1
|
Drum DL, Jallorina AG, Wan LS, Chang VT, Lee-Wong MF. Non-Genetic Biomarkers in Merkel Cell Carcinoma: Prognostic Implications and Predictive Utility for Response to Anti-PD-(L)1 Immune Checkpoint Inhibitors. Exp Dermatol 2025; 34:e70030. [PMID: 39791602 DOI: 10.1111/exd.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Merkel cell carcinoma (MCC) is a skin cancer that arises due to either Merkel cell polyomavirus infection (MCPyV) or ultraviolet (UV) radiation exposure, presenting primarily in the head and neck region of fair-skinned males. The recent success of PD-(L)1 immune checkpoint inhibitors (ICIs) in locally advanced/metastatic MCC, with an objective response rate (ORR) around 50% and improved survival, as a first-line treatment has moved ICIs to the forefront of therapy for MCC and generated interest in identifying biomarkers to predict clinical response. The MCC tumour microenvironment (TME) contains various components of the adaptive and innate immune system. These components can contribute to tumour immune escape through immunosuppression by preventing entrance of other immune cells or by aiding in the cytotoxic clearance of tumour cells. We aim to combine information from studies of baseline and on-treatment monitoring of the TME to help predict the success of ICIs in MCC. This review enhances the understanding of how CD8 T cells, γδ T cells and macrophages may impact predictions of response rates to ICIs in MCC patients. These immune cells are non-genetic biomarkers that can also be used to determine prognosis in MCC treatment.
Collapse
Affiliation(s)
- David L Drum
- Department of Medicine, California University of Science and Medicine, Colton, California, USA
| | - Anika G Jallorina
- Department of Medicine, California University of Science and Medicine, Colton, California, USA
| | - Leo S Wan
- Department of Medicine, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Victor T Chang
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey School of Medicine, Newark, New Jersey, USA
- Section of Hematology/Oncology, Veterans Administration New Jersey Health Care System, East Orange, New Jersey, USA
| | - Mary F Lee-Wong
- Department of Medicine and Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Allergy and Immunology, Maimonides Medical Center, Brooklyn, New York, USA
| |
Collapse
|
2
|
Messmer JM, Thommek C, Piechutta M, Venkataramani V, Wehner R, Westphal D, Schubert M, Mayer CD, Effern M, Berghoff AS, Hinze D, Helfrich I, Schadendorf D, Wick W, Hölzel M, Karreman MA, Winkler F. T lymphocyte recruitment to melanoma brain tumors depends on distinct venous vessels. Immunity 2024; 57:2688-2703.e11. [PMID: 39368486 DOI: 10.1016/j.immuni.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
To improve immunotherapy for brain tumors, it is important to determine the principal intracranial site of T cell recruitment from the bloodstream and their intracranial route to brain tumors. Using intravital microscopy in mouse models of intracranial melanoma, we discovered that circulating T cells preferably adhered and extravasated at a distinct type of venous blood vessel in the tumor vicinity, peritumoral venous vessels (PVVs). Other vascular structures were excluded as alternative T cell routes to intracranial melanomas. Anti-PD-1/CTLA-4 immune checkpoint inhibitors increased intracranial T cell motility, facilitating migration from PVVs to the tumor and subsequently inhibiting intracranial tumor growth. The endothelial adhesion molecule ICAM-1 was particularly expressed on PVVs, and, in samples of human brain metastases, ICAM-1 positivity of PVV-like vessels correlated with intratumoral T cell infiltration. These findings uncover a distinct mechanism by which the immune system can access and control brain tumors and potentially influence other brain pathologies.
Collapse
Affiliation(s)
- Julia M Messmer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Calvin Thommek
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuel Piechutta
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Department of Functional Neuroanatomy, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, 01307 Dresden, Germany; Partner Site Dresden, National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Westphal
- Partner Site Dresden, National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Marc Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Chanté D Mayer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Maike Effern
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Anna S Berghoff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Hinze
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Iris Helfrich
- Medical Faculty of the Ludwig Maximilian University of Munich, Department of Dermatology and Allergology, Frauenlobstrasse 9-11, 80377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Department of Dermatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Lingel H, Fischer L, Remstedt S, Kuropka B, Philipsen L, Han I, Sander JE, Freund C, Arra A, Brunner-Weinzierl MC. SLAMF7 (CD319) on activated CD8 + T cells transduces environmental cues to initiate cytotoxic effector cell responses. Cell Death Differ 2024:10.1038/s41418-024-01399-y. [PMID: 39390117 DOI: 10.1038/s41418-024-01399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
CD8+ T-cell responses are meticulously orchestrated processes regulated by intercellular receptor:ligand interactions. These interactions critically control the dynamics of CD8+ T-cell populations that is crucial to overcome threats such as viral infections or cancer. Yet, the mechanisms governing these dynamics remain incompletely elucidated. Here, we identified a hitherto unknown T-cell referred function of the self-ligating surface receptor SLAMF7 (CD319) on CD8+ T cells during initiation of cytotoxic T-cell responses. According to its cytotoxicity related expression on T effector cells, we found that CD8+ T cells could utilize SLAMF7 to transduce environmental cues into cellular interactions and information exchange. Indeed, SLAMF7 facilitated a dose-dependent formation of stable homotypic contacts that ultimately resulted in stable cell-contacts, quorum populations and commitment to expansion and differentiation. Using pull-down assays and network analyses, we identified novel SLAMF7-binding intracellular signaling molecules including the CRK, CRKL, and Nck adaptors, which are involved in T-cell contact formation and may mediate SLAMF7 functions in sensing and adhesion. Hence, providing SLAMF7 signals during antigen recognition of CD8+ T cells enhanced their overall magnitude, particularly in responses towards low-affinity antigens, resulting in a significant boost in their proliferation and cytotoxic capacity. Overall, we have identified and characterized a potent initiator of the cytotoxic T lymphocyte response program and revealed advanced mechanisms to improve CD8+ T-cell response decisions against weak viral or tumor-associated antigens, thereby strengthening our defense against such adversaries.
Collapse
Affiliation(s)
- Holger Lingel
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Laura Fischer
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sven Remstedt
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Multi-parametric bioimaging and cytometry (MPBIC) core facility, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Cellular and Molecular Immunology, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Irina Han
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jan-Erik Sander
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Aditya Arra
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
4
|
Girard A, Vimonpatranon S, Chan A, Jiang A, Huang DW, Virtaneva K, Kanakabandi K, Martens C, Goes LR, Soares MA, Licavoli I, McMurry J, Doan P, Wertz S, Wei D, Ryk DV, Ganesan S, Hwang IY, Kehrl JH, Martinelli E, Arthos J, Cicala C. MAdCAM-1 co-stimulation combined with retinoic acid and TGF-β induces blood CD8 + T cells to adopt a gut CD101 + T RM phenotype. Mucosal Immunol 2024; 17:700-712. [PMID: 38729611 PMCID: PMC11323166 DOI: 10.1016/j.mucimm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Resident memory T cells (TRMs) help control local immune homeostasis and contribute to tissue-protective immune responses. The local cues that guide their differentiation and localization are poorly defined. We demonstrate that mucosal vascular addressin cell adhesion molecule 1, a ligand for the gut-homing receptor α4β7 integrin, in the presence of retinoic acid and transforming growth factor-β (TGF-β) provides a co-stimulatory signal that induces blood cluster of differentiation (CD8+ T cells to adopt a TRM-like phenotype. These cells express CD103 (integrin αE) and CD69, the two major TRM cell-surface markers, along with CD101. They also express C-C motif chemokine receptors 5 (CCR5) , C-C motif chemokine receptors 9 (CCR9), and α4β7, three receptors associated with gut homing. A subset also expresses E-cadherin, a ligand for αEβ7. Fluorescent lifetime imaging indicated an αEβ7 and E-cadherin cis interaction on the plasma membrane. This report advances our understanding of the signals that drive the differentiation of CD8+ T cells into resident memory T cells and provides a means to expand these cells in vitro, thereby affording an avenue to generate more effective tissue-specific immunotherapies.
Collapse
Affiliation(s)
- Alexandre Girard
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Sinmanus Vimonpatranon
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA; Department of Retrovirology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amanda Chan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Andrew Jiang
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Da Wei Huang
- NCI, Lymphoid Malignancy Branch, Bethesda, Maryland, USA
| | - Kimmo Virtaneva
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Craig Martens
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Livia R Goes
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA; INCA, Rio de Janeiro, Brazil
| | | | - Isabella Licavoli
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Jordan McMurry
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Pearl Doan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Samuel Wertz
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Danlan Wei
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Donald Van Ryk
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Il Young Hwang
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - John H Kehrl
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Elena Martinelli
- Northwestern Feinberg School of Medicine, Division of Infectious Diseases, Chicago, Illinois, USA
| | - James Arthos
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Anurogo D, Luthfiana D, Anripa N, Fauziah AI, Soleha M, Rahmah L, Ratnawati H, Wargasetia TL, Pratiwi SE, Siregar RN, Sholichah RN, Maulana MS, Ikrar T, Chang YH, Qiu JT. The Art of Bioimmunogenomics (BIGs) 5.0 in CAR-T Cell Therapy for Lymphoma Management. Adv Pharm Bull 2024; 14:314-330. [PMID: 39206402 PMCID: PMC11347730 DOI: 10.34172/apb.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/13/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Lymphoma, the most predominant neoplastic disorder, is divided into Hodgkin and Non-Hodgkin Lymphoma classifications. Immunotherapeutic modalities have emerged as essential methodologies in combating lymphoid malignancies. Chimeric Antigen Receptor (CAR) T cells exhibit promising responses in chemotherapy-resistant B-cell non-Hodgkin lymphoma cases. Methods This comprehensive review delineates the advancement of CAR-T cell therapy as an immunotherapeutic instrument, the selection of lymphoma antigens for CAR-T cell targeting, and the conceptualization, synthesis, and deployment of CAR-T cells. Furthermore, it encompasses the advantages and disadvantages of CAR-T cell therapy and the prospective horizons of CAR-T cells from a computational research perspective. In order to improve the design and functionality of artificial CARs, there is a need for TCR recognition investigation, followed by the implementation of a quality surveillance methodology. Results Various lymphoma antigens are amenable to CAR-T cell targeting, such as CD19, CD20, CD22, CD30, the kappa light chain, and ROR1. A notable merit of CAR-T cell therapy is the augmentation of the immune system's capacity to generate tumoricidal activity in patients exhibiting chemotherapy-resistant lymphoma. Nevertheless, it also introduces manufacturing impediments that are laborious, technologically demanding, and financially burdensome. Physical, physicochemical, and physiological limitations further exacerbate the challenge of treating solid neoplasms with CAR-T cells. Conclusion While the efficacy and safety of CAR-T cell immunotherapy remain subjects of fervent investigation, the promise of this cutting-edge technology offers valuable insights for the future evolution of lymphoma treatment management approaches. Moreover, CAR-T cell therapies potentially benefit patients, motivating regulatory bodies to foster international collaboration.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Faculty of Medicine and Health Sciences, Muhammadiyah University of Makassar, Makassar, South Sulawesi, 90221, Indonesia
| | - Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, East Java, 65162, Indonesia
| | - Nuralfin Anripa
- Department of Environmental Science, Dumoga University, Kotamobagu, South Sulawesi, 95711, Indonesia
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Apriliani Ismi Fauziah
- MSc Program in Tropical Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan
| | - Maratu Soleha
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
- IKIFA College of Health Sciences, East Jakarta, Special Capital Region of Jakarta, 13470, Indonesia
| | - Laila Rahmah
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
- Faculty of Medicine, Muhammadiyah University of Surabaya, Surabaya, East Java, 60113, Indonesia
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia
| | | | - Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, 78115, Indonesia
| | - Riswal Nafi Siregar
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
| | - Ratis Nour Sholichah
- Department of Biotechnology, Postgraduate School of Gadjah Mada University, Yogyakarta, 55284, Indonesia
| | - Muhammad Sobri Maulana
- Community Health Center (Puskesmas) Temon 1, Kulon Progo, Special Region of Yogyakarta, 55654, Indonesia
| | - Taruna Ikrar
- Director of Members-at-Large, International Association of Medical Regulatory Authorities (IAMRA), Texas, 76039, USA
- Aivita Biomedical Inc., Irvine, California, 92612, USA
- Chairman of Medical Council, The Indonesian Medical Council (KKI), Central Jakarta, 10350, Indonesia
- Adjunct Professor, School of Military Medicine, The Republic of Indonesia Defense University (RIDU), Jakarta Pusat, 10440, Indonesia
- Department of Pharmacology, Faculty of Medicine, Malahayati University, Bandar Lampung, Lampung, 35152, Indonesia
| | - Yu Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Locus Cell Co., LTD., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Jiantai Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| |
Collapse
|
6
|
Ritu, Chandra P, Das A. Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clin Exp Med 2023; 23:4297-4322. [PMID: 37804358 DOI: 10.1007/s10238-023-01201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Through improving the immune system's ability to recognize and combat tumor cells as well as its receptivity to changes in the tumor microenvironment, immunotherapy has emerged as a highly successful addition to the treatment of cancer. However, tumor heterogeneity poses a significant challenge in cancer therapy as it can undermine the anti-tumor immune response through the manipulation of the extracellular matrix. To address these challenges and improve targeted therapies and combination treatments, the food and drug administration has approved several immunomodulatory antibodies to suppress immunological checkpoints. Combinatorial therapies necessitate the identification of multiple targets that regulate the intricate communication between immune cells, cytokines, chemokines, and cellular responses within the tumor microenvironment. The purpose of this study is to provide a comprehensive overview of the ongoing clinical trials involving immunomodulatory antibodies in various cancer types. It explores the potential of these antibodies to modulate the immune system and enhance anti-tumor responses. Additionally, it discusses the perspectives and prospects of immunomodulatory therapeutics in cancer treatment. Although immunotherapy shows great promise in cancer treatment, it is not exempt from side effects that can arise due to hyperactivity of the immune system. Therefore, understanding the intricate balance between immune activation and regulation is crucial for minimizing these adverse effects and optimizing treatment outcomes. This study aims to contribute to the growing body of knowledge surrounding immunomodulatory antibodies and their potential as effective therapeutic options in cancer treatment, ultimately paving the way for improved patient outcomes and deepening our perception of the intricate interactivity between the immune system and tumors.
Collapse
Affiliation(s)
- Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India.
| |
Collapse
|
7
|
Yan H, Dai Y, Zhang X, Zhang H, Xiao X, Fu J, Zou D, Yu A, Jiang T, Li XC, Zhao Z, Chen W. The transcription factor IRF4 determines the anti-tumor immunity of CD8 + T cells. iScience 2023; 26:108087. [PMID: 37860697 PMCID: PMC10583049 DOI: 10.1016/j.isci.2023.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Understanding the factors that regulate T cell infiltration and functional states in solid tumors is crucial for advancing cancer immunotherapies. Here, we discovered that the expression of interferon regulatory factor 4 (IRF4) was a critical T cell intrinsic requirement for effective anti-tumor immunity. Mice with T-cell-specific ablation of IRF4 showed significantly reduced T cell tumor infiltration and function, resulting in accelerated growth of subcutaneous syngeneic tumors and allowing the growth of allogeneic tumors. Additionally, engineered overexpression of IRF4 in anti-tumor CD8+ T cells that were adoptively transferred significantly promoted their tumor infiltration and transition from a naive/memory-like cell state into effector T cell states. As a result, IRF4-engineered anti-tumor T cells exhibited significantly improved anti-tumor efficacy, and inhibited tumor growth either alone or in combination with PD-L1 blockade. These findings identify IRF4 as a crucial cell-intrinsic driver of T cell infiltration and function in tumors, emphasizing the potential of IRF4-engineering as an immunotherapeutic approach.
Collapse
Affiliation(s)
- Hui Yan
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medicine Oncology, The General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaolong Zhang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Hedong Zhang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jinfei Fu
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Anze Yu
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Tao Jiang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Xian C. Li
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
8
|
Oates TCL, Moura PL, Cross S, Roberts K, Baum HE, Haydn‐Smith KL, Wilson MC, Heesom KJ, Severn CE, Toye AM. Defining the proteomic landscape of cultured macrophages and their polarization continuum. Immunol Cell Biol 2023; 101:947-963. [PMID: 37694300 PMCID: PMC10953363 DOI: 10.1111/imcb.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Macrophages have previously been characterized based on phenotypical and functional differences into suggested simplified subtypes of MØ, M1, M2a and M2c. These macrophage subtypes can be generated in a well-established primary monocyte culture model that produces cells expressing accepted subtype surface markers. To determine how these subtypes retain functional similarities and better understand their formation, we generated all four subtypes from the same donors. Comparative whole-cell proteomics confirmed that four distinct macrophage subtypes could be induced from the same donor material, with > 50% of 5435 identified proteins being significantly altered in abundance between subtypes. Functional assessment highlighted that these distinct protein expression profiles are primed to enable specific cell functions, indicating that this shifting proteome is predictive of meaningful changes in cell characteristics. Importantly, the 2552 proteins remained consistent in abundance across all macrophage subtypes examined, demonstrating maintenance of a stable core proteome that likely enables swift polarity changes. We next explored the cross-polarization capabilities of preactivated M1 macrophages treated with dexamethasone. Importantly, these treated cells undergo a partial repolarization toward the M2c surface markers but still retain the M1 functional phenotype. Our investigation of polarized macrophage subtypes therefore provides evidence of a sliding scale of macrophage functionality, with these data sets providing a valuable benchmark resource for further studies of macrophage polarity, with relevance for cell therapy development and drug discovery.
Collapse
Affiliation(s)
- Tiah CL Oates
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolUK
| | - Pedro L Moura
- Center for Haematology and Regenerative Medicine, Department of Medicine (MedH)Karolinska InstitutetHuddingeSweden
| | | | - Kiren Roberts
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUK
| | - Holly E Baum
- Max Planck Bristol Centre for Minimal Biology, School of ChemistryUniversity of BristolBristolUK
| | - Katy L Haydn‐Smith
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUK
| | | | - Kate J Heesom
- Proteomics Facility, Biomedical Sciences BuildingUniversity of BristolBristolUK
| | - Charlotte E Severn
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolUK
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolUK
| |
Collapse
|
9
|
Pennings I, Moskowitz A, Shah G, Estilo C, Huryn JM, Yom SK. Osteonecrosis of the jaw associated with pembrolizumab. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:e11-e14. [PMID: 36804060 PMCID: PMC10395506 DOI: 10.1016/j.oooo.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
We report a case of osteonecrosis of the jaw (ONJ) with pembrolizumab, a rare yet possibly emerging complication. In this case, a temporal relationship between the development of ONJ and the patient's treatment regimen suggested an association between pembrolizumab/GVD therapy and the development of ONJ. Thrombocytosis and anatomic factors may also have played a role. The number of patients using pembrolizumab will likely continue to increase. We document this instance in order to better inform dental treatment around cancer patients undergoing pembrolizumab therapy.
Collapse
Affiliation(s)
- Isabel Pennings
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Alison Moskowitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunjan Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cherry Estilo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph M Huryn
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - SaeHee K Yom
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Sailer CJ, Hong Y, Dahal A, Ryan AT, Mir S, Gerber SA, Reagan PM, Kim M. PD-1 Hi CAR-T cells provide superior protection against solid tumors. Front Immunol 2023; 14:1187850. [PMID: 37388744 PMCID: PMC10303811 DOI: 10.3389/fimmu.2023.1187850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising treatment option for several hematologic cancers. However, efforts to achieve the same level of therapeutic success in solid tumors have largely failed mainly due to CAR-T cell exhaustion and poor persistence at the tumor site. Although immunosuppression mediated by augmented programmed cell death protein-1 (PD-1) expression has been proposed to cause CAR-T cell hypofunction and limited clinical efficacy, little is known about the underlying mechanisms and immunological consequences of PD-1 expression on CAR-T cells. With flow cytometry analyses and in vitro and in vivo anti-cancer T cell function assays, we found that both manufactured murine and human CAR-T cell products displayed phenotypic signs of T cell exhaustion and heterogeneous expression levels of PD-1. Unexpectedly, PD-1high CAR-T cells outperformed PD-1low CAR-T cells in multiple T cell functions both in vitro and in vivo. Despite the achievement of superior persistence at the tumor site in vivo, adoptive transfer of PD-1high CAR-T cells alone failed to control tumor growth. Instead, a PD-1 blockade combination therapy significantly delayed tumor progression in mice infused with PD-1high CAR-T cells. Therefore, our data demonstrate that robust T cell activation during the ex vivo CAR-T cell manufacturing process generates a PD-1high CAR-T cell subset with improved persistence and enhanced anti-cancer functions. However, these cells may be vulnerable to the immunosuppressive microenvironment and require combination with PD-1 inhibition to maximize therapeutic functions in solid tumors.
Collapse
Affiliation(s)
- Cooper J. Sailer
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yeonsun Hong
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Ankit Dahal
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Allison T. Ryan
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Sana Mir
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Scott A. Gerber
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Patrick M. Reagan
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
11
|
Reolo MJY, Otsuka M, Seow JJW, Lee J, Lee YH, Nguyen PHD, Lim CJ, Wasser M, Chua C, Lim TKH, Leow WQ, Chung A, Goh BKP, Chow PKH, DasGupta R, Yeong JPS, Chew V. CD38 marks the exhausted CD8 + tissue-resident memory T cells in hepatocellular carcinoma. Front Immunol 2023; 14:1182016. [PMID: 37377962 PMCID: PMC10292929 DOI: 10.3389/fimmu.2023.1182016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Despite recent advances in immunotherapy for hepatocellular carcinoma (HCC), the overall modest response rate underscores the need for a better understanding of the tumor microenvironment (TME) of HCC. We have previously shown that CD38 is widely expressed on tumor-infiltrating leukocytes (TILs), predominantly on CD3+ T cells and monocytes. However, its specific role in the HCC TME remains unclear. Methods In this current study, we used cytometry time-of-flight (CyTOF), bulk RNA sequencing on sorted T cells, and single-cell RNA (scRNA) sequencing to interrogate expression of CD38 and its correlation with T cell exhaustion in HCC samples. We also employed multiplex immunohistochemistry (mIHC) for validating our findings. Results From CyTOF analysis, we compared the immune composition of CD38-expressing leukocytes in TILs, non-tumor tissue-infiltrating leukocytes (NIL), and peripheral blood mononuclear cells (PBMC). We identified CD8+ T cells as the dominant CD38-expressing TILs and found that CD38 expression was significantly higher in CD8+ TRM in TILs than in NILs. Furthermore, through transcriptomic analysis on sorted CD8+ TRM from HCC tumors, we observed a higher expression of CD38 along with T cell exhaustion genes, including PDCD1 and CTLA4, compared to the circulating memory CD8 T cells from PBMC. This was validated by scRNA sequencing that revealed co-expression of CD38 with PDCD1, CTLA4, and ITGAE (CD103) in T cells from HCC tumors. The protein co-expression of CD38 and PD-1 on CD8+ T cells was further demonstrated by mIHC on HCC FFPE tissues, marking CD38 as a T cell co-exhaustion marker in HCC. Lastly, the higher proportions of CD38+PD-1+ CD8+ T cells and CD38+PD-1+ TRM were significantly associated with the higher histopathological grades of HCC, indicating its role in the aggressiveness of the disease. Conclusion Taken together, the concurrent expression of CD38 with exhaustion markers on CD8+ TRM underpins its role as a key marker of T cell exhaustion and a potential therapeutic target for restoring cytotoxic T cell function in HCC.
Collapse
Affiliation(s)
- Marie J. Y. Reolo
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Masayuki Otsuka
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Justine Jia Wen Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joycelyn Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yun Hua Lee
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Phuong H. D. Nguyen
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Chun Jye Lim
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Martin Wasser
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Chua
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Tony K. H. Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Alexander Chung
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
| | - Brian K. P. Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- SingHealth-DukeNUS Academic Surgery Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Pierce K. H. Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- SingHealth-DukeNUS Academic Surgery Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Division of Medical Science, National Cancer Center, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
12
|
Stark MC, Joubert AM, Visagie MH. Molecular Farming of Pembrolizumab and Nivolumab. Int J Mol Sci 2023; 24:10045. [PMID: 37373192 DOI: 10.3390/ijms241210045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a class of immunotherapy agents capable of alleviating the immunosuppressive effects exerted by tumorigenic cells. The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most ubiquitous checkpoints utilized by tumorigenic cells for immune evasion by inducing apoptosis and inhibiting the proliferation and cytokine production of T lymphocytes. Currently, the most frequently used ICIs targeting the PD-1/PD-L1 checkpoint include monoclonal antibodies (mAbs) pembrolizumab and nivolumab that bind to PD-1 on T lymphocytes and inhibit interaction with PD-L1 on tumorigenic cells. However, pembrolizumab and nivolumab are costly, and thus their accessibility is limited in low- and middle-income countries (LMICs). Therefore, it is essential to develop novel biomanufacturing platforms capable of reducing the cost of these two therapies. Molecular farming is one such platform utilizing plants for mAb production, and it has been demonstrated to be a rapid, low-cost, and scalable platform that can be potentially implemented in LMICs to diminish the exorbitant prices, ultimately leading to a significant reduction in cancer-related mortalities within these countries.
Collapse
Affiliation(s)
- Michael C Stark
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Anna M Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Michelle H Visagie
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| |
Collapse
|
13
|
Chen M, Xue J, Wang M, Yang J, Chen T. Cardiovascular Complications of Pan-Cancer Therapies: The Need for Cardio-Oncology. Cancers (Basel) 2023; 15:cancers15113055. [PMID: 37297017 DOI: 10.3390/cancers15113055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
It is more likely that a long-term survivor will have both cardiovascular disease and cancer on account of the progress in cancer therapy. Cardiotoxicity is a well-recognized and highly concerning adverse effect of cancer therapies. This side effect can manifest in a proportion of cancer patients and may lead to the discontinuation of potentially life-saving anticancer treatment regimens. Consequently, this discontinuation may adversely affect the patient's survival prognosis. There are various underlying mechanisms by which each anticancer treatment affects the cardiovascular system. Similarly, the incidence of cardiovascular events varies with different protocols for malignant tumors. In the future, comprehensive cardiovascular risk assessment and clinical monitoring should be considered for cancer treatments. Baseline cardiovascular evaluation risk should be emphasized prior to initiating clinical therapy in patients. Additionally, we highlight that there is a need for cardio-oncology to avoid or prevent cardiovascular side effects. Cardio-oncology service is based on identifying cardiotoxicity, developing strategies to reduce these toxicities, and minimizing long-term cardiotoxic effects.
Collapse
Affiliation(s)
- Mengjia Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianing Xue
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Maoling Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Junyao Yang
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310058, China
| |
Collapse
|
14
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Khadela A, Postwala H, Rana D, Dave H, Ranch K, Boddu SHS. A review of recent advances in the novel therapeutic targets and immunotherapy for lung cancer. Med Oncol 2023; 40:152. [PMID: 37071269 DOI: 10.1007/s12032-023-02005-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Lung cancer is amongst the most pervasive malignancies having high mortality rates. It is broadly grouped into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). The concept of personalized medicine has overshadowed the conventional chemotherapy given to all patients with lung cancer. The targeted therapy is given to a particular population having specific mutations to help in the better management of lung cancer. The targeting pathways for NSCLC include the epidermal growth factor receptor, vascular endothelial growth factor receptor, MET (Mesenchymal epithelial transition factor) oncogene, Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK). SCLC targeting pathway includes Poly (ADP-ribose) polymerases (PARP) inhibitors, checkpoint kinase 1 (CHK 1) pathway, WEE1 pathway, Ataxia Telangiectasia and Rad3-related (ATR)/Ataxia telangiectasia mutated (ATM), and Delta-like canonical Notch ligand 3 (DLL-Immune checkpoint inhibitors like programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) inhibitors and Cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade are also utilized in the management of lung cancer. Many of the targeted therapies are still under development and require clinical trials to establish their safety and efficacy. This review summarizes the mechanism of molecular targets and immune-mediated targets, recently approved drugs, and their clinical trials for lung cancer.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Humzah Postwala
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Deval Rana
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Hetvi Dave
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics and Pharm. Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| |
Collapse
|
17
|
Harwardt J, Carrara SC, Bogen JP, Schoenfeld K, Grzeschik J, Hock B, Kolmar H. Generation of a symmetrical trispecific NK cell engager based on a two-in-one antibody. Front Immunol 2023; 14:1170042. [PMID: 37081888 PMCID: PMC10110854 DOI: 10.3389/fimmu.2023.1170042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
To construct a trispecific IgG-like antibody at least three different binding moieties need to be combined, which results in a complex architecture and challenging production of these molecules. Here we report for the first time the construction of trispecific natural killer cell engagers based on a previously reported two-in-one antibody combined with a novel anti-CD16a common light chain module identified by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibodies simultaneously target epidermal growth factor receptor (EGFR), programmed death-ligand 1 (PD-L1) and CD16a with two Fab fragments, resulting in specific cellular binding properties on EGFR/PD-L1 double positive tumor cells and a potent ADCC effect. This study paves the way for further development of multispecific therapeutic antibodies derived from avian immunization with desired target combinations, valencies, molecular symmetries and architectures.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Biologics Technology and Development, Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Björn Hock
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Harald Kolmar,
| |
Collapse
|
18
|
Reyna Villasmil E. Anticuerpos inmunomoduladores en el tratamiento del cáncer. REPERTORIO DE MEDICINA Y CIRUGÍA 2023. [DOI: 10.31260/repertmedcir.01217372.1361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Los anticuerpos inmunomoduladores (Aim) tienen la capacidad de modificar el funcionamiento del sistema inmune. Sus efectos sobre los receptores CTLA-4 y PD-1 producen disminución de la activación celular, afectando las acciones de los linfocitos T. La función de ambos receptores es cesar las funciones de las células inmunes autorreactivas que no son destruidas en las estructuras inmunes correspondientes y proteger los tejidos inflamados. Los tumores que expresan estos receptores evitan el reconocimiento por parte de las células inmunes. Los Aim bloquean los receptores y permiten a los linfocitos reconocer y responder ante antígenos neoplásicos. Las investigaciones sobre los fármacos con Aim muestran eficacia moderada en el tratamiento de algunos casos de cáncer en estadios avanzados. El uso combinado de fármacos tiene potenciales efectos sinérgicos con resultados positivos. Aún deben establecerse los posibles indicadores de éxito terapéutico y la posibilidad de reducir los efectos adversos en el uso clínico. El objetivo de esta revisión fue analizar las funciones y utilidad terapéutica de los anticuerpos inmunomoduladores en el tratamiento del cáncer.
Collapse
|
19
|
Abstract
Cancer immunotherapy with immune-checkpoint blockade has improved the outcomes of patients with various malignancies, yet a majority do not benefit or develop resistance. To address this unmet need, efforts across the field are targeting additional coinhibitory receptors, costimulatory proteins, and intracellular mediators that could prevent or bypass anti-PD1 resistance mechanisms. The CD28 costimulatory pathway is necessary for antigen-specific T cell activation, though prior CD28 agonists did not translate successfully to clinic due to toxicity. Casitas B lymphoma-b (Cbl-b) is a downstream, master regulator of both CD28 and CTLA-4 signaling. This E3 ubiquitin ligase regulates both innate and adaptive immune cells, ultimately promoting an immunosuppressive tumor microenvironment (TME) in the absence of CD28 costimulation. Recent advances in pharmaceutical screening and computational biology have enabled the development of novel platforms to target this once 'undruggable' protein. These platforms include DNA encoded library screening, allosteric drug targeting, small-interfering RNA inhibition, CRISPR genome editing, and adoptive cell therapy. Both genetic knock-out models and Cbl-b inhibitors have been shown to reverse immunosuppression in the TME, stimulate cytotoxic T cell activity, and promote tumor regression, findings augmented with PD1 blockade in experimental models. In translating Cbl-b inhibitors to clinic, we propose specific gene expression profiles that may identify patient populations most likely to benefit. Overall, novel Cbl-b inhibitors provide antigen-specific immune stimulation and are a promising therapeutic tool in the field of immuno-oncology.
Collapse
Affiliation(s)
- Ryan C Augustin
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Khadela A, Chavda VP, Postwala H, Ephraim R, Apostolopoulos V, Shah Y. Configuring Therapeutic Aspects of Immune Checkpoints in Lung Cancer. Cancers (Basel) 2023; 15:543. [PMID: 36672492 PMCID: PMC9856297 DOI: 10.3390/cancers15020543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Immune checkpoints are unique components of the body's defense mechanism that safeguard the body from immune responses that are potent enough to harm healthy body cells. When proteins present on the surface of T cells recognize and bind to the proteins present on other tumor cells, immune checkpoints are triggered. These proteins are called immunological checkpoints. The T cells receive an on/off signal when the checkpoints interact with companion proteins. This might avert the host's immune system from eliminating cancer cells. The standard care plan for the treatment of non-small cell lung cancer (NSCLC) has been revolutionized with the use of drugs targeting immune checkpoints, in particular programmed cell death protein 1. These drugs are now extended for their potential to manage SCLC. However, it is acknowledged that these drugs have specific immune related adverse effects. Herein, we discuss the use of immune checkpoint inhibitors in patients with NSCLC and SCLC, their outcomes, and future perspectives.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Humzah Postwala
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Yesha Shah
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
21
|
Wu Q, Yue X, Liu H, Zhu Y, Ke H, Yang X, Yin S, Li Z, Zhang Y, Hu T, Lan P, Wu X. MAP7D2 reduces CD8 + cytotoxic T lymphocyte infiltration through MYH9-HMGB1 axis in colorectal cancer. Mol Ther 2023; 31:90-104. [PMID: 36081350 PMCID: PMC9840115 DOI: 10.1016/j.ymthe.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a new paradigm in cancer immunotherapy, but can be largely restricted by the limited presence of CD8+ cytotoxic T lymphocytes (CTLs) in colorectal cancer (CRC) patients with microsatellite stable (MSS) tumors. Here, through next-generation sequencing, we identify microtubule-associated protein 7 domain 2 (MAP7D2) as an exploitable therapeutic maneuver to improve the efficacy of ICIs for MSS CRC therapy. In human CRC tissues, MAP7D2 expression is significantly increased in MSS CRC, and MAP7D2 adversely correlates with the presence of antitumor T lymphocytes. In vitro and in vivo experiments demonstrate that MAP7D2 knockdown significantly increases the infiltration of CD8+ CTLs, thereby inhibiting tumor progression and improving the efficacy of ICIs in MSS CRC murine models. Mechanistically, MAP7D2 interacts with MYH9 and protects it from ubiquitin-mediated degradation, subsequently decreasing the secretion of HMGB1, which suppresses the infiltration of CD8+ CTLs in MSS CRC. These findings highlight the importance of MAP7D2 in determining the infiltration of CD8+ CTLs and indicate that targeting MAP7D2 in MSS CRC may present a novel antitumor immunotherapy.
Collapse
Affiliation(s)
- Qian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Yue
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haoxian Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shi Yin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihao Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yunfeng Zhang
- Department of the General Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xianrui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Shirakawa K, Sano M. Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 2023; 13:1044737. [PMID: 36685567 PMCID: PMC9846168 DOI: 10.3389/fimmu.2022.1044737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity has a pronounced effect on the immune response in systemic organs that results in not only insulin resistance but also altered immune responses to infectious diseases and malignant tumors. Obesity-associated microenvironmental changes alter transcriptional expression and metabolism in T cells, leading to alterations in T-cell differentiation, proliferation, function, and survival. Adipokines, cytokines, and lipids derived from obese visceral adipose tissue (VAT) may also contribute to the systemic T-cell phenotype, resulting in obesity-specific pathogenesis. VAT T cells, which have multiple roles in regulating homeostasis and energy utilization and defending against pathogens, are most susceptible to obesity. In particular, many studies have shown that CD4 T cells are deeply involved in the homeostasis of VAT endocrine and metabolic functions and in obesity-related chronic inflammation. In obesity, macrophages and adipocytes in VAT function as antigen-presenting cells and contribute to the obesity-specific CD4 T-cell response by inducing CD4 T-cell proliferation and differentiation into inflammatory effectors via interactions between major histocompatibility complex class II and T-cell receptors. When obesity persists, prolonged stimulation by leptin and circulating free fatty acids, repetitive antigen stimulation, activating stress responses, and hypoxia induce exhaustion of CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector function, persistent expression of inhibitory receptors, and a transcriptional state distinct from functional effector and memory T cells. Moreover, obesity causes thymic regression, which may result in homeostatic proliferation of obesity-specific T-cell subsets due to changes in T-cell metabolism and gene expression in VAT. In addition to causing T-cell exhaustion, obesity also accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells secrete osteopontin, which causes further VAT inflammation. The obesity-associated transformation of CD4 T cells remains a negative legacy even after weight loss, causing treatment resistance of obesity-related conditions. This review discusses the marked transformation of CD4 T cells in VAT and systemic organs as a consequence of obesity-related microenvironmental changes.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
23
|
Arra A, Lingel H, Pierau M, Brunner-Weinzierl MC. PD-1 limits differentiation and plasticity of Tc17 cells. Front Immunol 2023; 14:1104730. [PMID: 37205114 PMCID: PMC10186197 DOI: 10.3389/fimmu.2023.1104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
Blockade of surface co-inhibitory receptor programmed cell death-1 (PD-1; CD279) has been established as an important immunotherapeutic approach to treat malignancies. On a cellular level, PD-1 is demonstrated to be of particular importance in inhibiting differentiation and effector function of cytotoxic Tc1 cells (CTLs). Nevertheless, the role of PD-1 in modulating interleukin (IL)-17-producing CD8+ T-cells (Tc17 cells), which generally display suppressed cytotoxic nature, is not well understood. To evaluate the impact of PD-1 in Tc17 responses, we examined its functioning using different in vitro and in vivo models. Upon activation of CD8+ T-cells in Tc17 environment, we found that PD-1 was rapidly expressed on the surface of CD8+ T-cells and triggered a T-cell-internal mechanism that inhibited the expression of IL-17 and Tc17-supporting transcription factors pSTAT3 and RORγt. Expression of type17-polarising cytokine IL-21 and the receptor for IL-23 were also suppressed. Intriguingly, adoptively transferred, PD-1-/- Tc17 cells were highly efficient in rejection of established B16 melanoma in vivo and displayed Tc1 like characteristics ex vivo. When using IL-17A-eGFP reporter mice for in vitro fate tracking, IL-17A-eGFP expressing cells lacking PD-1 signaling upon re-stimulation with IL-12 quickly acquired Tc1 characteristics such as IFN-γ, and granzyme B expression, implicating lineage independent upregulation of CTL-characteristics that are needed for tumor control. In line with plasticity characteristics, absence of PD-1 signaling in Tc17 cells increased the expression of the stemness and persistence-associated molecules TCF1 and BCL6. Thus, PD-1 plays a central role in the specific suppression of Tc17 differentiation and its plasticity in relation to CTL-driven tumor rejection, which provides further explanation as to why the blockade of PD-1 is such an efficient therapeutic target for inducing tumor rejection.
Collapse
Affiliation(s)
- Aditya Arra
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- *Correspondence: Monika C. Brunner-Weinzierl,
| |
Collapse
|
24
|
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, Alizadeh A, Ilkhani S, Khalafi F, Zadeh FA, Shafagh SG. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol Res Pract 2023; 241:154241. [PMID: 36543080 DOI: 10.1016/j.prp.2022.154241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer treatment is presently one of the most important challenges in medical science. Surgery, chemotherapy, radiotherapy, or combining these methods is used to eliminate the tumor. Hormone therapy, bone marrow transplantation, stem cell therapy as well as immunotherapy are other well-known therapeutic modalities. Immunotherapy, as the most important complementary method, uses the immune system for treating cancer followed by surgery, chemotherapy, and radiotherapy. This method is systematically used to prevent malignancies development mainly via potentiating antitumor immune cells activation and conversely compromising their exhaustion with the lowest negative effects on healthy cells. Active immunotherapy can be employed for cancer immunotherapy by directly using the ingredients of the immune system and activating immune responses. On the other hand, inactive immunotherapy is utilized by indirect induction and using immune cell-based products consisting of monoclonal antibodies. It has strongly been proved that combination therapy with immunotherapies and other therapeutic means, such as anti-angiogenic agents, could be a rational plan to treat cancer. Herein, we have focused on recent findings concerning the therapeutic merits of cancer therapy using immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and cancer vaccine alone or in combination with other approaches. Also, we offer a glimpse into the current challenges in this context.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran.
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Amiri Manjili
- Department of Infectious Disease, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Ali Alizadeh
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
25
|
Lu H, Zhou L, Zhang B, Xie Y, Yang H, Wang Z. Cuproptosis key gene FDX1 is a prognostic biomarker and associated with immune infiltration in glioma. Front Med (Lausanne) 2022; 9:939776. [PMID: 36523779 PMCID: PMC9745336 DOI: 10.3389/fmed.2022.939776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Recent studies have found that the protein encoded by the FDX1 gene is involved in mediating Cuproptosis as a regulator of protein lipoylation and related to immune response process of tumors. However, the specific biological function of FDX1 in glioma is currently unclear. To explore the potential function of FDX1, this study explored the correlation between the expression of FDX1 in cancers and survival prognosis by analyzing the public databases of GEPIA and Cbioportal. Immune infiltration was analyzed by the TIMER2.0 database in tumors. The possible biological processes and functions of FDX1-related in glioma were annotated through gene enrichment. Relationship between Cuproptosis and autophagy was explored through gene co-expression studies. Summary and conclusions of this study: (1) FDX1 is highly expressed in gliomas and associated with poor prognosis in low-grade gliomas (LGG). (2) Gene annotation indicates that FDX1 is mainly involved in the tumor protein lipoylation and cell death. (3) FDX1 expression is positively correlated with the infiltration of immune cells. (4) LIPT2 and NNAT, two other genes involved in lipoylation, may be unidentified marker gene for Cuproptosis. And the Cuproptosis genes related to FDX1 were positively correlated with the expression of autophagy marker genes Atg5, Atg12, and BECN-1. This evidence suggests that there may be some interaction between FDX1 mediated Cuproptosis and autophagy. In summary, FDX1 may serve as a potential immunotherapy target and prognostic marker for Glioma.
Collapse
Affiliation(s)
- Hanwen Lu
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Liwei Zhou
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuanyuan Xie
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huiyin Yang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
26
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Giri BR, Li S, Fang C, Qiu L, Yan S, Pakharukova MY, Cheng G. Dynamic miRNA profile of host T cells during early hepatic stages of Schistosoma japonicum infection. Front Immunol 2022; 13:911139. [PMID: 36119054 PMCID: PMC9478579 DOI: 10.3389/fimmu.2022.911139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Schistosomes undergo complicated migration in final hosts during infection, associated with differential immune responses. It has been shown that CD4+ T cells play critical roles in response to Schistosoma infections and accumulated documents have indicated that miRNAs tightly regulate T cell activity. However, miRNA profiles in host T cells associated with Schistosoma infection remain poorly characterized. Therefore, we undertook the study and systematically characterized T cell miRNA profiles from the livers and blood of S. japonicum infected C57BL/6J mice at 14- and 21-days post-infection. We observed 508 and 504 miRNAs, in which 264 miRNAs were co-detected in T cells isolated from blood and livers, respectively. The comparative analysis of T cell miRNAs from uninfected and infected C57BL/6J mice blood showed that miR-486b-5p/3p expression was significantly downregulated and linked to various T cell immune responses and miR-375-5p was highly upregulated, associated with Wnt signaling and pluripotency, Delta notch signaling pathways, etc. Whereas hepatic T cells showed miR-466b-3p, miR-486b-3p, miR-1969, and miR-375 were differentially expressed compared to the uninfected control. The different expressions of some miRNAs were further corroborated in isolated T cells from mice and in vitro cultured EL-4 cells treated with S. japonicum worm antigens by RT-qPCR and similar results were found. In addition, bioinformatics analysis combined with RT-qPCR validation of selected targets associated with the immune system and parasite-caused infectious disease showed a significant increase in the expression of Ctla4, Atg5, Hgf, Vcl and Arpc4 and a decreased expression of Fermt3, Pik3r1, Myd88, Nfkbie, Ppp1r12a, Ppp3r1, Nfyb, Atg12, Ube2n, Tyrobp, Cxcr4 and Tollip. Overall, these results unveil the comprehensive repertoire of T cell miRNAs during S. japonicum infection, suggesting that the circulatory (blood) and liver systems have distinct miRNAs landscapes that may be important for regulating T cell immune response. Altogether, our findings indicated a dynamic expression pattern of T cell miRNAs during the hepatic stages of S. japonicum infection.
Collapse
Affiliation(s)
- Bikash R. Giri
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Shun Li
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chuantao Fang
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Guofeng Cheng
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Guofeng Cheng, ;
| |
Collapse
|
28
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
29
|
Cai F, Gao H, Yu Z, Zhu K, Gu W, Guo X, Xu X, Shen H, Shu Q. High percentages of peripheral blood T-cell activation in childhood Hodgkin's lymphoma are associated with inferior outcome. Front Med (Lausanne) 2022; 9:955373. [PMID: 36035394 PMCID: PMC9399494 DOI: 10.3389/fmed.2022.955373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were to investigate the activation of T lymphocytes in peripheral blood from children with Hodgkin's lymphoma (HL) and explore their roles for prognosis in HL. A cohort of 52 newly diagnosed children with HL during the past 10 years was enrolled for analysis in this study. Peripheral blood samples of the patients were acquired before treatment in our hospital, and T-cell subsets were detected by a four-color flow cytometer. CD4+ T cells and CD4+/CD8+ T-cell ratio decreased significantly in patients with HL vs. healthy controls. CD8+ T cells, CD3+CD4+HLA-DR+ T cells, and CD3+CD8+HLA-DR+ T cells increased markedly in patients with HL vs. healthy controls. Receiver-operating characteristic (ROC) curve analysis showed that CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells each distinguished the high-risk group from the low- and intermediate-risk group. The area under the ROC curve for predicting high-risk patients was 0.795 for CD3+CD4+HLA-DR+ T cell and 0.784 for CD3+CD8+HLA-DR+ T cell. A comparison of peripheral blood T-cell subsets that responded differently to therapy showed significantly higher percentages of CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells in patients who achieved complete remission compared to those who did not achieve complete remission. In addition, high percentages of both CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells were associated with inferior event-free survival. Peripheral immune status may be related to disease severity in HL. CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells may be a novel indicator for risk stratification of HL and may be an independent risk factor for inferior outcome in childhood HL.
Collapse
Affiliation(s)
- Fengqing Cai
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gao
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongsheng Yu
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Guo
- Department of Hematology-Oncology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Hematology-Oncology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongqiang Shen
| | - Qiang Shu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Qiang Shu
| |
Collapse
|
30
|
Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188777. [PMID: 35963551 DOI: 10.1016/j.bbcan.2022.188777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
Microtubule targeting agents (MTAs) have attracted extensive attention for cancer treatment. However, their clinical efficacies are limited by intolerable toxicities, inadequate efficacy and acquired multidrug resistance. The combination of MTAs with other antineoplastics has become an efficient strategy to lower the toxicities, overcome resistance and improve the efficacies for cancer treatment. In this article, we review the combinations of MTAs with some other anticancer drugs, such as cytotoxic agents, kinases inhibitors, histone deacetylase inhibitors, immune checkpoints inhibitors, to overcome these obstacles. We strongly believe that this review will provide helpful information for combination therapy based on MTAs.
Collapse
|
31
|
Tahir IM, Rauf A, Mehboob H, Sadaf S, Alam MS, Kalsoom F, Bouyahya A, El Allam A, El Omari N, Bakrim S, Akram M, Raza SK, Emran TB, Mabkhot YN, Zengin G, Derkho M, Natalya S, Shariati MA. Prognostic significance of programmed death-1 and programmed death ligand-1 proteins in breast cancer. Hum Antibodies 2022; 30:131-150. [PMID: 35938242 DOI: 10.3233/hab-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In numerous studies related to tumor prognosis, programmed death-ligand 1 (PD-L1) has been identified as a biomarker. This work aimed to determine the prognostic importance of PD-L1 in breast cancer. We searched electronic databases such as PubMed, Google scholar, home pages of publishing groups, medical, clinical, and pharmaceutical sciences journals, as well as other relevant sources to discover the importance of PD-1 and PD-L1 expression in breast cancer therapies and also recurrence. The keywords used in this search were autoimmunity, programmed cell death, PD-L1 or PD-1, and breast cancer. Our inclusion criteria included studies showing the synergy between the expression of PD-L1 and PD-1 in primary breast cancers as prognostic markers and this research was limited to humans only. We included review articles, original research, letters to the editor, case reports, and short communications in our study, published in English. We focused our work on PD-L1 mRNA expression in breast cancer cell lines. PD-L1 expression has been decisively demonstrated to be a high-risk factor for breast cancer with a bad prognosis.
Collapse
Affiliation(s)
- Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, KPK, Pakistan
| | - Huma Mehboob
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Muhammad Shaiful Alam
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong, Bangladesh
| | - Fadia Kalsoom
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Aicha El Allam
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetics, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad Pakistan, Faisalabad, Pakistan
| | - Syed Kashif Raza
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Marina Derkho
- South-Urals State Agrarian University, Troitsk, Chelyabinsk Region, Russia
| | - Suray Natalya
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| |
Collapse
|
32
|
Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol 2022; 13:938004. [PMID: 35983040 PMCID: PMC9379342 DOI: 10.3389/fimmu.2022.938004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality.
Collapse
Affiliation(s)
- Barbara Molon
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Barbara Molon,
| | - Cristina Liboni
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Viola
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Li Y, Chen M, Chang W. Roles of the nucleus in leukocyte migration. J Leukoc Biol 2022; 112:771-783. [PMID: 35916042 DOI: 10.1002/jlb.1mr0622-473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocytes patrol our bodies in search of pathogens and migrate to sites of injury in response to various stimuli. Rapid and directed leukocyte motility is therefore crucial to our immunity. The nucleus is the largest and stiffest cellular organelle and a mechanical obstacle for migration through constrictions. However, the nucleus is also essential for 3D cell migration. Here, we review the roles of the nucleus in leukocyte migration, focusing on how cells deform their nuclei to aid cell motility and the contributions of the nucleus to cell migration. We discuss the regulation of the nuclear biomechanics by the nuclear lamina and how it, together with the cytoskeleton, modulates the shapes of leukocyte nuclei. We then summarize the functions of nesprins and SUN proteins in leukocytes and discuss how forces are exerted on the nucleus. Finally, we examine the mechanical roles of the nucleus in cell migration, including its roles in regulating the direction of migration and path selection.
Collapse
Affiliation(s)
- Yutao Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
34
|
Lintao RCV, Cando LFT, Perias GAS, Tantengco OAG, Tabios IKB, Velayo CL, de Paz-Silava SLM. Current Status of Human Papillomavirus Infection and Cervical Cancer in the Philippines. Front Med (Lausanne) 2022; 9:929062. [PMID: 35795639 PMCID: PMC9251542 DOI: 10.3389/fmed.2022.929062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer is estimated to cause 341,831 deaths each year, with 9 of 10 deaths occurring in developing countries. Over the past decade, there has been a significant increase in cervical cancer incidence among women in the Philippines. Persistent infection with high-risk human papillomavirus (HPV) is the well-established necessary cause of cervical cancer. Based on limited studies conducted in the Philippines, the prevalence of infection with any HPV genotype was 93.8% for cervical squamous cell carcinoma and 90.9% for cervical adenocarcinomas. HPV types 16 and 18 were the most common HPV genotypes among Filipino patients with cervical cancer. On the other hand, the incidence of HPV infection among Filipino women with normal cervices was 9.2%. The World Health Organization has launched a global agenda of eliminating HPV infection by 2030. One of its key milestones is to vaccinate 90% of girls with the HPV vaccine by 15 years. However, the HPV vaccination rate among Filipino women remains to be unsatisfactory. HPV vaccination has only been included in the Philippine Department of Health's community-based National Immunization Program in 2015. Despite these efforts, the Philippines currently ranks last on HPV program coverage among low-middle income countries, with coverage of only 23% of the target female population for the first dose and 5% for the final dose. The principal reason for the non-acceptance of HPV vaccines was the perceived high cost of vaccination. The low utilization of available cervical cancer screening tests such as Pap smear and visual inspection with acetic acid hampered the Philippines' control and prevention of HPV infection and cervical cancer. Among those diagnosed with cervical cancer in the Philippines, only an estimated 50% to 60% receive some form of treatment. To this end, we summarize the burden of HPV infection and cervical cancer on Filipinos and the risk factors associated with the disease. We present the current screening, diagnostics, treatment, and prevention of HPV-related diseases in the Philippines. Lastly, we also propose solutions on how each building block in health systems can be improved to eliminate HPV infection and reduce the burden of cervical cancer in the Philippines.
Collapse
Affiliation(s)
- Ryan C. V. Lintao
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Leslie Faye T. Cando
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Glenmarie Angelica S. Perias
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ourlad Alzeus G. Tantengco
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ian Kim B. Tabios
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Clarissa L. Velayo
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Sheriah Laine M. de Paz-Silava
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
- *Correspondence: Sheriah Laine M. de Paz-Silava
| |
Collapse
|
35
|
Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration? Cells 2022; 11:cells11111854. [PMID: 35681548 PMCID: PMC9180731 DOI: 10.3390/cells11111854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CAR) has demonstrated striking efficacy for the treatment of several hematological malignancies, including B-cell lymphoma, leukemia, and multiple myeloma. However, many patients still do not respond to this therapy or eventually relapse after an initial remission. In most solid tumors for which CAR T-cell therapy has been tested, efficacy has been very limited. In this context, it is of paramount importance to understand the mechanisms of tumor resistance to CAR T cells. Possible factors contributing to such resistance have been identified, including inherent CAR T-cell dysfunction, the presence of an immunosuppressive tumor microenvironment, and tumor-intrinsic factors. To control tumor growth, CAR T cells have to migrate actively enabling a productive conjugate with their targets. To date, many cells and factors contained within the tumor microenvironment have been reported to negatively control the migration of T cells and their ability to reach cancer cells. Recent evidence suggests that additional determinants, such as immune checkpoint proteins, cellular metabolism, and adhesion molecules, may modulate the motility of CAR T cells in tumors. Here, we review the potential impact of these determinants on CAR T-cell motility, and we discuss possible strategies to restore intratumoral T-cell migration with a special emphasis on approaches targeting these determinants.
Collapse
|
36
|
Suraya R, Tachihara M, Nagano T, Nishimura Y, Kobayashi K. Immunotherapy in Advanced Non-Small Cell Lung Cancers: Current Status and Updates. Cancer Manag Res 2022; 14:2079-2090. [PMID: 35769229 PMCID: PMC9234310 DOI: 10.2147/cmar.s366738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a major health burden, and novel therapeutic options are needed to help solve this problem. One such option is immunotherapy, which targets immune checkpoint molecules that inhibit cancer cells, decreasing immune system activation, for example, immunotherapies target PD-1, its ligand PD-L1, and CTLA-4. There have been major advances in the development of agents that inhibit these molecules, called immune checkpoint inhibitors, and several of them are already approved for usage in NSCLC patients, especially in advanced stages. In this review, the reasons why immune checkpoint inhibitors could be beneficial and the clinical results of studies using these drugs for advanced or recurrent NSCLC patients are discussed, as is the safety profile of the drugs.
Collapse
Affiliation(s)
- Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Correspondence: Motoko Tachihara, Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan, Tel +81-78-382-5660, Fax +81-78-382-5661, Email
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
37
|
Bai R, Cui J. Burgeoning Exploration of the Role of Natural Killer Cells in Anti-PD-1/PD-L1 Therapy. Front Immunol 2022; 13:886931. [PMID: 35634343 PMCID: PMC9133458 DOI: 10.3389/fimmu.2022.886931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies targeting programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) have been considered breakthrough therapies for a variety of solid and hematological malignancies. Although cytotoxic T cells play an important antitumor role during checkpoint blockade, they still show a potential killing effect on tumor types showing loss of/low major histocompatibility complex (MHC) expression and/or low neoantigen load; this knowledge has shifted the focus of researchers toward mechanisms of action other than T cell-driven immune responses. Evidence suggests that the blockade of the PD-1/PD-L1 axis may also improve natural killer (NK)-cell function and activity through direct or indirect mechanisms, which enhances antitumor cytotoxic effects; although important, this topic has been neglected in previous studies. Recently, some studies have reported evidence of PD-1 and PD-L1 expression in human NK cells, performed exploration of the intrinsic mechanism by which PD-1/PD-L1 blockade enhances NK-cell responses, and made some progress. This article summarizes the recent advances regarding the expression of PD-1 and PD-L1 molecules on the surface of NK cells as well as the interaction between anti-PD-1/PD-L1 drugs and NK cells and associated molecular mechanisms in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Jiuwei Cui
- *Correspondence: Jiuwei Cui, ; orcid.org/0000-0001-6496-7550
| |
Collapse
|
38
|
Hamilton PT, Anholt BR, Nelson BH. Tumour immunotherapy: lessons from predator-prey theory. Nat Rev Immunol 2022; 22:765-775. [PMID: 35513493 DOI: 10.1038/s41577-022-00719-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
With the burgeoning use of immune-based treatments for cancer, never has there been a greater need to understand the tumour microenvironment within which immune cells function and how it can be perturbed to inhibit tumour growth. Yet, current challenges in identifying optimal combinations of immunotherapies and engineering new cell-based therapies highlight the limitations of conventional paradigms for the study of the tumour microenvironment. Ecology has a rich history of studying predator-prey dynamics to discern factors that drive prey to extinction. Here, we describe the basic tenets of predator-prey theory as applied to 'predation' by immune cells and the 'extinction' of cancer cells. Our synthesis reveals fundamental mechanisms by which antitumour immunity might fail in sometimes counterintuitive ways and provides a fresh yet evidence-based framework to better understand and therapeutically target the immune-cancer interface.
Collapse
Affiliation(s)
| | - Bradley R Anholt
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada. .,Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
39
|
Lisovska N. Multilevel mechanism of immune checkpoint inhibitor action in solid tumors: History, present issues and future development (Review). Oncol Lett 2022; 23:190. [PMID: 35527781 PMCID: PMC9073577 DOI: 10.3892/ol.2022.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors (antibodies that target and block immune checkpoints in the tumor microenvironment) is included in the standard of care for patients with different types of malignancy, such as melanoma, renal cell and urothelial carcinoma, lung cancer etc. The introduction of this new immunotherapy has altered the view on potential targets for treatment of solid tumors from tumor cells themselves to their immune microenvironment; this has led to a reconsideration of the mechanisms of tumor-associated immunity. However, only a subset of patients benefit from immunotherapy and patient response is often unpredictable, even with known initial levels of prognostic markers; the biomarkers for favorable response are still being investigated. Mechanisms of immune checkpoint inhibitors efficiency, as well as the origins of treatment failure, require further investigation. From a clinical standpoint, discrepancies between the theoretical explanation of inhibitors of immune checkpoint actions at the cellular level and their deployment at a tissue/organ level impede the effective clinical implementation of novel immune therapy. The present review assessed existing experimental and clinical data on functional activity of inhibitors of immune checkpoints to provide a more comprehensive picture of their mechanisms of action on a cellular and higher levels of biological organization.
Collapse
Affiliation(s)
- Natalya Lisovska
- Chemotherapy Department, Center of Oncology, ‘Cyber Clinic of Spizhenko’, Kapitanovka, Kyiv 08112, Ukraine
| |
Collapse
|
40
|
Zhang J, Wang Z, Zhang X, Dai Z, Zhi-Peng W, Yu J, Peng Y, Wu W, Zhang N, Luo P, Zhang J, Liu Z, Feng S, Zhang H, Cheng Q. Large-Scale Single-Cell and Bulk Sequencing Analyses Reveal the Prognostic Value and Immune Aspects of CD147 in Pan-Cancer. Front Immunol 2022; 13:810471. [PMID: 35464411 PMCID: PMC9019465 DOI: 10.3389/fimmu.2022.810471] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/03/2022] [Indexed: 01/01/2023] Open
Abstract
CD147 plays an important role in promoting tumor proliferation and inhibiting cancer cell apoptosis in the tumor microenvironment. However, the mechanisms by which CD147 is involved in tumorigenesis remains unclear. This study systematically analyzed the prognostic value and immune characteristics of CD147 in 31 cancer types. The expression levels and mutant landscapes of CD147 in pan-cancer were explored. The Kaplan-Meier (KM) analysis was applied to analyze the prognostic value of CD147. The immune characteristics of CD147 in the tumor microenvironment were evaluated via TIMER 2.0 and R package (immunedeconv). We also explored the expression of CD147 on tumor cells and stromal cells through Gene Set Variation Analysis and single-cell sequencing analysis. The co-expression of CD147 and macrophage markers CD68 and CD163 in pan-cancer was detected using multiplex immunofluorescence staining on tissue microarrays. CD147 was found to be overexpressed in almost all cancer types, which was related to poor outcome. CD147 expression exhibited a strong association with immune infiltrates, immune checkpoint molecules, and neoantigen levels in the tumor microenvironment. In addition, CD147 was expressed on various cell types in the tumor microenvironment, including tumor cells, macrophages, T cells, monocytes, fibroblasts, etc. Furthermore, multiplex immunofluorescence revealed the co-expression pattern of CD147 and macrophage markers CD68 and CD163 in many tumor types. Finally, the immunotherapy response and sensitive small molecule drugs based on CD147 expression were predicted. In sum, CD147 has a significant relationship with the clinical outcome and immune infiltrates in multiple cancer types. Inhibiting the CD147-dependent signaling pathways might be a promising therapeutic strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zhi-Peng
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Harwardt J, Bogen JP, Carrara SC, Ulitzka M, Grzeschik J, Hock B, Kolmar H. A Generic Strategy to Generate Bifunctional Two-in-One Antibodies by Chicken Immunization. Front Immunol 2022; 13:888838. [PMID: 35479092 PMCID: PMC9036444 DOI: 10.3389/fimmu.2022.888838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Various formats of bispecific antibodies exist, among them Two-in-One antibodies in which each Fab arm can bind to two different antigens. Their IgG-like architecture accounts for low immunogenicity and also circumvents laborious engineering and purification steps to facilitate correct chain pairing. Here we report for the first time the identification of a Two‐in‐One antibody by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibody simultaneously targets the epidermal growth factor receptor (EGFR) and programmed death‐ligand 1 (PD-L1) at the same Fv fragment with two non-overlapping paratopes. The dual action Fab is capable of inhibiting EGFR signaling by binding to dimerization domain II as well as blocking the PD-1/PD-L1 interaction. Furthermore, the Two-in-One antibody demonstrates specific cellular binding properties on EGFR/PD-L1 double positive tumor cells. The presented strategy relies solely on screening of combinational immune-libraries and obviates the need for any additional CDR engineering as described in previous reports. Therefore, this study paves the way for further development of therapeutic antibodies derived from avian immunization with novel and tailor-made binding properties.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Biologics Innovation Centre, Biologics Technology and Development, Epalinges, Switzerland
| | - Björn Hock
- Ferring Biologics Innovation Centre, Biologics Technology and Development, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthtic Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Harald Kolmar,
| |
Collapse
|
42
|
Boukouris AE, Theochari M, Stefanou D, Papalambros A, Felekouras E, Gogas H, Ziogas DC. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: A 2022 update. Crit Rev Oncol Hematol 2022; 173:103663. [PMID: 35351582 DOI: 10.1016/j.critrevonc.2022.103663] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
The long-term remissions induced by immune-checkpoint inhibitors (ICIs) in many types of cancers have opened up the possibility of a broader use of immunotherapy in less immunogenic but genetically heterogeneous tumours. Regarding metastatic colorectal cancer (mCRC), in first-line setting, pembrolizumab has been approved as preferred option and nivolumab, alone or in combination with ipilimumab as alternative option for patients with mismatch-repair-deficient and microsatellite instability-high (dMMR/MSI-H) disease, independently of their eligibility for intensive chemotherapy. In subsequent lines, both these immunotherapeutic regimens (e.g., pembrolizumab and nivolumab+/-ipilimumab) as well as dostarlimab-gxly are currently recommended for patients with dMMR/MSI-H chemo-resistant mCRC who have not previously received an ICI. Beginning from the rationale behind the immune-mediated interplay in the dMMR/MSI-H bowel microenvironment, we provide here an update on the evolution status of all available, approved or not, ICIs in mCRC, describing their efficacy and toxicity profile with an emphasis on the pivotal trials supporting current colorectal indications. For each ICI agent, the results from combinations under investigation, particularly for those being upgraded in clinical phasing, the perspectives but also the limitations of main ongoing trials are thoroughly discussed. In the close future, upcoming data are expected to confirm the clinical benefit of ICIs and to further expand their role in mCRC.
Collapse
Affiliation(s)
- Aristeidis E Boukouris
- First Department of Internal Medicine, Korgialeneion-Benakeion General Hospital, Athens, Greece.
| | - Maria Theochari
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Alexandros Papalambros
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
43
|
Abstract
T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.
Collapse
Affiliation(s)
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Zhou B, Chen M, Shang S, Zhao J. Association of CTLA-4 Gene Polymorphisms and Alopecia Areata: A Systematic Review and Meta-analysis. Biomarkers 2022; 27:338-348. [PMID: 35254172 DOI: 10.1080/1354750x.2022.2046855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: To provide evidence of the association between CLTA-4 gene polymorphisms and Alopecia Areata (AA). Methods: PubMed, EMBASE, Web of Science, Cochrane, Wanfang and CNKI databases were searched until April 30, 2021.The selection was completed according to the inclusion and exclusion criteria. The study quality assessment was based on Newcastle-Ottawa Scale. The assessment of the association was measured by ORs and 95%CIs. Results: Nine studies, containing 2858 AA cases and 5444 disease-free control subjects were included. For rs231775 polymorphism, no significant association with AA was found, which was A vs a, OR =1.02[0.81,1.30], P = 0.85; AA vs aa, OR =1.26[0.81,1.97], P = 0.31; Aa vs aa, OR =1.04[0.54,2.01], P = 0.91; AA + Aa vs aa, OR =1.04[0.71,1.53], P = 0.82; AA vs Aa + aa, OR =1.31[0.97,1.78], P = 0.08. For rs3087243 polymorphism, also no significant association was found, which was A vs a, OR =0.93[0.78,1.11]; P = 0.40, AA vs aa, OR =0.68[0.44,1.06]; P = 0.09; Aa vs aa, OR =0.87[0.45,1.68], P = 0.68; AA + Aa vs aa, OR =0.93[0.68,1.28], P = 0.66; AA vs Aa + aa, OR =0.78[0.34,1.81], P = 0.57. For rs231726 polymorphism, a significant correlation was found, which was A vs a, OR =0.76[0.70,0.82], P < 0.05. Conclusions: A significant correlation between CTLA-4 rs231726 polymorphism and AA susceptibility was found, but no significant association of CTLA-4 gene rs231775 and rs3087243 polymorphisms and AA susceptibility was found.
Collapse
Affiliation(s)
- Boyang Zhou
- Beijing Friendship Hospital, Capital Medical University, Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mojun Chen
- Beijing Friendship Hospital, Capital Medical University, Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Shang
- Beijing Friendship Hospital, Capital Medical University, Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Zhao
- Beijing Friendship Hospital, Capital Medical University, Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Biggi AFB, Elgui de Oliveira D. The Epstein-Barr Virus Hacks Immune Checkpoints: Evidence and Consequences for Lymphoproliferative Disorders and Cancers. Biomolecules 2022; 12:397. [PMID: 35327589 PMCID: PMC8946074 DOI: 10.3390/biom12030397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The Epstein-Barr Virus (EBV) is a gammaherpesvirus involved in the etiopathogenesis of a variety of human cancers, mostly of lymphoid and epithelial origin. The EBV infection participates in both cell transformation and tumor progression, also playing an important role in subverting immune responses against cancers. The homeostasis of the immune system is tightly regulated by inhibitory mechanisms affecting key immune effectors, such as T lymphocytes and NK cells. Collectively known as immune checkpoints, these mechanisms rely on a set of cellular receptors and ligands. These molecules may be candidate targets for immune checkpoints blockade-an emergent and promising modality of immunotherapy already proven to be valuable for a variety of human cancers. The EBV was lately suspected to interfere with the expression of immune checkpoint molecules, notably PD-1 and its ligands, found to be overexpressed in cases of Hodgkin lymphoma, nasopharyngeal, and gastric adenocarcinomas associated with the viral infection. Even though there is compelling evidence showing that the EBV interferes with other immune checkpoint regulators (e.g., CTLA-4, LAG-3, TIM-3, and VISTA), the published data are still scarce. Herein, we discuss the current state of the knowledge on how the EBV interferes with the activity of immune checkpoints regulators, as well as its implications considering the immune checkpoints blockade for clinical management of the EBV-associated malignancies, notably lymphomas.
Collapse
Affiliation(s)
| | - Deilson Elgui de Oliveira
- Department of Pathology, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- ViriCan, Institute for Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil
| |
Collapse
|
46
|
Zhao SJ, Muyayalo KP, Luo J, Huang D, Mor G, Liao AH. Next generation of immune checkpoint molecules in maternal-fetal immunity. Immunol Rev 2022; 308:40-54. [PMID: 35234305 DOI: 10.1111/imr.13073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Successful pregnancy is a unique situation requires the maternal immune system to recognize and tolerate a semi-identical fetus and allow normal invasion of trophoblast cells. Although efforts have been made, the deep mechanisms of the maternal-fetal crosstalk have not yet been fully deciphered. Immune checkpoint molecules (ICMs) are a group of negative modulators of the immune response that avoid immune damage. They have been extensively studied in the fields of oncology and transplantation, while the latest evidence suggests that they are closely associated with pregnancy outcomes via multiple inhibitory mechanisms. Although studies have mostly demonstrated the regulatory role of the well-known PD-1, CTLA-4 at the maternal-fetal interface, what is unique about the newly discovered multiple ICMs remains a mystery. Here, we review the latest knowledge on ICMs, focusing on the first generation of checkpoints (PD-1, CTLA-4) and the next generation (Tim-3, Tigit, Lag-3, VISTA) highlighting their immunoregulatory roles in maternal-fetal tolerance and decidual vascular remodeling, and their involvement in pathological pregnancies. The content covers three aspects: the characteristics they possess, the dynamic expression profile of their expression at the maternal-fetal interface, and their involvement in pathological pregnancy. In immunotherapy strategies for pregnancy complications, upregulation of immune checkpoints may play a role. Meanwhile, the impact on pregnancy outcomes when using ICMs in clinical cancer treatment during pregnancy is a topic worth exploring. These may serve as a guide for future basic research and clinical applications of maternal-fetal immunity.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Vuong JT, Stein-Merlob AF, Nayeri A, Sallam T, Neilan TG, Yang EH. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79:577-593. [PMID: 35144750 PMCID: PMC8983019 DOI: 10.1016/j.jacc.2021.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitor therapy has revolutionized the treatment of advanced malignancies in recent years. Numerous reports have detailed the myriad of possible adverse inflammatory effects of immune checkpoint therapies, including within the cardiovascular system. However, these reports have been largely limited to myocarditis. The critical role of inflammation and adaptive immunity in atherosclerosis has been well characterized in preclinical studies, and several emerging clinical studies indicate a potential role of immune checkpoint targeting therapies in the development and exacerbation of atherosclerosis. In this review, we provide an overview of the role of T-cell immunity in atherogenesis and describe the molecular effects and clinical associations of both approved and investigational immune checkpoint therapy on atherosclerosis. We also highlight the role of cholesterol metabolism in oncogenesis and discuss the implications of these associations on future treatment and monitoring of atherosclerotic cardiovascular disease in the oncologic population receiving immune checkpoint therapy.
Collapse
Affiliation(s)
- Jacqueline T Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Arash Nayeri
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA; UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
48
|
Mertowska P, Mertowski S, Podgajna M, Grywalska E. The Importance of the Transcription Factor Foxp3 in the Development of Primary Immunodeficiencies. J Clin Med 2022; 11:947. [PMID: 35207219 PMCID: PMC8874698 DOI: 10.3390/jcm11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are an extremely important group of proteins that are responsible for the process of selective activation or deactivation of other cellular proteins, usually at the last stage of signal transmission in the cell. An important family of transcription factors that regulate the body's response is the FOX family which plays an important role in regulating the expression of genes involved in cell growth, proliferation, and differentiation. The members of this family include the intracellular protein Foxp3, which regulates the process of differentiation of the T lymphocyte subpopulation, and more precisely, is responsible for the development of regulatory T lymphocytes. This protein influences several cellular processes both directly and indirectly. In the process of cytokine production regulation, the Foxp3 protein interacts with numerous proteins and transcription factors such as NFAT, nuclear factor kappa B, and Runx1/AML1 and is involved in the process of histone acetylation in condensed chromatin. Malfunctioning of transcription factor Foxp3 caused by the mutagenesis process affects the development of disorders of the immune response and autoimmune diseases. This applies to the impairment or inability of the immune system to fight infections due to a disruption of the mechanisms supporting immune homeostasis which in turn leads to the development of a special group of disorders called primary immunodeficiencies (PID). The aim of this review is to provide information on the role of the Foxp3 protein in the human body and its involvement in the development of two types of primary immunodeficiency diseases: IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked syndrome) and CVID (Common Variable Immunodeficiency).
Collapse
Affiliation(s)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (M.P.); (E.G.)
| | | | | |
Collapse
|
49
|
Chen T, Zhang Q, Zhang N, Liu B, Chen J, Huang F, Lin J, Lan R, Xie X, Wang Z. Intermittent administration of tacrolimus enhances anti-tumor immunity in melanoma-bearing mice. Carcinogenesis 2022; 43:338-348. [PMID: 35136987 DOI: 10.1093/carcin/bgac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
One key reason for T cell exhaustion is continuous antigen exposure. Early exhausted T cells can reverse exhaustion and differentiate into fully functional memory T cells if removed from persisting antigen stimulation. Therefore, this study viewed T cell exhaustion as an over-activation status induced by chronic antigen stimuli. This study hypothesized that blocking TCR signal intermittently to terminate over-activation signal can defer the developmental process of T cell exhaustion. In this study, melanoma-bearing mice were treated with tacrolimus (FK506) every five days. The tumor size and tumor-infiltrating lymphocytes (TILs) were analyzed. We found that intermittent administration of tacrolimus significantly inhibited tumor growth, and this effect was mediated by CD8+T cells. Intermittent tacrolimus treatment facilitated the infiltration of CD8+TILs. RNA-seq and quantitative RT-PCR of sorted CD8+TILs showed the expression of Nr4a1 (an exhaustion-related transcription factor) and Ctla4 (a T cell inhibitory receptor) was remarkably downregulated. These results indicated that intermittently blocking TCR signal by tacrolimus can promote anti-tumor immunity and inhibit the tumor growth in melanoma-bearing mice, inhibiting the transcription of several exhaustion-related genes, such as Nr4a1 and Ctla4.
Collapse
Affiliation(s)
- Ting Chen
- Department of Oncology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Zhang
- Department of Oncology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Nianhai Zhang
- Department of Oncology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Bo Liu
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Junying Chen
- Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.,Platform for Medical Research, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Fei Huang
- Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.,Platform for Medical Research, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianhua Lin
- Fujian Orthopedics Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruilong Lan
- Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.,Platform for Medical Research, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xianhe Xie
- Department of Oncology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.,Molecular Oncology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zili Wang
- Department of Oncology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
50
|
Makuku R, Seyedmirzaei H, Tantuoyir MM, Rodríguez-Román E, Albahash A, Mohamed K, Moyo E, Ahmed AO, Razi S, Rezaei N. Exploring the application of immunotherapy against HIV infection in the setting of malignancy: A detailed review article. Int Immunopharmacol 2022; 105:108580. [PMID: 35121225 DOI: 10.1016/j.intimp.2022.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
Abstract
According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), as of 2019, approximately 42.2 million people have died from acquired immunodeficiency syndrome (AIDS)-related illnesses since the start of the epidemic. Antiretroviral therapy (ART) has significantly reduced mortality, morbidity, and incidence of the human immunodeficiency virus (HIV)/AIDS-defining cancers, taming once-dreaded disease into a benign chronic infection. Although the treatment has prolonged the patients' survival, general HIV prevalence has increased and this increase has dovetailed with an increasing incidence of Non-AIDS-defining cancers (NADCs) among people living with HIV (PLWH). This is happening when new promising approaches in both oncology and HIV infection are being developed. This review focuses on recent progress witnessed in immunotherapy approaches against HIV-related, Non-AIDS-defining cancers (NADCs), and HIV infection.
Collapse
Affiliation(s)
- Rangarirai Makuku
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marcarious M Tantuoyir
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Accra, Ghana; Biomedical Engineering Unit, University of Ghana Medical Center (UGMC), Accra, Ghana
| | - Eduardo Rodríguez-Román
- Center for Microbiology and Cell Biology, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela; Universal Scientific Education and Research Network (USERN), Caracas, Venezuela
| | - Assil Albahash
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kawthar Mohamed
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Universal Scientific Education and Research Network (USERN), Manama, Bahrain
| | - Ernest Moyo
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe; Department of Mathematics and Statistics, Midlands State University, Zimbabwe
| | | | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|