1
|
Stephens JL, Fraga LAO, Ferreira JA, De Mondesert L, Kitron U, Clennon JA, Fairley JK. Spatial associations of Hansen's disease and schistosomiasis in endemic regions of Minas Gerais, Brazil. PLoS Negl Trop Dis 2024; 18:e0012682. [PMID: 39724139 DOI: 10.1371/journal.pntd.0012682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/22/2025] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Brazil has the second highest case count of Hansen's disease (leprosy, HD), but factors contributing to transmission in highly endemic areas of the country remain unclear. Recent studies have shown associations of helminth infection and leprosy, supporting a biological plausibility for increased leprosy transmission in areas with helminths. However, spatial analyses of the overlap of these infections are limited. Therefore, we aimed to spatially analyze these two diseases in a co-endemic area of Minas Gerais, Brazil, in order to identify potential epidemiologic associations. METHODS An ecological study using public health surveillance records and census data was conducted to investigate whether the occurrence of HD -and specifically multibacillary (MB) disease- was associated with the presence of schistosomiasis in a community of 41 municipalities in eastern Minas Gerais, Brazil from 2011 to 2015. Multivariate logistic regression and spatial cluster analyses using geographic information systems (GIS) were performed. RESULTS The average annual incidence of HD in the study area was 35.3 per 100,000 while Schistosoma mansoni average annual incidence was 26 per 100,000. Both HD and schistosomiasis were spatially distributed showing significant clustering across the study area. Schistosomiasis was present in 10.4% of the tracts with HD and thirteen high-high clusters of local bivariate autocorrelation for HD and schistosomiasis cases were identified. A multivariate non-spatial analysis found that census tracts with MB disease were more likely to have schistosomiasis when adjusted for population density, household density, and household income (aOR = 1.7, 95% CI 1.0, 2.7). This remained significant when accounting for spatial correlation (aOR = 1.1, 95% CI (1.0, 1.2)). CONCLUSION We found clustering of both HD and schistosomiasis in this area with some statistically significant overlap of multibacillary HD with S. mansoni infection. Not only did we provide an effective approach to study the epidemiology of two endemic neglected tropical diseases with geographic spatial analyses, we highlight the need for further clinical and translational studies to study the potential epidemiologic associations uncovered.
Collapse
Affiliation(s)
- Jessica L Stephens
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Lucia A O Fraga
- Universidade Federal Juiz de Fora-Campus Governador Valadares, Governador Valadares, Minas Gerais, Brazil
- Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil
| | - José A Ferreira
- Faculdade da Saúde e Ecologia Humana (FASEH), Vespasiano, Minas Gerais, Brazil
| | - Laura De Mondesert
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Julie A Clennon
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Jessica K Fairley
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
2
|
Qian YY, Huang FF, Chen SY, Zhang WX, Wang Y, Du PF, Li G, Ding WB, Qian L, Zhan B, Chu L, Jiang DH, Yang XD, Zhou R. Therapeutic effect of recombinant Echinococcus granulosus antigen B subunit 2 protein on sepsis in a mouse model. Parasit Vectors 2024; 17:467. [PMID: 39548530 PMCID: PMC11566433 DOI: 10.1186/s13071-024-06540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis is a potentially fatal systemic inflammatory response syndrome (SIRS) that threatens millions of lives worldwide. Echinococcus granulosus antigen B (EgAgB) is a protein released by the larvae of the tapeworm. This protein has been shown to play an important role in modulating host immune response. In this study we expressed EgAgB as soluble recombinant protein in E. coli (rEgAgB) and explored its protective effect on sepsis. METHODS The sepsis model was established by cecal ligation and puncture (CLP) procedure in BALB/c mice. The therapeutic effect of rEgAgB on sepsis was performed by interperitoneally injecting 5 µg rEgAgB in mice with CLP-induced sepsis and observing the 72 h survival rate after onset of sepsis. The proinflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-6] and regulatory cytokines [IL-10, transforming growth factor beta (TGF-β)] were measured in sera, and the histopathological change was observed in livers, kidneys, and lungs of septic mice treated with rEgAgB compared with untreated mice. The effect of rEgAgB on the macrophage polarization was performed in vitro by incubating rEgAgB with peritoneal macrophages. The levels of TLR2 and MyD88 were measured in these tissues to determine the involvement of TLR-2/MyD88 in the sepsis-induced inflammatory signaling pathway. RESULTS In vivo, we observed that treatment with rEgAgB significantly increased the survival rate of mice with CLP-induced sepsis up to 72 h while all mice without treatment died within the same period. The increased survival was associated with reduced pathological damage in key organs such as liver, lung, and kidneys. It was supported by the reduced proinflammatory cytokine levels and increased regulatory cytokine expression in peripheral blood and key organ tissues. Further study identified that treatment with rEgAgB promoted macrophage polarization from classically activated macrophage (M1) to regulatory M2-like macrophage via inhibiting TLR2/MyD88 signal pathway. CONCLUSIONS The therapeutic effects of rEgAgB on mice with sepsis was observed in a mice model that was associated with reduced inflammatory responses and increased regulatory responses, possibly through inducing polarization of macrophages from proinflammatory M1 to regulatory M2 phenotype through inhibiting TLR2/MyD88 inflammatory pathway.
Collapse
Affiliation(s)
- Ya-Yun Qian
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- First People's Hospital of Changzhou, Changzhou, 213000, China
| | - Fei-Fei Huang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Si-Yu Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214028, China
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei-Xiao Zhang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Peng-Fei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Gen Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Wen-Bo Ding
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Lei Qian
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Dong-Hui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
- Department of Critical Care Medicine, First People's Hospital of Haidong, Haidong, 810600, China.
| | - Xiao-Di Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China.
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
3
|
Afful P, Abotsi GK, Adu-Gyamfi CO, Benyem G, Katawa G, Kyei S, Arndts K, Ritter M, Asare KK. Schistosomiasis-Microbiota Interactions: A Systematic Review and Meta-Analysis. Pathogens 2024; 13:906. [PMID: 39452777 PMCID: PMC11510367 DOI: 10.3390/pathogens13100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Schistosomiasis, a tropical disease affecting humans and animals, affected 251.4 million people in 2021. Schistosoma mansoni, S. haematobium, S. intercalatum, and S. japonicum are primary human schistosomes, causing tissue damage, granulomas, ulceration, hemorrhage, and opportunistic pathogen entry. The gut and urinary tract microbiota significantly impact a host's susceptibility to schistosomiasis, disrupting microbial balance; however, this relationship is not well understood. This systematic review and meta-analysis explores the intricate relationship between schistosomiasis and the host's microbiota, providing crucial insights into disease pathogenesis and management. METHODS This systematic review used PRISMA guidelines to identify peer-reviewed articles on schistosomiasis and its interactions with the host microbiome, using multiple databases and Google Scholar, providing a robust dataset for analysis. The study utilized Meta-Mar v3.5.1; descriptive tests, random-effects models, and subgroups were analyzed for the interaction between Schistosomiasis and the microbiome. Forest plots, Cochran's Q test, and Higgins' inconsistency statistic (I2) were used to assess heterogeneity. RESULTS The human Schistosoma species were observed to be associated with various bacterial species isolated from blood, stool, urine, sputum, skin, and vaginal or cervical samples. A meta-analysis of the interaction between schistosomiasis and the host microbiome, based on 31 studies, showed 29,784 observations and 5871 events. The pooled estimates indicated a significant association between schistosomiasis and changes in the microbiome of infected individuals. There was considerable heterogeneity with variance effect sizes (p < 0.0001). Subgroup analysis of Schistosoma species demonstrated that S. haematobium was the most significant contributor to the overall heterogeneity, accounting for 62.1% (p < 0.01). S. mansoni contributed 13.0% (p = 0.02), and the coinfection of S. haematobium and S. mansoni accounted for 16.8% of the heterogeneity (p < 0.01), contributing to the variability seen in the pooled analysis. Similarly, praziquantel treatment (RR = 1.68, 95% CI: 1.07-2.64) showed high heterogeneity (Chi2 = 71.42, df = 11, p < 0.01) and also indicated that Schistosoma infections in males (RR = 1.46, 95% CI: 0.00 to 551.30) and females (RR = 2.09, 95% CI: 0.24 to 18.31) have a higher risk of altering the host microbiome. CONCLUSIONS Schistosomiasis significantly disrupts the host microbiota across various bodily sites, leading to increased susceptibility to different bacterial taxa such as E. coli, Klebsiella, Proteus, Pseudomonas, Salmonella, Staphylococcus, Streptococcus, and Mycobacterium species (M. tuberculosis and M. leprae). This disruption enables these bacteria to produce toxic metabolites, which in turn cause inflammation and facilitate the progression of disease. The impact of schistosomiasis on the vaginal microbiome underscores the necessity for gender-specific approaches to treatment and prevention. Effective management of female genital schistosomiasis (FGS) requires addressing both the parasitic infection and the resulting microbiome imbalances. Additionally, praziquantel-treated individuals have different microbiome compositions compared to individuals with no praziquantel treatment. This suggests that combining praziquantel treatment with probiotics could potentially decrease the disease severity caused by an altered microbiome.
Collapse
Affiliation(s)
- Philip Afful
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Godwin Kwami Abotsi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Czarina Owusua Adu-Gyamfi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - George Benyem
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo;
| | - Samuel Kyei
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Kwame Kumi Asare
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
5
|
Zhou Z, Li J, Jiang J, Luo Y, Yingzi M. Characteristics of peripheral lymphocyte subsets in patients with different stages of schistosomiasis japonica. Parasite Immunol 2023; 45:e13006. [PMID: 37551055 DOI: 10.1111/pim.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
Immune cells are important for the development of schistosomiasis japonica and are also critical for the treatment of schistosomiasis. The immune cells in the peripheral blood help assess the immune state. The peripheral lymphocytes in schistosomiasis mansoni were well studied; however, immune cells in patients with different stages of schistosomiasis japonica are not well analysed. Here, we performed a preliminary study to explore characteristics of peripheral lymphocyte subsets in patients with different stages of schistosomiasis japonica. 135 patients with Schistosoma japonicum infection and 25 healthy volunteers were included in this study, including 84 patients with chronic S. japonicum infection and 51 patients with advanced S. japonicum infection. Flow cytometry analysis was performed to evaluate peripheral lymphocytes including T cells, B cells, and natural killer (NK) cells. Blood routine and liver function test data were analysed. Ultrasound examination was used to access liver fibrosis according to the World Health Organization standard about ultrasound in schistosomiasis. Demographic data analysis suggested there was no difference in age and gender in patients with S. japonicum infection and health control group. Liver function tests showed that patients with advanced schistosomiasis had a higher incidence of liver function abnormality and blood lipid than those with chronic schistosomiasis. Blood routine results reflected that haemoglobin, red blood cells, platelets, as well as lymphocytes in the advanced group were significantly less than that in the chronic group. Furthermore, flow cytometry analysis indicated that the percentage of CD4+ T cells was lower in the advanced group, but the percentage of CD19+ B cells was higher in the advanced group. In addition, the number of CD3+ T cells, CD3+ CD4+ T cells, CD3+ CD8+ T cells, and NK cells was less in the advanced group when compared with those in the chronic group. In addition, there was a correlation between the decrease in CD4+ T cells and more severe fibrosis on ultrasound images. Our results indicated that the immune state in the peripheral is different in different stages of S. japonicum infection. Lymphocyte subset analysis has potential to facilitate differential diagnosis of different stages of schistosomiasis japonica and even to be a prognostic factor.
Collapse
Affiliation(s)
- Zhaoqin Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yulin Luo
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Yingzi
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Schlosser-Brandenburg J, Midha A, Mugo RM, Ndombi EM, Gachara G, Njomo D, Rausch S, Hartmann S. Infection with soil-transmitted helminths and their impact on coinfections. FRONTIERS IN PARASITOLOGY 2023; 2:1197956. [PMID: 39816832 PMCID: PMC11731630 DOI: 10.3389/fpara.2023.1197956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 01/18/2025]
Abstract
The most important soil-transmitted helminths (STHs) affecting humans are roundworms, whipworms, and hookworms, with a large proportion of the world's population infected with one or more of these intestinal parasites. On top of that, concurrent infections with several viruses, bacteria, protozoa, and other helminths such as trematodes are common in STH-endemic areas. STHs are potent immunomodulators, but knowledge about the effects of STH infection on the direction and extent of coinfections with other pathogens and vice versa is incomplete. By focusing on Kenya, a country where STH infections in humans are widespread, we provide an exemplary overview of the current prevalence of STH and co-occurring infections (e.g. with Human Immunodeficiency Virus, Plasmodium falciparum, Giardia duodenalis and Schistosoma mansoni). Using human data and complemented by experimental studies, we outline the immunomechanistic interactions of coinfections in both acutely STH transmigrated and chronically infected tissues, also highlighting their systemic nature. Depending on the coinfecting pathogen and immunological readout, STH infection may restrain, support, or even override the immune response to another pathogen. Furthermore, the timing of the particular infection and host susceptibility are decisive for the immunopathological consequences. Some examples demonstrated positive outcomes of STH coinfections, where the systemic effects of these helminths mitigate the damage caused by other pathogens. Nevertheless, the data available to date are rather unbalanced, as only a few studies have considered the effects of coinfection on the worm's life cycle and associated host immunity. These interactions are complex and depend largely on the context and biology of the coinfection, which can act in either direction, both to the benefit and detriment of the infected host.
Collapse
Affiliation(s)
| | - Ankur Midha
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eric M. Ndombi
- Department of Medical Microbiology and Parasitology, Kenyatta University, Nairobi, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - George Gachara
- Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya
| | - Doris Njomo
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sebastian Rausch
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Baya B, Kone B, Somboro A, Kodio O, Somboro AM, Diarra B, Traore FG, Kone D, Traore MA, Kone M, Togo AG, Sarro YS, Maiga A, Maiga M, Toloba Y, Diallo S, Murphy RL, Doumbia S. Prevalence and Clinical Relevance of Schistosoma mansoni Co-Infection with Mycobacterium tuberculosis: A Systematic Literature Review. OPEN JOURNAL OF EPIDEMIOLOGY 2023; 13:97-111. [PMID: 36910425 PMCID: PMC9997105 DOI: 10.4236/ojepi.2023.131008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Tuberculosis disease stands for the second leading cause of death worldwide after COVID-19, most active tuberculosis cases result from the reactivation of latent TB infection through impairment of immune response. Several factors are known to sustain that process. Schistosoma mansoni, a parasite of the helminth genus that possesses switching power from an immune profile type Th1 to Th2 that favors reactivation of latent TB bacteria. The aim of the study was to assess the prevalence of the co-infection between the two endemic infections. Systematic literature was contacted at the University Clinical Research Center at the University of Sciences, Techniques, and Technologies of Bamako in Mali. Original articles were included, and full texts were reviewed to assess the prevalence and better understand the immunological changes that occur during the co-infection. In total, 3530 original articles were retrieved through database search, 53 were included in the qualitative analysis, and data from 10 were included in the meta-analysis. Prevalence of the co-infection ranged from 4% to 34% in the literature. Most of the articles reported that immunity against infection with helminth parasite and more specifically Schistosoma mansoni infection enhances latent TB reactivation through Th1/Th2. In sum, the impact of Schistosoma mansoni co-infection with Mycobacterium tuberculosis is under-investigated. Understanding the role of this endemic tropical parasite as a contributing factor to TB epidemiology and burden could help integrate its elimination as one of the strategies to achieve the END-TB objectives by the year 2035.
Collapse
Affiliation(s)
- Bocar Baya
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Bourahima Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Amadou Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anou Moise Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fah Gaoussou Traore
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa Kone
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mama Adama Traore
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mahamadou Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Antieme Georges Togo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yeya Sadio Sarro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Almoustapha Maiga
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mamoudou Maiga
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali.,Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Yacouba Toloba
- Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
8
|
Schick J, Altunay M, Lacorcia M, Marschner N, Westermann S, Schluckebier J, Schubart C, Bodendorfer B, Christensen D, Alexander C, Wirtz S, Voehringer D, da Costa CP, Lang R. IL-4 and helminth infection downregulate MINCLE-dependent macrophage response to mycobacteria and Th17 adjuvanticity. eLife 2023; 12:72923. [PMID: 36753434 PMCID: PMC9908076 DOI: 10.7554/elife.72923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The myeloid C-type lectin receptor (CLR) MINCLE senses the mycobacterial cell wall component trehalose-6,6'-dimycolate (TDM). Recently, we found that IL-4 downregulates MINCLE expression in macrophages. IL-4 is a hallmark cytokine in helminth infections, which appear to increase the risk for mycobacterial infection and active tuberculosis. Here, we investigated functional consequences of IL-4 and helminth infection on MINCLE-driven macrophage activation and Th1/Th17 adjuvanticity. IL-4 inhibited MINCLE and cytokine induction after macrophage infection with Mycobacterium bovis bacille Calmette-Guerin (BCG). Infection of mice with BCG upregulated MINCLE on myeloid cells, which was inhibited by IL-4 plasmid injection and by infection with the nematode Nippostrongylus brasiliensis in monocytes. To determine the impact of helminth infection on MINCLE-dependent immune responses, we vaccinated mice with a recombinant protein together with the MINCLE ligand trehalose-6,6-dibehenate (TDB) as adjuvant. Concurrent infection with N. brasiliensis or with Schistosoma mansoni promoted T cell-derived IL-4 production and suppressed Th1/Th17 differentiation in the spleen. In contrast, helminth infection did not reduce Th1/Th17 induction by TDB in draining peripheral lymph nodes, where IL-4 levels were unaltered. Upon use of the TLR4-dependent adjuvant G3D6A, N. brasiliensis infection impaired selectively the induction of splenic antigen-specific Th1 but not of Th17 cells. Inhibition of MINCLE-dependent Th1/Th17 responses in mice infected with N. brasiliensis was dependent on IL-4/IL-13. Thus, helminth infection attenuated the Th17 response to MINCLE-dependent immunization in an organ- and adjuvant-specific manner via the Th2 cytokines IL-4/IL-13. Taken together, our results demonstrate downregulation of MINCLE expression on monocytes and macrophages by IL-4 as a possible mechanism of thwarted Th17 vaccination responses by underlying helminth infection.
Collapse
Affiliation(s)
- Judith Schick
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Meltem Altunay
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Matthew Lacorcia
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Nathalie Marschner
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Stefanie Westermann
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Julia Schluckebier
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Christoph Schubart
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Barbara Bodendorfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Dennis Christensen
- Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum InstitutCopenhagenDenmark
| | - Christian Alexander
- Cellular Microbiology, Forschungszentrum Borstel, Leibniz Lung Center BorstelBorstelGermany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Clarissa Prazeres da Costa
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| |
Collapse
|
9
|
Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023; 15:2226916. [PMID: 37365731 PMCID: PMC10305517 DOI: 10.1080/19490976.2023.2226916] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Blood Flukes and Arterial Damage: A Review of Aneurysm Cases in Patients with Schistosomiasis. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:6483819. [PMID: 36510604 PMCID: PMC9741531 DOI: 10.1155/2022/6483819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Introduction Schistosomiasis, caused by trematode worms of the genus Schistosoma, has organ-specific morbidity due to host's inflammatory response to the oviposition of parasite eggs in vessels and organs. Damage to the cardiovascular system, including aneurysms, has been described in patients. Aims and Methods. Aims of the review of case reports and series published in literature were to describe the occurrence of aneurysm in patients with schistosomiasis. Investigation Outcomes. A total of 13 cases (seven males and six females) with a mean age of 41.3 ± 14.9 years were included. Aneurysm occurred in patients with active or previous infection. In more than half of the cases, an intestinal or hepato-splenic involvement was reported, followed by pulmonary schistosomiasis and urinary or testicular involvement. The most frequently involved arterial district was the pulmonary artery. Immunomodulation and thrombophilia were featuring challenging surgery. Conclusions More studies are needed to shed light on the vascular complications of schistosomiasis, to ascertain the true burden of aneurysms in patients with schistosomiasis, to establish the pathophysiology of vessel damage and aneurysm formation, and to assess if there is an association between schistosomiasis and aneurysm formation in line with WHO 2021-2030 NTD Roadmap.
Collapse
|
11
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bajinka O, Qi M, Barrow A, Touray AO, Yang L, Tan Y. Pathogenicity of Salmonella During Schistosoma-Salmonella Co-infections and the Importance of the Gut Microbiota. Curr Microbiol 2021; 79:26. [PMID: 34905113 PMCID: PMC8669234 DOI: 10.1007/s00284-021-02718-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Antibiotic inefficacy in treating bacterial infections is largely studied in the context of developing resistance mechanisms. However, little attention has been paid to combined diseases mechanisms, interspecies pathogenesis and the resulting impact on antimicrobial treatment. This review will consider the co-infections of Salmonella and Schistosoma mansoni. It summarises the protective mechanisms that the pathophysiology of the two infections confer, which leads to an antibiotic protection phenomenon. This review will elucidate the functional characteristics of the gut microbiota in the context of these co-infections, the pathogenicity of these infections in infected mice, and the efficacy of the antibiotics used in treatment of these co-infections over time. Salmonella-Schistosoma interactions and the mechanism for antibiotic protection are not well established. However, antimicrobial drug inefficacy is an existing phenomenon in these co-infections. The treatment of schistosomiasis to ensure the efficacy of antibiotic therapy for bacterial infections should be considered in co-infected patients.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Microbiology, Central South University, Changsha, Hunan, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Amadou Barrow
- Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University, Heidelberg, Germany.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abdoulie O Touray
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Lulu Yang
- Department of Microbiology, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Microbiology, Central South University, Changsha, Hunan, China. .,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China. .,Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
13
|
Wu Q, Feng Z, Hu W. Reduction of autofluorescence in whole adult worms of Schistosoma japonicum for immunofluorescence assay. Parasit Vectors 2021; 14:532. [PMID: 34649608 PMCID: PMC8515762 DOI: 10.1186/s13071-021-05027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Immunofluorescence assay is one of methods to understand the spatial biology by visualizing localization of biomolecules in cells and tissues. Autofluorescence, as a common phenomenon in organisms, is a background signal interfering the immunolocalization assay of schistosome biomolecules, and may lead to misinterpretation of the biomolecular function. However, applicable method for reducing the autofluorescence in Schistosoma remains unclear. In order to find a suitable method for reducing autofluorescence of schistosomes, different chemical reagents, such as Sudan black B (SBB), trypan blue (TB), copper sulfate (CuSO4), Tris-glycine (Gly), and ammonia/ethanol (AE), at different concentrations and treatment time were tested, and SBB and CuSO4 were verified for the effect of blocking autofluorescence in immunofluorescence to localize the target with anti-SjCRT antibody. By comparing the autofluorescence characteristics of different conditions, it was found that SBB, TB and CuSO4 had a certain degree of reducing autofluorescence effect, and the best effect in females was using 50 mM CuSO4 for 6 h and in males was 0.5% SBB for 6 h. Furthermore, we have applied the optimized conditions to the immunofluorescence of SjCRT protein, and the results revealed that the immunofluorescence signal of SjCRT was clearly visible without autofluorescence interference. We present an effective method to reduce autofluorescence in male and female worm of Schistosoma japonicum for immunofluorescence assay, which could be helpful to better understand biomolecular functions. Our method provides an idea for immunofluorescence assay in other flukes with autofluoresence. ![]()
Collapse
Affiliation(s)
- Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
14
|
Ondari E, Calvino-Sanles E, First NJ, Gestal MC. Eosinophils and Bacteria, the Beginning of a Story. Int J Mol Sci 2021; 22:8004. [PMID: 34360770 PMCID: PMC8347986 DOI: 10.3390/ijms22158004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.
Collapse
Affiliation(s)
| | | | | | - Monica C. Gestal
- LSU Health, Department of Microbiology and Immunology, Louisiana State University (LSU), Shreveport, LA 71103, USA; (E.O.); (E.C.-S.); (N.J.F.)
| |
Collapse
|
15
|
Brosschot TP, Lawrence KM, Moeller BE, Kennedy MHE, FitzPatrick RD, Gauthier CM, Shin D, Gatti DM, Conway KME, Reynolds LA. Impaired host resistance to Salmonella during helminth co-infection is restored by anthelmintic treatment prior to bacterial challenge. PLoS Negl Trop Dis 2021; 15:e0009052. [PMID: 33471793 PMCID: PMC7850471 DOI: 10.1371/journal.pntd.0009052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/01/2021] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Intestinal helminth infection can impair host resistance to co-infection with enteric bacterial pathogens. However, it is not known whether helminth drug-clearance can restore host resistance to bacterial infection. Using a mouse helminth-Salmonella co-infection system, we show that anthelmintic treatment prior to Salmonella challenge is sufficient to restore host resistance to Salmonella. The presence of the small intestine-dwelling helminth Heligmosomoides polygyrus at the point of Salmonella infection supports the initial establishment of Salmonella in the small intestinal lumen. Interestingly, if helminth drug-clearance is delayed until Salmonella has already established in the small intestinal lumen, anthelmintic treatment does not result in complete clearance of Salmonella. This suggests that while the presence of helminths supports initial Salmonella colonization, helminths are dispensable for Salmonella persistence in the host small intestine. These data contribute to the mechanistic understanding of how an ongoing or prior helminth infection can affect pathogenic bacterial colonization and persistence in the mammalian intestine. In regions where helminth infection is common and sanitation standards are poor, people are at a high risk of exposure to bacterial pathogens. Previous work in animal models has shown that helminth infection can impair host resistance to bacterial infection. The current treatment for helminth infection is the administration of helminth-clearing drugs, yet it is not known whether drug clearance of helminths restores helminth-impaired host resistance to bacterial infection. In this report we use a mouse helminth-Salmonella co-infection model system, where we find that the presence of small intestinal helminths at the point of Salmonella infection aids the establishment of Salmonella in the small intestinal lumen. We show that helminth drug clearance prior to Salmonella infection is sufficient to restore host resistance to Salmonella. However, if helminth drug clearance is delayed until after Salmonella had already established in the small intestinal lumen, helminth elimination does not result in complete clearance of Salmonella from this site. Our work suggests that helminth drug clearance may be beneficial in reducing susceptibility to subsequent intestinal bacterial infections, but that helminth drug clearance after co-infection may not result in clearance of bacterial populations that have firmly established in the intestinal lumen.
Collapse
Affiliation(s)
- Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Katherine M Lawrence
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Mia H E Kennedy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Rachael D FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Courtney M Gauthier
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Dongju Shin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Dominique M Gatti
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Kate M E Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
16
|
Tumor Necrosis Factor and Schistosoma mansoni egg antigen omega-1 shape distinct aspects of the early egg-induced granulomatous response. PLoS Negl Trop Dis 2021; 15:e0008814. [PMID: 33465071 PMCID: PMC7845976 DOI: 10.1371/journal.pntd.0008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/29/2021] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Infections by schistosomes result in granulomatous lesions around parasite eggs entrapped within the host tissues. The host and parasite determinants of the Schistosoma mansoni egg-induced granulomatous response are areas of active investigation. Some studies in mice implicate Tumor Necrosis Factor (TNF) produced in response to the infection whereas others fail to find a role for it. In addition, in the mouse model, the S. mansoni secreted egg antigen omega-1 is found to induce granulomas but the underlying mechanism remains unknown. We have recently developed the zebrafish larva as a model to study macrophage recruitment and granuloma formation in response to Schistosoma mansoni eggs. Here we use this model to investigate the mechanisms by which TNF and omega-1 shape the early granulomatous response. We find that TNF, specifically signaling through TNF receptor 1, is not required for macrophage recruitment to the egg and granuloma initiation but does mediate granuloma enlargement. In contrast, omega-1 mediates initial macrophage recruitment, with this chemotactic activity being dependent on its RNase activity. Our findings further the understanding of the role of these host- and parasite-derived factors and show that they impact distinct facets of the granulomatous response to the schistosome egg. Schistosomiasis is a disease caused by parasitic flatworms which lay eggs within the veins of their human host. Upon sensing the parasite egg, macrophages, the first line defense cells, aggregate tightly around the egg to encapsulate it within an immune structure known as a granuloma. These granulomas are the key pathological structures which determine both host disease outcome and parasite transmission. Studies in mice have implicated omega-1, a secreted parasite protein. Omega-1 is an RNase, an enzyme that degrades host RNA. Mouse studies have also suggested that a host defense protein, Tumor Necrosis Factor (TNF), is required to form granulomas around the egg. We used the small and transparent zebrafish larva to examine the requirement of omega-1 and TNF for granuloma formation. We find that omega-1 induces rapid macrophage migration and that its RNase activity is required for this. In contrast, TNF is not involved in the initial recruitment of macrophages. Rather, it enlarges granulomas after they are initiated. These findings improve our understanding of the role of omega-1 and TNF, and show that they impact distinct facets of granuloma formation around Schistosoma eggs.
Collapse
|
17
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
18
|
Takaki KK, Rinaldi G, Berriman M, Pagán AJ, Ramakrishnan L. Schistosoma mansoni Eggs Modulate the Timing of Granuloma Formation to Promote Transmission. Cell Host Microbe 2020; 29:58-67.e5. [PMID: 33120115 PMCID: PMC7815046 DOI: 10.1016/j.chom.2020.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
Schistosome eggs provoke the formation of granulomas, organized immune aggregates, around them. For the host, the granulomatous response can be both protective and pathological. Granulomas are also postulated to facilitate egg extrusion through the gut lumen, a necessary step for parasite transmission. We used zebrafish larvae to visualize the granulomatous response to Schistosomamansoni eggs and inert egg-sized beads. Mature eggs rapidly recruit macrophages, which form granulomas within days. Beads also induce granulomas rapidly, through a foreign body response. Strikingly, immature eggs do not recruit macrophages, revealing that the eggshell is immunologically inert. Our findings suggest that the eggshell inhibits foreign body granuloma formation long enough for the miracidium to mature. Then parasite antigens secreted through the eggshell trigger granulomas that facilitate egg extrusion into the environment. In support of this model, we find that only mature S. mansoni eggs are shed into the feces of mice and humans. Foreign bodies are walled off by immune structures called granulomas Schistosoma mansoni eggshells prevent the formation of granulomas around immature parasites Secreted antigens from mature parasites induce granulomas that promote egg shedding S. mansoni modulates granuloma formation to selectively shed mature eggs into feces
Collapse
Affiliation(s)
- Kevin K Takaki
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Antonio J Pagán
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Shiels J, Cwiklinski K, Alvarado R, Thivierge K, Cotton S, Gonzales Santana B, To J, Donnelly S, Taggart CC, Weldon S, Dalton JP. Schistosoma mansoni immunomodulatory molecule Sm16/SPO-1/SmSLP is a member of the trematode-specific helminth defence molecules (HDMs). PLoS Negl Trop Dis 2020; 14:e0008470. [PMID: 32644998 PMCID: PMC7373315 DOI: 10.1371/journal.pntd.0008470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/21/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sm16, also known as SPO-1 and SmSLP, is a low molecular weight protein (~16kDa) secreted by the digenean trematode parasite Schistosoma mansoni, one of the main causative agents of human schistosomiasis. The molecule is secreted from the acetabular gland of the cercariae during skin invasion and is believed to perform an immune-suppressive function to protect the invading parasite from innate immune cell attack. METHODOLOGY/PRINCIPAL FINDINGS We show that Sm16 homologues of the Schistosomatoidea family are phylogenetically related to the helminth defence molecule (HDM) family of immunomodulatory peptides first described in Fasciola hepatica. Interrogation of 69 helminths genomes demonstrates that HDMs are exclusive to trematode species. Structural analyses of Sm16 shows that it consists predominantly of an amphipathic alpha-helix, much like other HDMs. In S. mansoni, Sm16 is highly expressed in the cercariae and eggs but not in adult worms, suggesting that the molecule is of importance not only during skin invasion but also in the pro-inflammatory response to eggs in the liver tissues. Recombinant Sm16 and a synthetic form, Sm16 (34-117), bind to macrophages and are internalised into the endosomal/lysosomal system. Sm16 (34-117) elicited a weak pro-inflammatory response in macrophages in vitro but also suppressed the production of bacterial lipopolysaccharide (LPS)-induced inflammatory cytokines. Evaluation of the transcriptome of human macrophages treated with a synthetic Sm16 (34-117) demonstrates that the peptide exerts significant immunomodulatory effects alone, as well as in the presence of LPS. Pathways most significantly influenced by Sm16 (34-117) were those involving transcription factors peroxisome proliferator-activated receptor (PPAR) and liver X receptors/retinoid X receptor (LXR/RXR) which are intricately involved in regulating the cellular metabolism of macrophages (fatty acid, cholesterol and glucose homeostasis) and are central to inflammatory responses. CONCLUSIONS/SIGNIFICANCE These results offer new insights into the structure and function of a well-known immunomodulatory molecule, Sm16, and places it within a wider family of trematode-specific small molecule HDM immune-modulators with immuno-biotherapeutic possibilities.
Collapse
Affiliation(s)
- Jenna Shiels
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - Krystyna Cwiklinski
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Center of One Health (COH) and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Raquel Alvarado
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Karine Thivierge
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Sophie Cotton
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | | | - Joyce To
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Clifford C. Taggart
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - Sinead Weldon
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - John P. Dalton
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Center of One Health (COH) and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
20
|
Giardia spp. promote the production of antimicrobial peptides and attenuate disease severity induced by attaching and effacing enteropathogens via the induction of the NLRP3 inflammasome. Int J Parasitol 2020; 50:263-275. [PMID: 32184085 DOI: 10.1016/j.ijpara.2019.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Polymicrobial infections of the gastro-intestinal tract are common in areas with poor sanitation. Disease outcome is the result of complex interactions between the host and pathogens. Such interactions lie at the core of future management strategies of enteric diseases. In developed countries of the world, Giardia duodenalis is a common cause of diarrheal disease. In contrast, giardiasis appears to protect children against diarrhea in countries with poor sanitation, via obscure mechanisms. We hypothesized that Giardia may protect its host from disease induced by a co-infecting pathogen such as attaching and effacing Escherichia coli. This enteropathogen is commonly implicated in pediatric diarrhea in developing countries. The findings indicate that co-infection with Giardia attenuates the severity of disease induced by Citrobacter rodentium, an equivalent of A/E E. coli in mice. Co-infection with Giardia reduced colitis, blood in stools, fecal softening, bacterial invasion, and weight loss; the protective effects were lost when co-infection occurred in Nod-like receptor pyrin-containing 3 knockout mice. In co-infected mice, elevated levels of antimicrobial peptides Murine β defensin 3 and Trefoil Factor 3, and enhanced bacterial killing, were NLRP3-dependent. Inhibition of the NLRP3 inflammasome in human enterocytes blocked the activation of AMPs and bacterial killing. The findings uncover novel NLRP3-dependent modulatory mechanisms during co-infections with Giardia spp. and A/E enteropathogens, and demonstrate how these interactions may regulate the severity of enteric disease.
Collapse
|