1
|
Wen Z, Wang L, Ma H, Li L, Wan L, Shi L, Li H, Chen H, Hao W, Song S, Xue Q, Wei Y, Li F, Xu J, Zhang S, Wong KW, Song Y. Integrated single-cell transcriptome and T cell receptor profiling reveals defects of T cell exhaustion in pulmonary tuberculosis. J Infect 2024; 88:106158. [PMID: 38642678 DOI: 10.1016/j.jinf.2024.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Tuberculosis-affected lungs with chronic inflammation harbor abundant immunosuppressive immune cells but the nature of such inflammation is unclear. Dysfunction in T cell exhaustion, while implicated in chronic inflammatory diseases, remains unexplored in tuberculosis. Given that immunotherapy targeting exhaustion checkpoints exacerbates tuberculosis, we speculate that T cell exhaustion is dysfunctional in tuberculosis. Using integrated single-cell RNA sequencing and T cell receptor profiling we reported defects in exhaustion responses within inflamed tuberculosis-affected lungs. Tuberculosis lungs demonstrated significantly reduced levels of exhausted CD8+ T cells and exhibited diminished expression of exhaustion-related transcripts among clonally expanded CD4+ and CD8+ T cells. Additionally, clonal expansion of CD4+ and CD8+ T cells bearing T cell receptors specific for CMV was observed. Expanded CD8+ T cells expressed the cytolytic marker GZMK. Hence, inflamed tuberculosis-affected lungs displayed dysfunction in T cell exhaustion. Our findings likely hold implications for understanding the reactivation of tuberculosis observed in patients undergoing immunotherapy targeting the exhaustion checkpoint.
Collapse
Affiliation(s)
- Zilu Wen
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leilei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Laiyi Wan
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Shi
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongwei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wentao Hao
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qinghua Xue
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yutong Wei
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Respiratory Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shulin Zhang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Grigsby SJ, Prasad GVRK, Wallach JB, Mittal E, Hsu FF, Schnappinger D, Philips JA. CpsA mediates infection of recruited lung myeloid cells by Mycobacterium tuberculosis. Cell Rep 2024; 43:113607. [PMID: 38127624 PMCID: PMC10900767 DOI: 10.1016/j.celrep.2023.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) possesses an arsenal of virulence factors to evade host immunity. Previously, we showed that the Mtb protein CpsA, which protects Mtb against the host NADPH oxidase, is required in mice during the first 3 weeks of infection but is thereafter dispensable for full virulence. Using flow cytometry, we find that ΔcpsA Mtb is retained in alveolar macrophages, impaired in recruiting and disseminating into monocyte-derived cells, and more likely to be localized in airway cells than wild-type Mtb. The lungs of ΔcpsA-infected mice also have markedly fewer antigen-specific T cells, indicating a delay in adaptive immunity. Thus, we conclude that CpsA promotes dissemination of Mtb from alveolar macrophages and the airways and generation of an adaptive immune response. Our studies of ΔcpsA Mtb show that a more effective innate immune response against Mtb can be undermined by a corresponding delay in the adaptive immune response.
Collapse
Affiliation(s)
- Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - G V R Krishna Prasad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York City, NY, USA
| | - Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York City, NY, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Thomas SM, Olive AJ. Rapid lethality of mice lacking the phagocyte oxidase and Caspase1/11 following Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527787. [PMID: 36798180 PMCID: PMC9934620 DOI: 10.1101/2023.02.08.527787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Immune networks that control antimicrobial and inflammatory mechanisms have overlapping regulation and functions to ensure effective host responses. Genetic interaction studies of immune pathways that compare host responses in single and combined knockout backgrounds are a useful tool to identify new mechanisms of immune control during infection. For disease caused by pulmonary Mycobacterium tuberculosis infections, which currently lacks an effective vaccine, understanding genetic interactions between protective immune pathways may identify new therapeutic targets or disease-associated genes. Previous studies suggested a direct link between the activation of NLRP3-Caspase1 inflammasome and the NADPH-dependent phagocyte oxidase complex during Mtb infection. Loss of the phagocyte oxidase complex alone resulted in increased activation of Caspase1 and IL1β production during Mtb infection, resulting in failed disease tolerance during the chronic stages of disease. To better understand this interaction, we generated mice lacking both Cybb , a key subunit of the phagocyte oxidase, and Caspase1/11 . We found that ex vivo Mtb infection of Cybb -/- Caspase1/11 -/- macrophages resulted in the expected loss of IL1β secretion but an unexpected change in other inflammatory cytokines and bacterial control. Mtb infected Cybb -/- Caspase1/11 -/- mice rapidly progressed to severe TB, succumbing within four weeks to disease characterized by high bacterial burden, increased inflammatory cytokines, and the recruitment of granulocytes that associated with Mtb in the lungs. These results uncover a key genetic interaction between the phagocyte oxidase complex and Caspase1/11 that controls protection against TB and highlight the need for a better understanding of the regulation of fundamental immune networks during Mtb infection.
Collapse
Affiliation(s)
- Sean M. Thomas
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI USA
| |
Collapse
|
4
|
Olive AJ, Smith CM, Baer CE, Coers J, Sassetti CM. Mycobacterium tuberculosis Evasion of Guanylate Binding Protein-Mediated Host Defense in Mice Requires the ESX1 Secretion System. Int J Mol Sci 2023; 24:2861. [PMID: 36769182 PMCID: PMC9917499 DOI: 10.3390/ijms24032861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen Mycobacterium tuberculosis (Mtb) evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ. While the production of IFNγ by T cells is essential to protect against Mtb, it is not capable of fully eradicating Mtb infection. This suggests that Mtb evades a subset of IFNγ-mediated antimicrobial responses, yet what mechanisms Mtb resists remains unclear. The IFNγ-inducible Guanylate binding proteins (GBPs) are key host defense proteins able to control infections with intracellular pathogens. GBPs were previously shown to directly restrict Mycobacterium bovis BCG yet their role during Mtb infection has remained unknown. Here, we examine the importance of a cluster of five GBPs on mouse chromosome 3 in controlling Mycobacterial infection. While M. bovis BCG is directly restricted by GBPs, we find that the GBPs on chromosome 3 do not contribute to the control of Mtb replication or the associated host response to infection. The differential effects of GBPs during Mtb versus M. bovis BCG infection is at least partially explained by the absence of the ESX1 secretion system from M. bovis BCG, since Mtb mutants lacking the ESX1 secretion system become similarly susceptible to GBP-mediated immune defense. Therefore, this specific genetic interaction between the murine host and Mycobacteria reveals a novel function for the ESX1 virulence system in the evasion of GBP-mediated immunity.
Collapse
Affiliation(s)
- Andrew J. Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Christina E. Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01650, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01650, USA
| |
Collapse
|
5
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
6
|
Lopez BS. Can Infectious Disease Control Be Achieved without Antibiotics by Exploiting Mechanisms of Disease Tolerance? Immunohorizons 2022; 6:730-740. [DOI: 10.4049/immunohorizons.2200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Antimicrobial use in animal agriculture may be contributing to the emerging public health crisis of antimicrobial resistance. The sustained prevalence of infectious diseases driving antimicrobial use industry-wide suggests that traditional methods of bolstering disease resistance are, for some diseases, ineffective. A paradigm shift in our approach to infectious disease control is needed to reduce antimicrobial use and sustain animal and human health and the global economy. Targeting the defensive mechanisms that promote the health of an infected host without impacting pathogen fitness, termed “disease tolerance,” is a novel disease control approach ripe for discovery. This article presents examples of disease tolerance dictating clinical outcomes for several infectious diseases in humans, reveals evidence suggesting a similarly critical role of disease tolerance in the progression of infectious diseases plaguing animal agriculture, and thus substantiates the assertion that exploiting disease tolerance mechanisms can positively impact animal and human health.
Collapse
Affiliation(s)
- Brina S. Lopez
- Department of Farm Animal Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ
| |
Collapse
|
7
|
Elkington P, Polak ME, Reichmann MT, Leslie A. Understanding the tuberculosis granuloma: the matrix revolutions. Trends Mol Med 2022; 28:143-154. [PMID: 34922835 PMCID: PMC8673590 DOI: 10.1016/j.molmed.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes the human disease tuberculosis (TB) and remains the top global infectious pandemic after coronavirus disease 2019 (COVID-19). Furthermore, TB has killed many more humans than any other pathogen, after prolonged coevolution to optimise its pathogenic strategies. Full understanding of fundamental disease processes in humans is necessary to successfully combat this highly successful pathogen. While the importance of immunodeficiency has been long recognised, biologic therapies and unbiased approaches are providing unprecedented insights into the intricacy of the host-pathogen interaction. The nature of a protective response is more complex than previously hypothesised. Here, we integrate recent evidence from human studies and unbiased approaches to consider how Mtb causes human TB and highlight the recurring theme of extracellular matrix (ECM) turnover.
Collapse
Affiliation(s)
- Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Marta E Polak
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michaela T Reichmann
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alasdair Leslie
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, KwaZulu-Natal, South Africa
| |
Collapse
|
8
|
Kim SY, Kim D, Kim S, Lee D, Mun SJ, Cho E, Son W, Jang K, Yang CS. Mycobacterium tuberculosis Rv2626c-derived peptide as a therapeutic agent for sepsis. EMBO Mol Med 2020; 12:e12497. [PMID: 33258196 PMCID: PMC7721357 DOI: 10.15252/emmm.202012497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The Rv2626c protein of Mycobacterium tuberculosis is a promising vaccine candidate owing to its strong serum antibody response in patients with tuberculosis. However, there is limited information regarding the intracellular response induced by Rv2626c in macrophages. In this study, we demonstrated that Rv2626c interacts with the RING domain of TRAF6 and inhibits lysine (K) 63‐linked polyubiquitination of TRAF6 (E3 ubiquitin ligase activity); this results in the suppression of TLR4 inflammatory signaling in macrophages. Furthermore, we showed that the C‐terminal 123–131‐amino acid Rv2626c motif promotes macrophage recruitment, phagocytosis, M2 macrophage polarization, and subsequent bacterial clearance. We developed rRv2626c‐CA, a conjugated peptide containing the C‐terminal 123–131‐amino acid Rv2626c that targets macrophages, penetrates the cell membrane, and has demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture‐induced sepsis. This multifunctional rRv2626c‐CA has considerably improved potency, with an IC50 that is 250‐fold (in vitro) or 1,000‐fold (in vivo) lower than that of rRv2626c‐WT. We provide evidence for new peptide‐based drugs with anti‐inflammatory and antibacterial properties for the treatment of sepsis.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Donggyu Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Sojin Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Daeun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| |
Collapse
|
9
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
10
|
Basu S, Elkington P, Rao NA. Pathogenesis of ocular tuberculosis: New observations and future directions. Tuberculosis (Edinb) 2020; 124:101961. [PMID: 33010848 DOI: 10.1016/j.tube.2020.101961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Ocular tuberculosis (OTB) encompasses all forms of intra- and extra-ocular inflammation associated with Mycobacterium tuberculosis (Mtb) infection. However, the organism is rarely found in ocular fluid samples of diseased eyes, rendering the pathomechanisms of the disease unclear. This confounds clinical decision-making in diagnosis and treatment of OTB. Here, we critically review existing human and animal data related to ocular inflammation and TB pathogenesis to unravel likely pathomechanisms of OTB. Broadly there appear to be two fundamental mechanisms that may underlie the development of TB-associated ocular inflammation: a. inflammatory response to live/replicating Mtb in the eye, and b. immune mediated ocular inflammation induced by non-viable Mtb or its components in the eye. This distinction is significant as in direct Mtb-driven mechanisms, diagnosis and treatment would be aimed at detection of Mtb-infection and its elimination; while indirect mechanisms would primarily require anti-inflammatory therapy with adjunctive anti-TB therapy. Further, we discuss how that most clinical phenotypes of OTB likely represent a combination of both mechanisms, with one being predominant than the other.
Collapse
Affiliation(s)
- Soumyava Basu
- Retina and Uveitis Service, L V Prasad Eye Institute (Mithu Tulsi Chanrai Campus), Bhubaneswar, India.
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Narsing A Rao
- USC-Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies To Defeat Them. Infect Immun 2020; 88:IAI.00916-19. [PMID: 32094248 DOI: 10.1128/iai.00916-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bacterial infections are caused by pathogens that persist within their hosts and avoid clearance by the immune system. Treatment and/or detection of such pathogens is difficult, and the resulting pathologies are often deleterious or fatal. There is an urgent need to develop protective vaccines and host-directed therapies that synergize with antibiotics to prevent pathogen persistence and infection-associated pathologies. However, many persistent pathogens, such as Mycobacterium tuberculosis, actively target the very host pathways activated by vaccination. These immune evasion tactics blunt the effectiveness of immunization strategies and are impeding progress to control these infections throughout the world. Therefore, it is essential that M. tuberculosis immune evasion-related pathogen virulence strategies are considered to maximize the effectiveness of potential new treatments. In this review, we focus on how Mycobacterium tuberculosis infects antigen-presenting cells and evades effective immune clearance by the adaptive response through (i) manipulating antigen presentation, (ii) repressing T cell-activating costimulatory molecules, and (iii) inducing ligands that drive T cell exhaustion. In this context, we will examine the challenges that bacterial virulence strategies pose to developing new vaccines. We will then discuss new approaches that will help dissect M. tuberculosis immune evasion mechanisms and devise strategies to bypass them to promote long-term protection and prevent disease progression.
Collapse
|
12
|
Urbanowski ME, Ordonez AA, Ruiz-Bedoya CA, Jain SK, Bishai WR. Cavitary tuberculosis: the gateway of disease transmission. THE LANCET. INFECTIOUS DISEASES 2020; 20:e117-e128. [PMID: 32482293 PMCID: PMC7357333 DOI: 10.1016/s1473-3099(20)30148-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis continues to be a major threat to global health. Cavitation is a dangerous consequence of pulmonary tuberculosis associated with poor outcomes, treatment relapse, higher transmission rates, and development of drug resistance. However, in the antibiotic era, cavities are often identified as the most extreme outcome of treatment failure and are one of the least-studied aspects of tuberculosis. We review the epidemiology, clinical features, and concurrent standards of care for individuals with cavitary tuberculosis. We also discuss developments in the understanding of tuberculosis cavities as dynamic physical and biochemical structures that interface the host response with a unique mycobacterial niche to drive tuberculosis-associated morbidity and transmission. Advances in preclinical models and non-invasive imaging can provide valuable insights into the drivers of cavitation. These insights will guide the development of specific pharmacological interventions to prevent cavitation and improve lung function for individuals with tuberculosis.
Collapse
Affiliation(s)
- Michael E. Urbanowski
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R. Bishai
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Tezera LB, Mansour S, Elkington P. Reconsidering the Optimal Immune Response to Mycobacterium tuberculosis. Am J Respir Crit Care Med 2020; 201:407-413. [PMID: 31657633 DOI: 10.1164/rccm.201908-1506pp] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Liku B Tezera
- National Institute for Health Research Biomedical Research Centre, School of Clinical and Experimental Sciences and
| | - Salah Mansour
- National Institute for Health Research Biomedical Research Centre, School of Clinical and Experimental Sciences and.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul Elkington
- National Institute for Health Research Biomedical Research Centre, School of Clinical and Experimental Sciences and.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Tezera LB, Bielecka MK, Ogongo P, Walker NF, Ellis M, Garay-Baquero DJ, Thomas K, Reichmann MT, Johnston DA, Wilkinson KA, Ahmed M, Jogai S, Jayasinghe SN, Wilkinson RJ, Mansour S, Thomas GJ, Ottensmeier CH, Leslie A, Elkington PT. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. eLife 2020; 9:52668. [PMID: 32091388 PMCID: PMC7058383 DOI: 10.7554/elife.52668] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Previously, we developed a 3-dimensional cell culture model of human tuberculosis (TB) and demonstrated its potential to interrogate the host-pathogen interaction (Tezera et al., 2017a). Here, we use the model to investigate mechanisms whereby immune checkpoint therapy for cancer paradoxically activates TB infection. In patients, PD-1 is expressed in Mycobacterium tuberculosis (Mtb)-infected lung tissue but is absent in areas of immunopathology. In the microsphere model, PD-1 ligands are up-regulated by infection, and the PD-1/PD-L1 axis is further induced by hypoxia. Inhibition of PD-1 signalling increases Mtb growth, and augments cytokine secretion. TNF-α is responsible for accelerated Mtb growth, and TNF-α neutralisation reverses augmented Mtb growth caused by anti-PD-1 treatment. In human TB, pulmonary TNF-α immunoreactivity is increased and circulating PD-1 expression negatively correlates with sputum TNF-α concentrations. Together, our findings demonstrate that PD-1 regulates the immune response in TB, and inhibition of PD-1 accelerates Mtb growth via excessive TNF-α secretion.
Collapse
Affiliation(s)
- Liku B Tezera
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Magdalena K Bielecka
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - Paul Ogongo
- Africa Health Research InstituteKwaZulu NatalSouth Africa
- Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of KenyaNairobiKenya
| | - Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- TB Centre and Department of Clinical Research, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Matthew Ellis
- NIHR Biomedical Research Centre, School of Cancer Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Diana J Garay-Baquero
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Kristian Thomas
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - Michaela T Reichmann
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - David A Johnston
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | | | - Mohamed Ahmed
- Africa Health Research InstituteKwaZulu NatalSouth Africa
| | - Sanjay Jogai
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - Suwan N Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College LondonLondonUnited Kingdom
| | - Robert J Wilkinson
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Infectious Diseases, Imperial College LondonLondonUnited Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Gareth J Thomas
- NIHR Biomedical Research Centre, School of Cancer Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Christian H Ottensmeier
- NIHR Biomedical Research Centre, School of Cancer Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Alasdair Leslie
- Africa Health Research InstituteKwaZulu NatalSouth Africa
- Department of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Paul T Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
15
|
Budzik JM, Swaney DL, Jimenez-Morales D, Johnson JR, Garelis NE, Repasy T, Roberts AW, Popov LM, Parry TJ, Pratt D, Ideker T, Krogan NJ, Cox JS. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. eLife 2020; 9:e51461. [PMID: 31951200 PMCID: PMC7030789 DOI: 10.7554/elife.51461] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Macrophages are highly plastic cells with critical roles in immunity, cancer, and tissue homeostasis, but how these distinct cellular fates are triggered by environmental cues is poorly understood. To uncover how primary murine macrophages respond to bacterial pathogens, we globally assessed changes in post-translational modifications of proteins during infection with Mycobacterium tuberculosis, a notorious intracellular pathogen. We identified hundreds of dynamically regulated phosphorylation and ubiquitylation sites, indicating that dramatic remodeling of multiple host pathways, both expected and unexpected, occurred during infection. Most of these cellular changes were not captured by mRNA profiling, and included activation of ubiquitin-mediated autophagy, an evolutionarily ancient cellular antimicrobial system. This analysis also revealed that a particular autophagy receptor, TAX1BP1, mediates clearance of ubiquitylated Mtb and targets bacteria to LC3-positive phagophores. These studies provide a new resource for understanding how macrophages shape their proteome to meet the challenge of infection.
Collapse
Affiliation(s)
- Jonathan M Budzik
- Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Danielle L Swaney
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - David Jimenez-Morales
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
- Department of Medicine, Division of Cardiovascular MedicineStanford UniversityStanfordUnited States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - Nicholas E Garelis
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Teresa Repasy
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Allison W Roberts
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Lauren M Popov
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Trevor J Parry
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Dexter Pratt
- Department of MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Trey Ideker
- Department of MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Nevan J Krogan
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - Jeffery S Cox
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
16
|
Saelens JW, Viswanathan G, Tobin DM. Mycobacterial Evolution Intersects With Host Tolerance. Front Immunol 2019; 10:528. [PMID: 30967867 PMCID: PMC6438904 DOI: 10.3389/fimmu.2019.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 200 years, tuberculosis (TB) has caused more deaths than any other infectious disease, likely infecting more people than it has at any other time in human history. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, is an obligate human pathogen that has evolved through the millennia to become an archetypal human-adapted pathogen. This review focuses on the evolutionary framework by which Mtb emerged as a specialized human pathogen and applies this perspective to the emergence of specific lineages that drive global TB burden. We consider how evolutionary pressures, including transmission dynamics, host tolerance, and human population patterns, may have shaped the evolution of diverse mycobacterial genomes.
Collapse
Affiliation(s)
- Joseph W. Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
17
|
Divangahi M, Khan N, Kaufmann E. Beyond Killing Mycobacterium tuberculosis: Disease Tolerance. Front Immunol 2018; 9:2976. [PMID: 30619333 PMCID: PMC6305711 DOI: 10.3389/fimmu.2018.02976] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Host defense strategies against infectious diseases are comprised of both host resistance and disease tolerance. Resistance is the ability of the host to prevent invasion or to eliminate the pathogen, while disease tolerance is defined by limiting the collateral tissue damage caused by the pathogen and/or the immune response without exerting direct effects on pathogen growth. Our incomplete understanding of host immunity against tuberculosis (TB) is predominately rooted in our bias toward investigating host resistance. Thus, we must refocus our efforts to understand the entire spectrum of immunity against M. tuberculosis to control TB.
Collapse
Affiliation(s)
- Maziar Divangahi
- Meakins-Christie Laboratories, Departments of Medicine, Microbiology and Immunology, Pathology McGill University, McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Nargis Khan
- Meakins-Christie Laboratories, Departments of Medicine, Microbiology and Immunology, Pathology McGill University, McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Departments of Medicine, Microbiology and Immunology, Pathology McGill University, McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|