1
|
Soltani M, Abbaszadeh M, Fouladseresht H, Sullman MJM, Eskandari N. PD-L1 importance in malignancies comprehensive insights into the role of PD-L1 in malignancies: from molecular mechanisms to therapeutic opportunities. Clin Exp Med 2025; 25:106. [PMID: 40180653 PMCID: PMC11968484 DOI: 10.1007/s10238-025-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
The phenomenon of upregulated programmed death-ligand 1 (PD-L1) expression is common in numerous human malignancies. The overexpression of PD-L1 significantly contributes to immune evasion because its interaction with the PD-1 receptor on activated T lymphocytes impairs anti-tumour immunity by neutralizing T cell stimulatory signals. Furthermore, beyond its immunological interface, PD-L1 possesses intrinsic capabilities that directly modulate oncogenic processes, fostering cancer cell proliferation and survival. This dual function of PD-L1 challenges the efficacy of immune checkpoint inhibitors and highlights its possible application as a direct target for therapy. Recent discoveries concerning the cancer cell-intrinsic signalling pathways of PD-L1 have significantly enhanced our understanding of the pathological implications linked to its tumour-specific expression. These entail the orchestration of tumour proliferation and viability, maintenance of cancer stem cell-like phenotypes, modulation of immune responses, as well as impacts on DNA repair mechanisms and transcriptional regulation. This review aims to deliver an exhaustive synthesis of PD-L1's molecular underpinnings alongside its clinical implications in a spectrum of cancers, spanning both solid neoplasms and haematological disorders. It underscores the necessity for an integrated understanding of PD-L1 in further refining therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Abbaszadeh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Liu H, Zhang B, Chen H, Wang H, Qin X, Sun C, Pang Z, Hu Y. Targeted Delivery of c(RGDfk)-Modified Liposomes to Bone Marrow Through In Vivo Hitchhiking Neutrophils for Multiple Myeloma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409895. [PMID: 39679804 PMCID: PMC11948077 DOI: 10.1002/advs.202409895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Multiple myeloma (MM) is a prevalent bone marrow disorder. The challenges in managing MM include selecting chemotherapy regimens that effectively modulate the myeloma microenvironment and delivering them to the bone marrow with high efficacy and minimal toxicity. Herein, a novel bone marrow targeting strategy using c(RGDfk) peptide-modified liposomes loaded with chemotherapeutics is developed, which can specifically recognize and hitchhike neutrophils following systemic administration, capitalizing on their natural aging process to facilitate precise drug delivery to the bone marrow, thus minimizing off-target effects. On the one hand, c(RGDfk)-functionalized liposomes containing carfilzomib (CRLPs) successfully transformed macrophages from M2 phenotype to M1 phenotype, enhancing immunotherapeutic responses. On the other hand, c(RGDfk)-functionalized liposomes encapsulating BMS-202 (BRLPs), a small molecule checkpoint inhibitor, interrupted the PD-1/PD-L1 axis and promoted the infiltration of cytotoxic T cells. The co-administration of CRLPs and BRLPs successfully delivered drugs to bone marrow, leading to significant modulation of the myeloma microenvironment, reduced tumor growth, and improved survival time of MM-bearing mouse models. These findings introduced an alternative approach to modulating the myeloma microenvironment and underscored the efficacy of hitchhiking neutrophils for bone marrow drug delivery. This strategy show advantages over traditional drug delivery methods in terms of improved efficacy and lowered toxicity.
Collapse
Affiliation(s)
- Huiwen Liu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubei430022China
- Key lab of Molecular Biological Targeted Therapies of the Ministry of EducationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bo Zhang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubei430022China
- Key lab of Molecular Biological Targeted Therapies of the Ministry of EducationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hongrui Chen
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Honglan Wang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubei430022China
- Key lab of Molecular Biological Targeted Therapies of the Ministry of EducationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xifeng Qin
- School of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of Education826 Zhangheng RoadShanghai201203China
| | - Chunyan Sun
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubei430022China
- Key lab of Molecular Biological Targeted Therapies of the Ministry of EducationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhiqing Pang
- School of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of Education826 Zhangheng RoadShanghai201203China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubei430022China
- Key lab of Molecular Biological Targeted Therapies of the Ministry of EducationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
3
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Oriol A, Hájek R, Spicka I, Sandhu I, Cohen YC, Gatt ME, Mariz J, Cavo M, Berdeja J, Jin K, Bar M, Das P, Motte-Mohs RL, Wang Y, Perumal D, Costa LJ. Nivolumab, Pomalidomide, and Elotuzumab Combination Regimens for Treatment of Relapsed and Refractory Multiple Myeloma: Results from the Phase 3 CheckMate 602 Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:703-714. [PMID: 38849283 DOI: 10.1016/j.clml.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Preclinical studies suggest that combining nivolumab, a programmed death-1 (PD-1) immune checkpoint inhibitor, with pomalidomide/dexamethasone (Pd) with or without elotuzumab, an antisignaling lymphocytic activation molecule F7 monoclonal antibody, may improve multiple myeloma (MM) treatment efficacy. PATIENTS AND METHODS The phase 3 CheckMate 602 study (NCT02726581) assessed the efficacy and safety of nivolumab plus pomalidomide/dexamethasone (NPd) and NPd plus elotuzumab (NE-Pd). Eligible patients (aged ≥ 18 years) had measurable MM after ≥ 2 prior lines of therapy, that included an immunomodulatory drug (IMiD) and proteasome inhibitor (PI), each for ≥ 2 consecutive cycles, alone or combined, and were refractory to their last line of therapy. Patients were randomized 3:3:1 to receive NPd, Pd, or NE-Pd. The primary endpoint was progression-free survival (PFS); overall response rate (ORR) was a key secondary endpoint. RESULTS At a median follow-up of 16.8 months, PFS was similar between treatment arms (Pd, 7.3 months [95% CI, 6.5-8.4]; NPd, 8.4 months [95% CI, 5.8-12.1]; NE-Pd, 6.3 months [95% CI, 2.4-11.1]). ORR was similar in the Pd (55%), NPd (48%), and NE-Pd (42%) arms. Nivolumab-containing arms were associated with a less favorable safety profile versus Pd, including a higher rate of thrombocytopenia (NPd, 25.0%; NE-Pd, 16.7%; Pd, 15.7%), any-grade immune-mediated adverse events (NPd, 13.9%; NE-Pd, 16.7%; Pd, 2.9%), and adverse events leading to discontinuation (NPd, 25.0%; NE-Pd, 33.3%; Pd, 18.6%). No new safety signals were identified. CONCLUSION CheckMate 602 did not demonstrate clinical benefit of nivolumab (+/- elotuzumab) plus Pd versus Pd for patients with relapsed/refractory MM (RRMM).
Collapse
Affiliation(s)
- Albert Oriol
- Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Barcelona, Spain.
| | - Roman Hájek
- University Hospital Ostrava and Faculty of Medicine, University of Ostrava 17, Ostrava, Czech Republic
| | - Ivan Spicka
- Charles University and General Hospital in Prague, Czech Republic
| | | | - Yael C Cohen
- Tel-Aviv Sourasky Medical Center and Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Moshe E Gatt
- Hadassah University Medical Center, Hebrew University of Jerusalem, Israel
| | - José Mariz
- Instituto Portugues de Oncologia, Porto, Portugal
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", and Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | - Yu Wang
- Bristol Myers Squibb, Princeton, NJ
| | | | - Luciano J Costa
- Division of Hematology and Oncology, University of Alabama, Birmingham, AL
| |
Collapse
|
5
|
Huang Y, Wang C, Wang H, Liu H, Zhou L. Rediscovering hemostasis abnormalities in multiple myeloma: The new era. Heliyon 2024; 10:e34111. [PMID: 39055831 PMCID: PMC11269926 DOI: 10.1016/j.heliyon.2024.e34111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple myeloma (MM) is a malignancy arisen from the abnormal proliferation of clonal plasma cells. It has a high risk of developing bleeding and thrombotic complications, which are related to poor prognosis and decreased survival. Multiple factors are involved in the breaking of the hemostasis balance, including disease specific factors, patient-specific factors, and drug factors that change pro-and anticoagulant and fibrinolysis. Recently, with the introduction of new treatments such as monoclonal antibodies, chimeric antigen receptor modified T-cell therapy, antibody-drug conjugates directed against BCMA, programmed death-1 inhibitor, export protein 1 inhibitors, histone deacetylase inhibitors, immunomodulatory drugs, proteasome inhibitors and Bcl-2 inhibitors, the therapy of MM patients has entered into a new era. Furthermore, it arouses a question whether these new treatments would alter the hemostasis balance in MM patients, which highlights the importance of the underlying pathophysiology of hemostasis abnormalities in MM, and on prophylaxis approaches. In this review, we updated the mechanisms of hemostasis abnormalities in MM, the impact of the new drugs on hemostasis balance and reliable therapeutic strategies.
Collapse
Affiliation(s)
- Yudie Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
- Nantong University, Jiangsu, 226001, China
| | | | - Hua Wang
- Department of Pediatrics, Loma Linda University School of Medicine, CA, 92350, USA
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
- Nantong University, Jiangsu, 226001, China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow, 215000, China
| |
Collapse
|
6
|
Longo LVG, Hughes T, McNeil-Laidley B, Cottini F, Hilinski G, Merritt E, Benson DM. TTK/MPS1 inhibitor OSU-13 targets the mitotic checkpoint and is a potential therapeutic strategy for myeloma. Haematologica 2024; 109:578-590. [PMID: 37496433 PMCID: PMC10828771 DOI: 10.3324/haematol.2023.282838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Despite substantial recent advances in treatment, multiple myeloma (MM) remains an incurable disease, with a shortage of treatment options for patients with high-risk disease, warranting the need for novel therapeutic targets and treatment approaches. Threonine and tyrosine kinase (TTK), also known as monopolar spindle 1 (MPS1), is a kinase essential for the mitotic spindle checkpoint whose expression correlates to unfavorable prognosis in several cancers. Here, we report the importance of TTK in MM, and the effects of the TTK inhibitor OSU-13. Elevated TTK expression correlated with amplification/ gain of 1q21 and decreased overall and event-free survival in MM. Treatment with OSU-13 inhibited TTK activity efficiently and selectively at a similar concentration range to other TTK inhibitor clinical candidates. OSU-13 reduced proliferation and viability of primary human MM cells and cell lines, especially those with high 1q21 copy numbers, and triggered apoptosis through caspase 3 and 7 activation. In addition, OSU-13 induced DNA damage and severe defects in chromosome alignment and segregation, generating aneuploidy. In vivo, OSU-13 decreased tumor growth in mice with NCI-H929 xenografts. Collectively, our findings reveal that inhibiting TTK with OSU-13 is a potential therapeutic strategy for MM, particularly for a subset of high-risk patients with poor outcome.
Collapse
Affiliation(s)
- Larissa Valle Guilhen Longo
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Tiffany Hughes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Betina McNeil-Laidley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Gerard Hilinski
- Drug Development Institute, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Elizabeth Merritt
- Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Don M Benson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH.
| |
Collapse
|
7
|
Tang Y, Liu W, Kadu S, Johnson O, Hasanali ZS, Kelly A, Shestov A, Pajarillo R, Greenblatt E, Holmes M, Wang LP, Shih N, O’Connor RS, Ruella M, Garfall AL, Allman D, Vogl DT, Cohen A, June CH, Sheppard NC. Exploiting the CD200-CD200R immune checkpoint axis in multiple myeloma to enhance CAR T-cell therapy. Blood 2024; 143:139-151. [PMID: 37616575 PMCID: PMC10862366 DOI: 10.1182/blood.2022018658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.
Collapse
Affiliation(s)
- Yan Tang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Wei Liu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Siddhant Kadu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Omar Johnson
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Zainul S. Hasanali
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andre Kelly
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Alexander Shestov
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Li-Ping Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Natalie Shih
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roddy S. O’Connor
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alfred L. Garfall
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David Allman
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dan T. Vogl
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Cohen
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Neil C. Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Yang J, Zhou W, Li D, Niu T, Wang W. BCMA-targeting chimeric antigen receptor T-cell therapy for multiple myeloma. Cancer Lett 2023; 553:215949. [PMID: 36216149 DOI: 10.1016/j.canlet.2022.215949] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy, despite the development of numerous innovative therapies during the past two decades. Immunotherapies are changing the treatment paradigm of MM and have improved the overall response and survival of patients with relapsed/refractory (RR) MM. B cell maturation antigen (BCMA), selectively expressed in normal and malignant plasma cells, has been targeted by several immunotherapeutic modalities. Chimeric antigen receptor (CAR) T cells, the breakthrough in cancer immunotherapy, have revolutionized the treatment of B cell malignancies and remarkably improved the prognosis of RRMM. BCMA-targeting CAR T cell therapy is the most developed CAR T cell therapy for MM, and the US Food and Drug Administration has already approved idecabtagene vicleucel (Ide-cel) and ciltacabtagene autoleucel (Cilta-cel) for MM. However, the development of novel BCMA-targeting CAR T cell therapies remains in progress. This review focuses on BCMA-targeting CAR T cell therapy, covering all stages of investigational progress, including the innovative preclinical studies, the initial phase I clinical trials, and the more developed phase II clinical trials. It also discusses possible measures to improve the efficacy and safety of this therapy.
Collapse
Affiliation(s)
- Jinrong Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Weilin Zhou
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Dan Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Wei Wang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
9
|
Ehlers FAI, Mahaweni NM, van de Waterweg Berends A, Saya T, Bos GMJ, Wieten L. Exploring the potential of combining IL-2-activated NK cells with an anti-PDL1 monoclonal antibody to target multiple myeloma-associated macrophages. Cancer Immunol Immunother 2023; 72:1789-1801. [PMID: 36656341 DOI: 10.1007/s00262-022-03365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
Multiple myeloma (MM) is an incurable disease, characterized by malignant plasma cells in the bone marrow. MM growth is largely dependent on the tumor microenvironment (TME), consisting of complex cellular networks that shape a tumor-permissive environment. Within the TME, tumor-associated cells (TAC) comprise heterogeneous cell populations that collectively support immunosuppression. Reshaping the TME toward an immunostimulatory environment may enhance effectiveness of immunotherapies. Here, we investigated interactions between donor-derived natural killer (NK) cells and TAC, like tumor-associated macrophages (TAM) and M1 macrophages, and assessed whether anti-tumor effector functions of NK cells could be enhanced by an ADCC-triggering antibody targeting macrophages. Monocytes were polarized in vitro toward either M1 or TAM before co-culture with high-dose IL-2-activated NK cells. NK cell responses were assessed by measuring degranulation (CD107a) and IFN-γ production. We found that NK cells degranulated and produced IFN-γ upon interaction with both macrophage types. NK cell responses against PD-L1+ M1 macrophages could be further enhanced by Avelumab, an anti-PD-L1- and ADCC-inducing antibody. Additionally, NK cell responses were influenced by HLA class I, shown by stronger degranulation in NK cell subsets for which the corresponding HLA ligand was absent on the macrophage target cells (KIR-ligand mismatch) compared to degranulation in the presence of the HLA ligand (KIR-ligand match). Our results suggest that NK cells could, next to killing tumor cells, get activated upon interaction with TAC, like M1 macrophages and TAMs, and that NK cells combined with PD-L1 blocking antibodies with ADCC potential could, through IFN-γ secretion, promote a more immune-favorable TME.
Collapse
Affiliation(s)
- Femke A I Ehlers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Niken M Mahaweni
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Annet van de Waterweg Berends
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Thara Saya
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands. .,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Wang Z, Chen C, Wang L, Jia Y, Qin Y. Chimeric antigen receptor T-cell therapy for multiple myeloma. Front Immunol 2022; 13:1050522. [PMID: 36618390 PMCID: PMC9814974 DOI: 10.3389/fimmu.2022.1050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder that remains incurable for most patients, as persistent clonal evolution drives new mutations which confer MM high-risk signatures and resistance to standard care. The past two decades have significantly refashioned the therapeutic options for MM, especially adoptive T cell therapy contributing to impressive response rate and clinical efficacy. Despite great promises achieved from chimeric antigen receptor T-cell (CAR-T) therapy, the poor durability and severe toxicity (cytokine release syndrome and neurotoxicity) are still huge challenges. Therefore, relapsed/refractory multiple myeloma (RRMM), characterized by the nature of clinicopathologic and molecular heterogeneity, is frequently associated with poor prognosis. B Cell Maturation Antigen (BCMA) is the most successful target for CAR-T therapy, and other potential targets either for single-target or dual-target CAR-T are actively being studied in numerous clinical trials. Moreover, mechanisms driving resistance or relapse after CAR-T therapy remain uncharacterized, which might refer to T-cell clearance, antigen escape, and immunosuppressive tumor microenvironment. Engineering CAR T-cell to improve both efficacy and safety continues to be a promising area for investigation. In this review, we aim to describe novel tumor-associated neoantigens for MM, summarize the data from current MM CAR-T clinical trials, introduce the mechanism of disease resistance/relapse after CAR-T infusion, highlight innovations capable of enhanced efficacy and reduced toxicity, and provide potential directions to optimize manufacturing processes.
Collapse
Affiliation(s)
| | | | | | - Yongxu Jia
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| | - Yanru Qin
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| |
Collapse
|
11
|
Bertuglia G, Cani L, Larocca A, Gay F, D'Agostino M. Normalization of the Immunological Microenvironment and Sustained Minimal Residual Disease Negativity: Do We Need Both for Long-Term Control of Multiple Myeloma? Int J Mol Sci 2022; 23:15879. [PMID: 36555520 PMCID: PMC9781462 DOI: 10.3390/ijms232415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the treatment landscape for multiple myeloma (MM) has progressed significantly, with the introduction of several new drug classes that have greatly improved patient outcomes. At present, it is well known how the bone marrow (BM) microenvironment (ME) exerts an immunosuppressive action leading to an exhaustion of the immune system cells and promoting the proliferation and sustenance of tumor plasma cells. Therefore, having drugs that can reconstitute a healthy BM ME can improve results in MM patients. Recent findings clearly demonstrated that achieving minimal residual disease (MRD) negativity and sustaining MRD negativity over time play a pivotal prognostic role. However, despite the achievement of MRD negativity, patients may still relapse. The understanding of immunologic changes in the BM ME during treatment, complemented by a deeper knowledge of plasma cell genomics and biology, will be critical to develop future therapies to sustain MRD negativity over time and possibly achieve an operational cure. In this review, we focus on the components of the BM ME and their role in MM, on the prognostic significance of MRD negativity and, finally, on the relative contribution of tumor plasma cell biology and BM ME to long-term disease control.
Collapse
Affiliation(s)
- Giuseppe Bertuglia
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Lorenzo Cani
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Alessandra Larocca
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesca Gay
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
12
|
Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol 2022; 11:101. [PMID: 36384676 PMCID: PMC9667634 DOI: 10.1186/s40164-022-00356-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death protein 1(PD-1) is a type of immune-inhibitory checkpoint protein, which delivers inhibitory signals to cytotoxic T cells by binding to the programmed death ligand-1 (PD-L1) displayed on the surface of cancer cells. Antibodies blocking PD-1/PD-L1 interaction have been extensively used in treatment of human malignancies and have achieved promising outcomes in recent years. However, gradual development of resistance to PD-1/PD-L1 blockade has decreased the effectiveness of this immunotherapy in cancer patients. The underlying epigenetic mechanisms need to be elucidated for application of novel strategies overcoming this immunotherapy resistance. Epigenetic aberrations contribute to cancerogenesis by promoting different hallmarks of cancer. Moreover, these alterations may lead to therapy resistance, thereby leading to poor prognosis. Recently, the epigenetic regulatory drugs have been shown to decrease the resistance to PD-1/PD-L1 inhibitors in certain cancer patients. Inhibitors of the non-coding RNAs, DNA methyltransferases, and histone deacetylases combined with PD-1/PD-L1 inhibitors have shown considerable therapeutic efficacy against carcinomas as well as blood cancers. Importantly, DNA methylation-mediated epigenetic silencing can inhibit antigen processing and presentation, which promotes cancerogenesis and aggravates resistance to PD-1/PD-L1 blockade immunotherapy. These observations altogether suggest that the combination of the epigenetic regulatory drugs with PD-1/PD-L1 inhibitors may present potential solution to the resistance caused by monotherapy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Dai
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medical, Foshan University, Foshan, China
| | - Can Küçük
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- Basic and Translational Research Program, İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China.
| |
Collapse
|
13
|
Welters C, Lammoglia Cobo MF, Stein CA, Hsu MT, Ben Hamza A, Penter L, Chen X, Buccitelli C, Popp O, Mertins P, Dietze K, Bullinger L, Moosmann A, Blanc E, Beule D, Gerbitz A, Strobel J, Hackstein H, Rahn HP, Dornmair K, Blankenstein T, Hansmann L. Immune Phenotypes and Target Antigens of Clonally Expanded Bone Marrow T Cells in Treatment-Naïve Multiple Myeloma. Cancer Immunol Res 2022; 10:1407-1419. [PMID: 36122410 PMCID: PMC9627264 DOI: 10.1158/2326-6066.cir-22-0434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
Multiple myeloma is a hematologic malignancy of monoclonal plasma cells that accumulate in the bone marrow. Despite their clinical and pathophysiologic relevance, the roles of bone marrow-infiltrating T cells in treatment-naïve patients are incompletely understood. We investigated whether clonally expanded T cells (i) were detectable in multiple myeloma bone marrow, (ii) showed characteristic immune phenotypes, and (iii) whether dominant clones recognized antigens selectively presented on multiple myeloma cells. Single-cell index sorting and T-cell receptor (TCR) αβ sequencing of bone marrow T cells from 13 treatment-naïve patients showed dominant clonal expansion within CD8+ cytolytic effector compartments, and only a minority of expanded T-cell clones expressed the classic immune-checkpoint molecules PD-1, CTLA-4, or TIM-3. To identify their molecular targets, TCRs of 68 dominant bone marrow clones from five selected patients were reexpressed and incubated with multiple myeloma and non-multiple myeloma cells from corresponding patients. Only 1 of 68 TCRs recognized antigen presented on multiple myeloma cells. This TCR was HLA-C-restricted, self-peptide-specific and could be activated by multiple myeloma cells of multiple patients. The remaining dominant T-cell clones did not recognize multiple myeloma cells and were, in part, specific for antigens associated with chronic viral infections. In conclusion, we showed that dominant bone marrow T-cell clones in treatment-naïve patients rarely recognize antigens presented on multiple myeloma cells and exhibit low expression of classic immune-checkpoint molecules. Our data provide experimental context for experiences from clinical immune-checkpoint inhibition trials and will inform future T cell-dependent therapeutic strategies.
Collapse
Affiliation(s)
- Carlotta Welters
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - María Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Alexander Stein
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng-Tung Hsu
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Amin Ben Hamza
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaojing Chen
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Christopher Buccitelli
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Oliver Popp
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Moosmann
- Department of Medicine III, Klinikum der Universität München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Armin Gerbitz
- Hans Messner Allogeneic Stem Cell Transplant Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, LMU Munich, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Corresponding Author: Leo Hansmann, Charité–Universitätsmedizin Berlin (CVK), Department of Hematology, Oncology, and Tumor Immunology, Augustenburger Platz 1, 13353 Berlin, Germany. Phone: 49-(0)30-450-665238; Fax: 49-(0)30-450-553914; E-mail:
| |
Collapse
|
14
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol 2022; 13:964442. [PMID: 36177034 PMCID: PMC9513184 DOI: 10.3389/fimmu.2022.964442] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death protein-1 (PD-1) is a checkpoint receptor expressed on the surface of various immune cells. PD-L1, the natural receptor for PD-1, is mainly expressed in tumor cells. Studies have indicated that PD-1 and PD-L1 are closely associated with the progression of human cancers and are promising biomarkers for cancer therapy. Moreover, the interaction of PD-1 and PD-L1 is one of the important mechanism by which human tumors generate immune escape. This article provides a review on the role of PD-L1/PD-1, mechanisms of immune response and resistance, as well as immune-related adverse events in the treatment of anti-PD-1/PD-L1 immunotherapy in human cancers. Moreover, we summarized a large number of clinical trials to successfully reveal that PD-1/PD-L1 Immune-checkpoint inhibitors have manifested promising therapeutic effects, which have been evaluated from different perspectives, including overall survival, objective effective rate and medium progression-free survival. Finally, we pointed out the current problems faced by PD-1/PD-L1 Immune-checkpoint inhibitors and its future prospects. Although PD-1/PD-L1 immune checkpoint inhibitors have been widely used in the treatment of human cancers, tough challenges still remain. Combination therapy and predictive models based on integrated biomarker determination theory may be the future directions for the application of PD-1/PD-L1 Immune-checkpoint inhibitors in treating human cancers.
Collapse
Affiliation(s)
- Qing Tang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojuan Li
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunqin Long
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanyin Wu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Sumei Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| |
Collapse
|
15
|
Kasichayanula S, Mandlekar S, Shivva V, Patel M, Girish S. Evolution of Preclinical Characterization and Insights into Clinical Pharmacology of Checkpoint Inhibitors Approved for Cancer Immunotherapy. Clin Transl Sci 2022; 15:1818-1837. [PMID: 35588531 PMCID: PMC9372426 DOI: 10.1111/cts.13312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer immunotherapy has significantly advanced the treatment paradigm in oncology, with approvals of immuno‐oncology agents for over 16 indications, many of them first line. Checkpoint inhibitors (CPIs) are recognized as an essential backbone for a successful anticancer therapy regimen. This review focuses on the US Food and Drug Administration (FDA) regulatory approvals of major CPIs and the evolution of translational advances since their first approval close to a decade ago. In addition, critical preclinical and clinical pharmacology considerations, an overview of the pharmacokinetic and dose/regimen aspects, and a discussion of the future of CPI translational and clinical pharmacology as combination therapy becomes a mainstay of industrial immunotherapy development and in clinical practice are also discussed.
Collapse
Affiliation(s)
| | | | - Vittal Shivva
- Genentech, 1 DNA Way, South San Francisco, 94080, CA
| | - Maulik Patel
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, 94080, CA
| | - Sandhya Girish
- Gilead Sciences, 310 Lakeside Drive, Foster City, 94404, CA
| |
Collapse
|
16
|
Choi T, Kang Y. Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma. Pharmacol Ther 2022; 232:108007. [PMID: 34582835 PMCID: PMC8930424 DOI: 10.1016/j.pharmthera.2021.108007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Although treatment outcomes of multiple myeloma patients have improved significantly during the last two decades, myeloma is still an incurable disease. There are newly emerging immunotherapies to treat multiple myeloma including monoclonal antibodies, antibody-drug conjugate, bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapy. Impressive response rate and clinical efficacy in heavily pretreated myeloma patients led to the FDA approval of the first myeloma CAR-T therapy in March 2021. Among many different targets for myeloma CAR-T therapies, B Cell Maturation Antigen (BCMA) has been the most successful target so far, but other targets which can be used either for single-target or dual-target CAR-T's are actively being explored. Clinical efficacy and safety of current myeloma CAR-T therapies will be presented here. Potential mechanisms leading to resistance include clearance of CAR-T cells, antigenic escape, and immunosuppressive tumor microenvironment. Novel strategies to enhance myeloma CAR-T will also be described. In this article, we provide a comprehensive review of the current data and the future directions of myeloma CAR-T therapies.
Collapse
Affiliation(s)
- Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
17
|
Revolutionization in Cancer Therapeutics via Targeting Major Immune Checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals (Basel) 2022; 15:ph15030335. [PMID: 35337133 PMCID: PMC8952773 DOI: 10.3390/ph15030335] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Numerous research reports have witnessed dramatic advancements in cancer therapeutic approaches through immunotherapy. Blocking immunological checkpoint pathways (mechanisms employed by malignant cells to disguise themselves as normal human body components) has emerged as a viable strategy for developing anticancer immunity. Through the development of effective immune checkpoint inhibitors (ICIs) in multiple carcinomas, advances in cancer immunity have expedited a major breakthrough in cancer therapy. Blocking a variety of ICIs, such as PD-1 (programmed cell death-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has improved the immune system’s efficacy in combating cancer cells. Recent studies also supported the fact that ICIs combined with other potent antitumor candidates, such as angiogenic agents, could be a solid promising chemopreventive therapeutic approach in improving the effectiveness of immune checkpoint inhibitors. Immune checkpoint blockade has aided antiangiogenesis by lowering vascular endothelial growth factor expression and alleviating hypoxia. Our review summarized recent advances and clinical improvements in immune checkpoint blocking tactics, including combinatorial treatment of immunogenic cell death (ICD) inducers with ICIs, which may aid future researchers in creating more effective cancer-fighting strategies.
Collapse
|
18
|
Guo R, Lu W, Zhang Y, Cao X, Jin X, Zhao M. Targeting BCMA to Treat Multiple Myeloma: Updates From the 2021 ASH Annual Meeting. Front Immunol 2022; 13:839097. [PMID: 35320942 PMCID: PMC8936073 DOI: 10.3389/fimmu.2022.839097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
With the gradual improvement of treatment regimens, the survival time of multiple myeloma (MM) patients has been significantly prolonged. Even so, MM is still a nightmare with an inferior prognosis. B-cell maturation antigen (BCMA) is highly expressed on the surface of malignant myeloma cells. For the past few years, significant progress has been made in various BCMA-targeted immunotherapies for treating patients with RRMM, including anti-BCMA mAbs, antibody-drug conjugates, bispecific T-cell engagers, and BCMA-targeted adoptive cell therapy like chimeric antigen receptor (CAR)-T cell. The 63rd annual meeting of the American Society of Hematology updated some information about the application of BCMA in MM. This review summarizes part of the related points presented at this conference.
Collapse
Affiliation(s)
- Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
19
|
Ye W, Wu X, Liu X, Zheng X, Deng J, Gong Y. Comparison of monoclonal antibodies targeting CD38, SLAMF7 and PD-1/PD-L1 in combination with Bortezomib/Immunomodulators plus dexamethasone/prednisone for the treatment of multiple myeloma: an indirect-comparison Meta-analysis of randomised controlled trials. BMC Cancer 2021; 21:994. [PMID: 34488679 PMCID: PMC8419924 DOI: 10.1186/s12885-021-08588-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Many clinical trials have assessed the effect and safety of monoclonal antibodies (MAbs) in combination with proteasome inhibitors or immunomodulators plus dexamethasone/prednisone for the treatment of multiple myeloma (MM). The treatment outcomes of comparing different MAbs in combination with the above-mentioned agents remained unclear. We performed the meta-analysis to indirectly compare the effect and safety of MAbs targeting CD38, SLAMF7, and PD-1/PD-L1 in combination with bortezomib/immunomodulators plus dexamethasone/prednisone for patients with MM. Methods We searched thoroughly in the databases for randomised controlled trials (RCTs) in which at least one of the three MAbs were included. We included eleven eligible RCTs with 5367 patients in the meta-analysis. Statistical analysis was carried out using StataMP14 and Indirect Treatment Comparisons software. Results We calculated hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) and relative risk (RR) for overall response rate, complete response (CR) or better, very good partial response (VGPR) or better, VGPR, partial response, stable disease, and grade 3 or higher adverse events among the three groups. The HRs for PFS of the CD38 group vs SLAMF7 group, CD38 group vs PD-1/PD-L1 group, and SLAMF7 group vs PD-1/PD-L1 group were 0.662 (95%CI 0.543–0.806), 0.317 (95%CI 0.221–0.454), and 0.479 (95%CI 0.328–0.699), respectively. The HR for OS of the CD38 group vs SLAMF7 group was 0.812 (95%CI 0.584–1.127). The RR for CR or better in the CD38 group vs SLAMF7 group was 2.253 (95%CI 1.284–3.955). The RR for neutropenia of the CD38 group vs SLAMF7 group was 1.818 (95%CI 1.41–2.344). Conclusions Treatment with the CD38 group had longer PFS and better treatment response than that with the SLAMF7 or PD-1/PD-L1 group. In addition, the SLAMF7 group prolonged PFS compared with the PD-1/PD-L1 group and was associated with a lower incidence of grade 3 or higher neutropenia than the CD38 and PD-1/PD-L1 group. In conclusion, MAbs targeting CD38 are the best, followed by those targeting SLAMF7; MAbs targeting PD-1/PD-L1 are the worst when in combination with bortezomib/immunomodulators plus dexamethasone/prednisone for the treatment of MM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08588-9.
Collapse
Affiliation(s)
- Wu Ye
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, No.37 GuoXue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Xia Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, No.37 GuoXue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Xiaoyan Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, No.37 GuoXue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Xue Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, No.37 GuoXue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Jili Deng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, No.37 GuoXue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, No.37 GuoXue Xiang, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
20
|
Seegars MB. Double Checkpoint Inhibitors in Autologous. Transplant Cell Ther 2021; 27:357-358. [PMID: 33965171 DOI: 10.1016/j.jtct.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mary Beth Seegars
- Wake Forest Baptist Comprehensive Cancer Center, Winston, Salem, NC 27157
| |
Collapse
|
21
|
Chigoho DM, Lecocq Q, Awad RM, Breckpot K, Devoogdt N, Keyaerts M, Caveliers V, Xavier C, Bridoux J. Site-Specific Radiolabeling of a Human PD-L1 Nanobody via Maleimide-Cysteine Chemistry. Pharmaceuticals (Basel) 2021; 14:ph14060550. [PMID: 34201323 PMCID: PMC8228271 DOI: 10.3390/ph14060550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) and its ligand PD-L1 have proven to be efficient cancer therapies in a subset of patients. From all the patients with various cancer types, only 20% have a positive response. Being able to distinguish patients that do express PD-1/PD-L1 from patients that do not allows patients to benefit from a more personalized and efficient treatment of tumor lesion(s). Expression of PD-1 and PD-L1 is typically assessed via immunohistochemical detection in a tumor biopsy. However, this method does not take in account the expression heterogeneity within the lesion, nor the possible metastasis. To visualize whole-body PD-L1 expression by PET imaging, we developed a nanobody-based radio-immunotracer targeting PD-L1 site-specifically labeled with gallium-68. The cysteine-tagged nanobody was site-specifically conjugated with a maleimide (mal)-NOTA chelator and radiolabeling was tested at different nanobody concentrations and temperatures. Affinity and specificity of the tracer, referred to as [68Ga]Ga-NOTA-mal-hPD-L1 Nb, were assayed by surface plasmon resonance and on PD-L1POS or PD-L1NEG 624-MEL cells. Xenografted athymic nude mice bearing 624-MEL PD-L1POS or PD-L1NEG tumors were injected with the tracer and ex vivo biodistribution was performed 1 h 20 min post-injection. Ideal 68Ga-labeling conditions were found at 50 °C for 15 min. [68Ga]Ga-NOTA-mal-hPD-L1 Nb was obtained in 80 ± 5% DC-RCY with a RCP > 99%, and was stable in injection buffer and human serum up to 3 h (>99% RCP). The in vitro characterization showed that the NOTA-functionalized Nb retained its affinity and specificity. Ex vivo biodistribution revealed a tracer uptake of 1.86 ± 0.67% IA/g in the positive tumors compared with 0.42 ± 0.04% IA/g in the negative tumors. Low background uptake was measured in the other organs and tissues, except for the kidneys and bladder, due to the expected excretion route of Nbs. The data obtained show that the site-specific 68Ga-labeled NOTA-mal-hPD-L1 Nb is a promising PET radio-immunotracer due to its ease of production, stability and specificity for PD-L1.
Collapse
Affiliation(s)
- Dora Mugoli Chigoho
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Q.L.); (R.M.A.); (K.B.)
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Q.L.); (R.M.A.); (K.B.)
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Q.L.); (R.M.A.); (K.B.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
| | - Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
- Department of Nuclear Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
- Department of Nuclear Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
| | - Jessica Bridoux
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
- Correspondence: ; Tel.: +32-24774991
| |
Collapse
|
22
|
Ishibashi M, Yamamoto J, Ito T, Handa H, Sunakawa-Kii M, Inokuchi K, Morita R, Tamura H. Durvalumab Combined with Immunomodulatory Drugs (IMiD) Overcomes Suppression of Antitumor Responses due to IMiD-induced PD-L1 Upregulation on Myeloma Cells. Mol Cancer Ther 2021; 20:1283-1294. [PMID: 33879556 DOI: 10.1158/1535-7163.mct-20-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
We previously showed that the interaction of programmed death-ligand 1 (PD-L1) on multiple myeloma (MM) cells with PD-1 not only inhibits tumor-specific cytotoxic T-lymphocyte activity via the PD-1 signaling pathway but also induces drug resistance via PD-L1-mediated reverse signals. We here examined the regulation of PD-L1 expression by immunomodulatory drugs (IMiDs) and antimyeloma effects of the anti-PD-L1 antibody durvalumab in combination with IMiDs. IMiDs induced PD-L1 expression on IMiD-insensitive MM cells and plasma cells from patients newly diagnosed with MM. Gene-expression profiling analysis demonstrated that not only PD-L1, but also a proliferation-inducing ligand (APRIL), was enhanced by IMiDs. PD-L1 induction by IMiDs was suppressed by using the APRIL inhibitor recombinant B-cell maturation antigen (BCMA)-Ig, the antibody against BCMA, or an MEK/ERK inhibitor in in vitro and in vivo assays. In addition, its induction was abrogated in cereblon (CRBN)-knockdown MM cells, whereas PD-L1 expression was increased and strongly induced by IMiDs in Ikaros-knockdown cells. These results demonstrated that PD-L1 upregulation by IMiDs on IMiD-insensitive MM cells was induced by (i) the BCMA-APRIL pathway via IMiD-mediated induction of APRIL and (ii) Ikaros degradation mediated by CRBN, which plays a role in inhibiting PD-L1 expression. Furthermore, T-cell inhibition induced by PD-L1-upregulated cells was effectively recovered after combination treatment with durvalumab and IMiDs. PD-L1 upregulation by IMiDs on MM cells might promote aggressive myeloma behaviors and immune escape in the bone marrow microenvironment.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Junichi Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takumi Ito
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, Japan
| | | | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan. .,Division of Diabetes, Endocrinology and Hematology, Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
23
|
Pan C, Wang Y, Liu Q, Hu Y, Fu J, Xie X, Zhang S, Xi M, Wen J. Phenotypic profiling and prognostic significance of immune infiltrates in esophageal squamous cell carcinoma. Oncoimmunology 2021; 10:1883890. [PMID: 33628625 PMCID: PMC7889084 DOI: 10.1080/2162402x.2021.1883890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) of esophageal squamous cell carcinoma (ESCC) impacts tumor progression but is poorly understood. We obtained tumor tissues from 279 patients after esophagectomy and characterized the TME in intraepithelial and stromal regions using multiplex fluorescent immunohistochemistry (mfIHC). A heterogeneous immune population infiltrating tumor and the uninvolved esophageal tissue were observed. The infiltration of intraepithelial programmed death ligand 1 (PD-L1)-positive tumor-associated macrophages (TAMs) and stromal granzyme B+ activated cytotoxic T cells (aCTLs) correlated with both prolonged overall survival (OS) and disease-free survival (DFS). The intraepithelial memory T cell infiltration predicted longer OS, while intraepithelial and stromal regulatory T cell (Treg) infiltration was associated with shortened OS and DFS, respectively. Multivariate models combining immune infiltrates and clinicopathological factors outperformed tumor-node-metastasis (TNM) stage in predicting OS and DFS at 3 and 5 years. The infiltration of Treg inversely correlated with that of the antitumor effectors including CTLs, aCTLs, and natural killer (NK) cells. Intraepithelial memory T cell infiltration also negatively correlated with PD-L1 expression. In spatial analysis, intraepithelial dendritic cell (DC)-memory T cell engagement increased in high PD-L1+ TAM infiltration group. The characterization of the TME revealed a complex interplay between immune populations and may be employed to stratify patient for prognosis prediction and immunotherapy.
Collapse
Affiliation(s)
- Chuqing Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China
| | - Qianwen Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yihuai Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiuying Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China
| | - Shuishen Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mian Xi
- Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China.,Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Esophageal Cancer Institute, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Musto P, La Rocca F. Monoclonal antibodies in relapsed/refractory myeloma: updated evidence from clinical trials, real-life studies, and meta-analyses. Expert Rev Hematol 2021; 13:331-349. [PMID: 32153224 DOI: 10.1080/17474086.2020.1740084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: In the last few years, monoclonal antibodies have rapidly modified the therapeutic strategies for treating patients with multiple myeloma.Areas covered: In this review, the most recent literature data regarding indications for which monoclonal antibodies are currently or will be shortly approved as salvage therapies in relapsed/refractory myeloma are discussed. In particular, updated results until March 22, 2020 of antibodies directed against CD38 (daratumumab and isatuximab), SLAMF7 (elotuzumab), BCMA (GSK2857916/belantamab mafodotin), and PD-1/PD-1 L axis (nivolumab and pembrolizumab) will be analyzed in detail.Expert opinion: Monoclonal antibodies represent a new, very effective approach that will open novel and dynamic treatment scenarios for myeloma patients in the coming years. Optimal positioning and selection of different antibodies that are or will be soon available, appropriate combinations and careful evaluation of possible new toxicities should be considered in the future management of these patients.
Collapse
Affiliation(s)
- Pellegrino Musto
- Chair of Hematology and Unit of Hematology and Stem Cell Transplantation, AOU Consorziale Policlinico, "Aldo Moro" University, School of Medicine, Bari, Italy
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| |
Collapse
|
25
|
Yamamoto L, Amodio N, Gulla A, Anderson KC. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities. Front Oncol 2021; 10:606368. [PMID: 33585226 PMCID: PMC7873734 DOI: 10.3389/fonc.2020.606368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that grow within a permissive bone marrow microenvironment (BMM). The bone marrow milieu supports the malignant transformation both by promoting uncontrolled proliferation and resistance to cell death in MM cells, and by hampering the immune response against the tumor clone. Hence, it is expected that restoring host anti-MM immunity may provide therapeutic benefit for MM patients. Already several immunotherapeutic approaches have shown promising results in the clinical setting. In this review, we outline recent findings demonstrating the potential advantages of targeting the immunosuppressive bone marrow niche to restore effective anti-MM immunity. We discuss different approaches aiming to boost the effector function of T cells and/or exploit innate or adaptive immunity, and highlight novel therapeutic opportunities to increase the immunogenicity of the MM clone. We also discuss the main challenges that hamper the efficacy of immune-based approaches, including intrinsic resistance of MM cells to activated immune-effectors, as well as the protective role of the immune-suppressive and inflammatory bone marrow milieu. Targeting mechanisms to convert the immunologically “cold” to “hot” MM BMM may induce durable immune responses, which in turn may result in long-lasting clinical benefit, even in patient subgroups with high-risk features and poor survival.
Collapse
Affiliation(s)
- Leona Yamamoto
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Gulla
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Kenneth Carl Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Pembrolizumab as Consolidation Strategy in Patients with Multiple Myeloma: Results of the GEM-Pembresid Clinical Trial. Cancers (Basel) 2020; 12:cancers12123615. [PMID: 33287189 PMCID: PMC7761692 DOI: 10.3390/cancers12123615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Multiple myeloma patients with persistent disease after treatment show increased expression of PDL1 in tumor plasma cells and of PD1 in T lymphocytes. This suggests a role of the PD1/PDL1 axis in treatment failure that could potentially be reverted with pembrolizumab, an anti-PD1 monoclonal antibody. The GEM-Pembresid trial enrolled 20 patients with multiple myeloma achieving a suboptimal response to the previous treatment that received intravenous pembrolizumab every 3 weeks with the objective of eradicating the residual disease. Pembrolizumab was acceptably well tolerated in the 17 patients evaluable for safety, but no improvement in the baseline responses was documented. Although no determinants of response could be identified, we detected a lower expression of PD1/PDL1 in a subgroup of patients progressing in the first 4 months after enrollment; furthermore, a reduction in the percentage of NK cells induced by pembrolizumab was observed. Abstract PD1 expression in CD4+ and CD8+ T cells is increased after treatment in multiple myeloma patients with persistent disease. The GEM-Pembresid trial analyzed the efficacy and safety of pembrolizumab as consolidation in patients achieving at least very good partial response but with persistent measurable disease after first- or second-line treatment. Moreover, the characteristics of the immune system were investigated to identify potential biomarkers of response to pembrolizumab. One out of the 17 evaluable patients showed a decrease in the amount of M-protein, although a potential late effect of high-dose melphalan could not be ruled out. Fourteen adverse events were considered related to pembrolizumab, two of which (G3 diarrhea and G2 pneumonitis) prompted treatment discontinuation and all resolving without sequelae. Interestingly, pembrolizumab induced a decrease in the percentage of NK cells at cycle 3, due to the reduction of the circulating and adaptive subsets (0.615 vs. 0.43, p = 0.007; 1.12 vs. 0.86, p = 0.02). In the early progressors, a significantly lower expression of PD1 in CD8+ effector memory T cells (MFI 1327 vs. 926, p = 0.03) was observed. In conclusion, pembrolizumab used as consolidation monotherapy shows an acceptable toxicity profile but did not improve responses in this MM patient population. The trial was registered at clinicaltrials.gov with identifier NCT02636010 and with EUDRACT number 2015-003359-23.
Collapse
|
27
|
D’Agostino M, Innorcia S, Boccadoro M, Bringhen S. Monoclonal Antibodies to Treat Multiple Myeloma: A Dream Come True. Int J Mol Sci 2020; 21:E8192. [PMID: 33139668 PMCID: PMC7662679 DOI: 10.3390/ijms21218192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy is increasingly used in the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) are safe and effective ways to elicit immunotherapeutic responses. In 2015, daratumumab has become the first mAb approved by the Food and Drug Administration for clinical use in MM and, in the last 5 years, a lot of clinical and preclinical research has been done to optimize the use of this drug class. Currently, mAbs have already become part of standard-of-care combinations for the treatment of relapsed/refractory MM and very soon they will also be used in the frontline setting. The success of simple mAbs ('naked mAbs') prompted the development of new types of molecules. Antibody-drug conjugates (ADCs) are tumor-targeting mAbs that release a cytotoxic payload into the tumor cells upon antigen binding in order to destroy them. Bispecific antibodies (BiAbs) are mAbs simultaneously targeting a tumor-associated antigen and an immune cell-associated antigen in order to redirect the immune cell cytotoxicity against the tumor cell. These different constructs produced solid preclinical data and promising clinical data in phase I/II trials. The aim of this review article is to summarize all the recent developments in the field, including data on naked mAbs, ADCs and BiAbs.
Collapse
Affiliation(s)
| | | | | | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (M.D.); (S.I.); (M.B.)
| |
Collapse
|
28
|
Evolving Role of Daratumumab: From Backbencher to Frontline Agent. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:572-587. [DOI: 10.1016/j.clml.2020.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
|
29
|
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells. Recently multiple new therapeutic options have been introduced which was able to improve overall survival but ultimately patient become refractory specifically in patients with poor cytogenetics. Therefore, novel therapeutic options like immunotherapy are needed to improve outcomes. Chimeric antigen receptor (CAR) T-cell therapy is immunotherapy in which T cell are genetically engineered against a tumor-specific antigen and transfused back to the patient to mount major histocompatibility complex-independent cancer-specific immune response. The success of CAR T-cell therapy in lymphoid malignancies encouraged its development in MM. Most of the clinical studies target B-cell maturation antigen in relapsed refractory MM and relapse is the major issue. In this article, we will present the basics of CAR T-cell therapy, the most recent clinical and preclinical data, and we will discuss the future therapeutic realm of CAR T cells in MM.
Collapse
|
30
|
Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21145002. [PMID: 32679860 PMCID: PMC7403981 DOI: 10.3390/ijms21145002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host’s immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.
Collapse
|
31
|
Bertamini L, Gay F. Checkpoint inhibitors and myeloma: promises, deadlocks and new directions. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:777. [PMID: 32647702 PMCID: PMC7333157 DOI: 10.21037/atm.2020.02.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Luca Bertamini
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
32
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
33
|
ImmunoPET in Multiple Myeloma-What? So What? Now What? Cancers (Basel) 2020; 12:cancers12061467. [PMID: 32512883 PMCID: PMC7352991 DOI: 10.3390/cancers12061467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Despite constant progress over the past three decades, multiple myeloma (MM) is still an incurable disease, and the identification of new biomarkers to better select patients and adapt therapy is more relevant than ever. Recently, the introduction of therapeutic monoclonal antibodies (mAbs) (including direct-targeting mAbs and immune checkpoint inhibitors) appears to have changed the paradigm of MM management, emphasizing the opportunity to cure MM patients through an immunotherapeutic approach. In this context, immuno-positron emission tomography (immunoPET), combining the high sensitivity and resolution of a PET camera with the specificity of a radiolabelled mAb, holds the capability to cement this new treatment paradigm for MM patients. It has the potential to non-invasively monitor the distribution of therapeutic antibodies or directly monitor biomarkers on MM cells, and to allow direct observation of potential changes over time and in response to various therapeutic interventions. Tumor response could, in the future, be anticipated more effectively to provide individualized treatment plans tailored to patients according to their unique imaging signatures. This work explores the important role played by immunotherapeutics in the management of MM, and focuses on some of the challenges for this drug class and the significant interest of companion imaging agents such as immunoPET.
Collapse
|
34
|
Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia 2020; 34:3310-3322. [PMID: 32327728 PMCID: PMC7581629 DOI: 10.1038/s41375-020-0828-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
Oncolytic virus therapy leads to immunogenic death of virus-infected tumor cells and this has been shown in preclinical models to enhance the cytotoxic T-lymphocyte response against tumor-associated antigens (TAAs), leading to killing of uninfected tumor cells. To investigate whether oncolytic virotherapy can increase immune responses to tumor antigens in human subjects, we studied T-cell responses against a panel of known myeloma TAAs using PBMC samples obtained from ten myeloma patients before and after systemic administration of an oncolytic measles virus encoding sodium iodide symporter (MV-NIS). Despite their prior exposures to multiple immunosuppressive antimyeloma treatment regimens, T-cell responses to some of the TAAs were detectable even before measles virotherapy. Measurable baseline T-cell responses against MAGE-C1 and hTERT were present. Furthermore, MV-NIS treatment significantly (P < 0.05) increased T-cell responses against MAGE-C1 and MAGE-A3. Interestingly, one patient who achieved complete remission after MV-NIS therapy had strong baseline T-cell responses both to measles virus proteins and to eight of the ten tested TAAs. Our data demonstrate that oncolytic virotherapy can function as an antigen agnostic vaccine, increasing cytotoxic T-lymphocyte responses against TAAs in patients with multiple myeloma, providing a basis for continued exploration of this modality in combination with immune checkpoint blockade.
Collapse
|
35
|
Musto P, La Rocca F. Monoclonal antibodies in newly diagnosed and smoldering multiple myeloma: an updated review of current clinical evidence. Expert Rev Hematol 2020; 13:501-517. [PMID: 32290723 DOI: 10.1080/17474086.2020.1753502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Monoclonal antibodies (MoAbs) are rapidly changing the therapeutic scenario of multiple myeloma. Most of the available data, however, come from studies performed in patients with relapsed or refractory disease.Area covered: Here, the most recent results from clinical trials that have investigated (or are investigating) efficacy and safety of MoAbs as front-line treatments in both transplant-eligible and not-eligible patients with newly diagnosed multiple myeloma, as well as in smoldering myeloma, are reviewed. PubMed reported articles before 28 March 2020, and abstracts presented at the last ASCO, ASH, EHA, and IMW meetings were considered. Among others, pertinent data regarding daratumumab, isatuximab, elotuzumab, and pembrolizumab will be analyzed.Expert opinion: Introduction of MoAbs as first-line therapy will likely provide a significant improvement in the clinical outcome of patients with multiple myeloma. This will also require an appropriate re-positioning of salvage therapies. The role of MoAbs in smoldering myeloma appears to be promising, but adequate follow-up is needed.
Collapse
Affiliation(s)
- Pellegrino Musto
- Chair of Hematology and Unit of Hematology and Stem Cell Transplantation, "Aldo Moro" University School of Medicine, AOU Consorziale Policlinico, Bari, Italy
| | - Francesco La Rocca
- Laboratory of Advanced Diagnostics and Clinical Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| |
Collapse
|
36
|
Alame M, Pirel M, Costes-Martineau V, Bauchet L, Fabbro M, Tourneret A, De Oliveira L, Durand L, Roger P, Gonzalez S, Cacheux V, Rigau V, Szablewski V. Characterisation of tumour microenvironment and immune checkpoints in primary central nervous system diffuse large B cell lymphomas. Virchows Arch 2019; 476:891-902. [PMID: 31811434 DOI: 10.1007/s00428-019-02695-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Primary central nervous system diffuse large B cell lymphoma (PCNS-DLBCL) is a rare and aggressive entity of diffuse large B cell lymphoma (DLBCL). Elements of the tumour microenvironment (TME) including tumour-infiltrating lymphocytes (TILs) and tumour-associated macrophages (TAMs) have been associated with survival in DLBCL but their composition and prognostic impact in PCNS-DLBCL are unknown. Programmed cell death-1 (PD1)/programmed death-ligand 1 (PD-L1) immune checkpoint may represent a therapeutic option. Here, we aimed to characterise PD1/PDL1 immune checkpoints and the composition of the TME in PCNS-DLBCL. We collected tumour tissue and clinical data from 57 PCNS-DLBCL and used immunohistochemistry to examine TAMs (CD68, CD163), TILs (CD3, CD4, CD8, PD1) and tumour B cells (PAX5/PDL1 double stains, PDL1). The PDL1 gene was evaluated by fluorescence in situ hybridization (FISH). PAX5/PDL1 identified PDL1 expression by tumour B cells in 10/57 cases (17.5%). PDL1 gene translocation was a recurrent cytogenetic alteration in PNCS-DLBCL (8/47.17%) and was correlated with PDL1 positive expression in tumour B cells. The TME consisted predominantly of CD163 (+) M2 TAMs and CD8 (+) TILs. Most TAMs expressed PDL1 and most TILs expressed PD1. The density of TAMs and TILs did not associate with outcome. We showed that expression of PD1 on TILs and PDL1 on TAMs, but not the expression of PDL1 on tumour B cells was correlated with better prognosis. These findings support a significant role of TME composition and PD1/PDL1 crosstalk in PCNS-DLBCL pathogenesis and bring new insights to the targeted therapy of this aggressive lymphoma.
Collapse
Affiliation(s)
- Melissa Alame
- Département d'Hématologie biologique, CHU Montpellier, Hôpital Saint Eloi, 34275, Montpellier, France.,Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France
| | - Marion Pirel
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France.,Département de Biopathologie, CHU Montpellier, Hôpital Gui De Chauliac, 34295, Montpellier, France
| | - Valérie Costes-Martineau
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France.,Département de Biopathologie, CHU Montpellier, Hôpital Gui De Chauliac, 34295, Montpellier, France
| | - Luc Bauchet
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France.,Département de Neurochirurgie, CHU Montpellier, Hôpital Gui De Chauliac, 34000, Montpellier, France
| | - Michel Fabbro
- Département d'Oncologie Médicale, Institut du Cancer de Montpellier, Parc Euromédecine, 208 rue des Apothicaires, 34298, Montpellier, France
| | - Alicia Tourneret
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France.,Département de Biopathologie, CHU Montpellier, Hôpital Gui De Chauliac, 34295, Montpellier, France
| | - Laura De Oliveira
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France.,Département de Biopathologie, CHU Montpellier, Hôpital Gui De Chauliac, 34295, Montpellier, France
| | | | - Pascal Roger
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France.,Département de Biopathologie, CHU Nîmes, Hôpital Caremeau, 30029, Nîmes, France
| | - Samia Gonzalez
- Département de Biopathologie, CHU Nîmes, Hôpital Caremeau, 30029, Nîmes, France
| | - Valère Cacheux
- Département d'Hématologie biologique, CHU Montpellier, Hôpital Saint Eloi, 34275, Montpellier, France.,Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France
| | - Valérie Rigau
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France.,Département de Biopathologie, CHU Montpellier, Hôpital Gui De Chauliac, 34295, Montpellier, France
| | - Vanessa Szablewski
- Faculté de Médecine Montpellier Nîmes, 2 rue école de Médecine, 34060, Montpellier, France. .,Département de Biopathologie, CHU Montpellier, Hôpital Gui De Chauliac, 34295, Montpellier, France.
| |
Collapse
|
37
|
D'Agostino M, Raje N. Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better? Leukemia 2019; 34:21-34. [PMID: 31780814 DOI: 10.1038/s41375-019-0669-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/27/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Despite a substantial survival improvement and the availability of many new drugs in the last 2 decades, multiple myeloma (MM) remains largely incurable. Immunotherapeutic approaches are changing the current landscape in MM with B-cell maturation antigen (BCMA) as one of the most promising target antigens. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA produced unprecedented results in heavily pretreated relapsed and/or refractory MM. Data on more than 300 MM patients treated with anti-BCMA directed CAR T cells are available and these numbers are rapidly increasing. The response rate and the depth of responses induced by anti-BCMA CAR T cells are impressive; however, the majority of patients eventually relapse. Understanding the underlying mechanisms of response and resistance in treated MM patients will be critical to the rational development of this therapy. Moreover, the ideal place of this therapy in the treatment paradigm for MM is an important question that needs biological and clinical correlative data to help elucidate. T-cell-related, tumor-related and microenvironmental factors may play a role in the efficacy of anti-BCMA CAR T-cell therapy. In this review we summarize key clinical and correlative data on anti-BCMA CAR T-cell therapy. Based on available data we will try to highlight opportunities to further optimize this potential game-changing therapy for MM.
Collapse
Affiliation(s)
- Mattia D'Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy.,Center for Multiple Myeloma, Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Noopur Raje
- Center for Multiple Myeloma, Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Monoclonal Antibody Therapies in Multiple Myeloma: A Challenge to Develop Novel Targets. JOURNAL OF ONCOLOGY 2019; 2019:6084012. [PMID: 31781214 PMCID: PMC6875016 DOI: 10.1155/2019/6084012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
The treatment options in multiple myeloma (MM) has changed dramatically over the past decade with the development of novel agents such as proteasome inhibitors (PIs); bortezomib and immunomodulatory drugs (IMiDs); thalidomide, and lenalidomide which revealed high efficacy and improvement of overall survival (OS) in MM patients. However, despite these progresses, most patients relapse and become eventually refractory to these therapies. Thus, the development of novel, targeted immunotherapies has been pursued aggressively. Recently, next-generation PIs; carfilzomib and ixazomib, IMiD; pomalidomide, histone deacetylase inhibitor (HDADi); panobinostat and monoclonal antibodies (MoAbs); and elotuzumab and daratumumab have emerged, and especially, combination of mAbs plus novel agents has led to dramatic improvements in the outcome of MM patients. The field of immune therapies has been accelerating in the treatment of hematological malignancies and has also taken center stage in MM. This review focuses on an overview of current status of novel MoAb therapy including bispecific T-cell engager (BiTE) antibody (BsAb), antibody-drug conjugate (ADC), and chimeric antigen receptor (CAR) T cells, in relapsed or refractory MM (RRMM). Lastly, investigational novel MoAb-based therapy to overcome immunotherapy resistance in MM is shown.
Collapse
|
39
|
Brodská B, Otevřelová P, Šálek C, Fuchs O, Gašová Z, Kuželová K. High PD-L1 Expression Predicts for Worse Outcome of Leukemia Patients with Concomitant NPM1 and FLT3 Mutations. Int J Mol Sci 2019; 20:ijms20112823. [PMID: 31185600 PMCID: PMC6600137 DOI: 10.3390/ijms20112823] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
Compared to solid tumors, the role of PD-L1 in hematological malignancies is less explored, and the knowledge in this area is mostly limited to lymphomas. However, several studies indicated that PD-L1 is also overexpressed in myeloid malignancies. Successful treatment of the acute myeloid leukemia (AML) is likely associated with elimination of the residual disease by the immune system, and possible involvement of PD-L1 in this process remains to be elucidated. We analyzed PD-L1 expression on AML primary cells by flow cytometry and, in parallel, transcript levels were determined for the transcription variants v1 and v2. The ratio of v1/v2 cDNA correlated with the surface protein amount, and high v1/v2 levels were associated with worse overall survival (p = 0.0045). The prognostic impact of PD-L1 was limited to AML with mutated nucleophosmin and concomitant internal tandem duplications in the FLT3 gene (p less than 0.0001 for this particular AML subgroup).
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, Prague 128 20, Czech Republic.
| | - Petra Otevřelová
- Institute of Hematology and Blood Transfusion, Prague 128 20, Czech Republic.
| | - Cyril Šálek
- Institute of Hematology and Blood Transfusion, Prague 128 20, Czech Republic.
| | - Ota Fuchs
- Institute of Hematology and Blood Transfusion, Prague 128 20, Czech Republic.
| | - Zdenka Gašová
- Institute of Hematology and Blood Transfusion, Prague 128 20, Czech Republic.
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, Prague 128 20, Czech Republic.
| |
Collapse
|
40
|
Girmenia C, Cavo M, Offidani M, Scaglione F, Corso A, Di Raimondo F, Musto P, Petrucci MT, Barosi G. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev 2019; 34:84-94. [PMID: 30683446 DOI: 10.1016/j.blre.2019.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
The introduction of new therapeutic agents in multiple myeloma (MM), including proteasome inhibitors, immunoregulatory drugs and monoclonal antibodies, has improved the outcomes of patients, but in parallel has changed the frequency and epidemiology of infections. Hence, the great strides in the indications and use of new active treatments for MM need parallel progresses on the best approach to prophylaxis and supportive therapy for infections. Moving from the recognition that the above issue represents an unmet clinical need in MM, an expert panel assessed the scientific literature and composed a framework of recommendations for optimal infection control in patients candidate to active treatment for MM. The present publication represents a consensus document from questionnaires and consensus meetings held during 2017. The issues tackled in the project dealt with: infectious risk assessment, risk management and prophylaxis, intravenous immunoglobulin replacement therapy, antiviral and antibacterial vaccination. Considering the lack of conclusive and/or enough large studies for certain topics several recommendations derived from the personal experience of the experts.
Collapse
Affiliation(s)
- Corrado Girmenia
- Dipartimento di Ematologia, Oncologia, e Dermatologia, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.
| | - Michele Cavo
- 'Seràgnoli' Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Massimo Offidani
- Clinica di Ematologia, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Francesco Scaglione
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Corso
- Division of Hematology, Fondazione IRCCS - Policlinico San Matteo, Pavia, Italy
| | - Francesco Di Raimondo
- Division of Hematology, Azienda Policlinico-Vittorio Emanuele-Catania, and Department of Biomedicine and Molecular Medicine, University of Catania, Catania, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Pz, Italy
| | - Maria Teresa Petrucci
- Dipartimento di Ematologia, Oncologia, e Dermatologia, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| |
Collapse
|