepatocyte apoptosis, liver damage but improved the survival rate. Mechanistically, posttreatment with apocynin prohibited LPS/D-Gal-induced activation of the late stage pro-apoptotic AMP-activated protein kinase (AMPK)/c-Jun N-terminal kinase (JNK) pathway. Post-insult treatment with the antioxidant N-acetylcysteine also resulted in suppressed activation of AMPK/JNK, mitigated apoptosis and alleviated liver injury. These data suggest that NOX-derived ROS might be a crucial late stage detrimental factor in LPS/D-Gal-induced acute liver injury via promoting the activation of the pro-apoptotic AMPK/JNK pathway, and the NOX inhibitor might have important value in the pharmacological intervention of inflammation-base liver damage.
Collapse
|
24
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
25
|
Hahn J, Euler M, Kilgus E, Kienhöfer D, Stoof J, Knopf J, Hahn M, Harrer T, Hultqvist M, Olofsson P, Mokhir A, Holmdahl R, Herrmann M, Schett G, Muñoz LE, Hoffmann MH. NOX2 mediates quiescent handling of dead cell remnants in phagocytes. Redox Biol 2019; 26:101279. [PMID: 31349119 PMCID: PMC6669319 DOI: 10.1016/j.redox.2019.101279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C−/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.
Collapse
Affiliation(s)
- Jonas Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilien Euler
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Emelie Kilgus
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Deborah Kienhöfer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Stoof
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Madelaine Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Peter Olofsson
- Redoxis/Pronoxis AB, Medicon Village Lund, Sweden; Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Herrmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
26
|
Olson KR, Gao Y. Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 2019; 135:1-14. [PMID: 30790656 DOI: 10.1016/j.freeradbiomed.2019.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (H2S with AzMC) and polysulfides (H2Sn, where n = 2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O2) and hypoxia (5% O2), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased H2S production for 5 days but did not affect H2Sn. The glutathione reductase inhibitor, auranofin, initially decreased H2S and H2Sn but after two days H2Sn increased over controls. Inhibition of peroxiredoxins with conoidin A decreased H2S and increased H2Sn, whereas the glutathione peroxidase inhibitor, tiopronin, increased H2S. Aminoadipic acid, an inhibitor of cystine uptake did not affect either H2S or H2Sn. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with H2S and H2S2, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| |
Collapse
|
27
|
Suntres ZE. Exploring the potential benefit of natural product extracts in paraquat toxicity. Fitoterapia 2018; 131:160-167. [PMID: 30359726 DOI: 10.1016/j.fitote.2018.10.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
Paraquat dichloride, a herbicide used for weed and grass control, is extremely toxic to humans and animals. The mechanisms of toxicity involve the redox cycling of paraquat resulting in the generation of reactive oxygen species and the depletion of the cellular NADPH. The major cause of death in paraquat poisoning is respiratory failure due to its specific uptake by and oxidative insult to the alveolar epithelial cells and inflammation with subsequent obliterating fibrosis. Paraquat also causes selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, reproducing an important pathological feature of Parkinson disease. Currently, there are no antidotes for the treatment of paraquat poisoning and therapeutic management is mostly supportive and directed towards changing the disposition of the poison. The lack of effective treatments against paraquat poisoning has led to the exploration of novel compounds with antioxidant and/or anti-inflammatory properties. Recently, there is an interest in plant compounds, particularly those used in traditional medicine. Phytochemicals have been highlighted as a possible therapeutic modality for a variety of diseases due to their putative efficacies and safety. In this review, the status of plant extracts and traditional medicines in ameliorating the toxicity of paraquat is discussed.
Collapse
Affiliation(s)
- Zacharias E Suntres
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.
| |
Collapse
|